

Supratik Chakraborty

CS620: FM in ML
Specifying Properties of Neural Networks

(Week 3)

A Typical Neural Network

Input layer Hidden layers Output layer

n
 in

pu
ts

m
 o

ut
pu

ts

A Typical Neural Network

Input layer Output layer

n
 in

pu
ts

m
 o

ut
pu

ts

A Typical Neural Network

Input layer Output layer

n
 in

pu
ts

m
 o

ut
pu

ts

A Transformative Program

Hoare triples similar to those used in program verification

First order logic
formula

Semantics of Hoare Triple

Property Specification Example 1

Wish to specify that the above never happens
 for a given image, for a specified max perturbation

Source: Goodfellow, Shlens, Szegedy, “Explaining and Harnessing Adversarial Examples”,2015

Property Specification Example 1

Score for panda: p Score for something else: g

Specified image: x*

Separation threshold for
“confident” classification

Max perturbation of input

Property Specification Example 1

Score for panda: p Score for something else: g

Specified image: x*

Spec as a logical requirement

A logical implication

Property Specification Example 2

Score for class 1: s1 Score for class 2: s2

Arbitrary image x

Given two arbitrary images that differ within
prescribed limits, the network must

never “confidently” classify them differently

Property Specification Example 2
Given two images that differ within

prescribed limits, the network must
never “confidently” classify them differently

Pause n Reflect

Are there any unintended consequences
of the specification?

Can a neural network satisfying the
specification do anything meaningful?

How easy/hard is it to design a neural
network satisfying this specification?

Spec as a logical requirement

Problem with Specification 2

𝜺

Pick any two arbitrary images in the input space

 𝜺 > 0 implies
all images must be classified same !!!

Is that what we intended?
Important to get specs right!!!

Input space

Taking a step back to re-look

Specific input

Arbitrary input

Arbitrary input

Arbitrary input

Attempting a Fix

Score for class 1: s1 Score for class 2: s2

Arbitrary image x

Given two arbitrary images that differ within
prescribed limits, the network must

never “confidently” classify them differently

Did It Fix?
Pick any two arbitrary images in the input space

> 0 no longer implies
all images must be classified same !!!

But, images with minor changes
can be classified vastly differently

Is that what we intended?
Important to get specs right!!!

Input space

Property Specification Example 2
 Second attempt!

Score for class 1: s1 Score for class 2: s2

Given two arbitrary images that
differ pixel-wise within prescribed limits and have “similar” semantic features,

the network must never “confidently” classify them differently

Property Specification Example 2
 Second attempt!

Given two arbitrary images that
differ pixel-wise within prescribed limits and have “similar” semantic features,

the network must never “confidently” classify them differently

User-defined semantic features,
Not necessarily network-defined

Possibilities with New Spec
Pick any two arbitrary images in the input space

Input space

1

2 4

2

1

6

3

6

Possibilities with Newer Spec
Pick any two arbitrary images in the input space

Input space

1

2 4

2

1

6

3

6

Property Specification Example 2
 Third attempt!

Given two arbitrary images that
differ pixel-wise within prescribed limits and have “similar” semantic features,

the network must produce “similar” classifications

Network-defined
labeling function:

“final” layer(s)

Possibilities with New Spec
Pick any two arbitrary images in the input space

Input space

1

2 4

2

1

6

3

6

Property Specification

Pause n Reflect

Why is it so hard to get specifications right?

Is it easier to arrive at

 THE RIGHT SPECIFICATION that covers all aspects of behaviour

 OR

 A bunch of sub-specifications that cover parts of the behaviour space?

A Day In The Life of A “Specifier”

Collect a bunch of desired/undesired (input, output) pairs
● Not necessarily what DNN is actually doing
● Instead, what DNN’s environment “expects” it to do

Source: Seshia et al, Formal Verification of Deep Neural Networks, 2018

input output

Is there a formalizable relation between inputs and desired outputs?
● Did we miss out corner cases?
● Sufficiently constrained to preclude all undesired behaviour?
● Sufficiently relaxed to allow all desired behaviour?

Input-Output Relation:
How hard is it to formalize?

Image (road scene)

“Too congested to accelerate”

Flight parameters

Score
(Horizontal Advisory)

Self-driving car Unmanned drone

Perceptual Spec

Non-Perceptual
Spec

Non-Perceptual DNN Specs

Flight parameters

Source: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, by Katz et al, 2017

ACAS-Xu

Score
(Horizontal Advisory)

Clear-of-Conflict

Non-Perceptual DNN Specs

Flight parameters

Source: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, by Katz et al, 2017

ACAS-Xu

Rules for ACAS-Xu when directly implemented
takes > 2GB memory

45 Non-perceptual DNNs for same take < 3MB of memory

Having a good spec for a non-perceptual DNN
doesn’t make the DNN irrelevant !!!

Specs NOT SAME AS Rules

Score
(Horizontal Advisory)

Perceptual DNN Specs

Image (road scene)

“Too congested to accelerate”

Good spec:

 { : image of congested road }

 { y = “Too congested to accelerate” }

CR(...) = true iff road is “too congested to accelerate”

If we know CR (...), why design and train a DNN ???

CR

Perceptual DNN Specs

Image (road scene)

“Too congested to accelerate”

Good spec:

 { : image of congested road }

 { y = “Too congested to move” }

CR(...) = true iff road is “too congested to accelerate”

If we know CR (...), why design and train a DNN ???

CR

Having the ideal spec for a perceptual DNN
would make the DNN irrelevant !!!

Specifying Properties of
Perceptual DNNs

Pause n Reflect

Are we in a chicken-and-egg conundrum for perceptual DNNs?

Is there any meaningful way out?
We can talk about robustness of classification w.r.t. a specific image

 Can we specify anything formally beyond this?

Points to Ponder

Are we in a chicken-and-egg conundrum for perceptual DNNs?

Is there any meaningful way out?
We can talk about robustness of classification w.r.t. a specific image

 Can we specify anything formally beyond this?

Is it better to write a single all-encompassing spec or
multiple sub-specs for different behavioural requirements?

Any Hope for Perceptual DNNs?

Image (road scene)

“Too congested to accelerate”

Most images inconsequential, have no semantic
similarity to what can possibly arise on a road

Input image: 100 x 100 (r,g,b) pixels
Each r, g, b: 0 - 255
| Input Space | = 256100 x 100 x 3

High dimensional, large input space

Can we restrict specs to a
lower dimensional, smaller, meaningful input space?

Any Hope for Perceptual DNNs?

Renderer /
Image generator
(probabilistic?)

Low dimensional
Semantic inputs

Time of Day: {Morning, Noon, Afternoon, Dusk, Night}
Weather: {Clear, Cloudy, Snowing, Raining}
Lanes: {Wide, Medium, Narrow, None}
Road direction: {Straight, Bending}
Other vehicles within 10m: {0, 1-3, 4-8, 9-15, > 15}
Behaviour of other vehicles: {Lane disciplined, Chaotic}

Dimensions of semantic inp space = 6
|Semantic inp space| = 5x4x4x2x5x2 = 1600

Dimensions of image inp space = 100x100x3 = 30000
|Image inp space| = 256100x100x3

“S
y

st
e

m
”

to
 m

o
d

el

{ Pre-condition on semantic inputs s }

{ Post-condition on y}

Any Hope for Perceptual DNNs?

Renderer /
Image generator
(probabilistic?)

Low dimensional
Semantic inputs

T: {Morning, Noon, Afternoon, Dusk, Night}
W: {Clear, Cloudy, Snowing, Raining}
L: {Wide, Medium, Narrow, None}
Rd: {Straight, Bending}
O: {0, 1-3, 4-8, 9-15, > 15}
B: {Lane disciplined, Chaotic}

“ S
y

st
e

m
”

to
 m

o
d

el

{ y = “Too congested to accelerate” }

Any Hope for Perceptual DNNs?

Renderer /
Image generator
(probabilistic?)

Low dimensional
Semantic inputs

Potential “problems”:
● Doesn’t cover entire input space

● Enrich semantic space to cover most/all meaningful inputs
● Use richer rendering modules

● Need to model renderer
● Use abstract / non-deterministic / probabilistic models

Significant “benefits”:
● Can eliminate large parts of irrelevant/meaningless input space
● Provide guarantees over large parts of meaningful input space

One Spec vs Multiple Sub-specs

Flight parameters

Source: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, by Katz et al, 2017

ACAS-Xu

Spec 1 Score
(Horizontal Advisory)

One Spec vs Multiple Sub-specs

Flight parameters

Source: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, by Katz et al, 2017

ACAS-Xu

Spec 7
Score

(Horizontal Advisory)

One Spec vs Multiple Sub-specs

Flight parameters

Source: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, by Katz et al, 2017

ACAS-Xu

Specs 1+7 Score
(Horizontal Advisory)

One Spec vs Multiple Sub-specs

Multiple sub-specs generally preferred over one all-encompassing spec
● Separation of concerns
● Easy understandability
● Proofs often easier
● Modularly build spec over time

Other Ways of Specifying
Properties

Source: Seshia et al, Formal Verification of Deep Neural Networks, 2018

input output

System-level spec

{ (own_velocity > 30 km/h) and (road_straight_ahead) and (vehicles_within_5m = 0) }

 Model of DNN + Controller + Plant

 { Steering = straight }

Other Ways of Specifying
Properties

Source: Seshia et al, Formal Verification of Deep Neural
 Networks, 2018

System-level
spec

{ (own_velocity > 30 km/h) and (road_straight_ahead) and (vehicles_within_5m = 0) }

 Model of DNN + Controller + Plant

 { Steering = straight }

No need for perceptual specs
● Often easier to specify

Require models of other components
● May be harder to verify

Classification errors of DNN may not
translate to system level spec violations

Specifying Properties of Neural
Networks

Pause n Reflect

DNNs are intended to mimic human reasoning
 Is ideal human reasoning amenable to formal specification?

There are “boundaries” of acceptable/unacceptable human behaviour
Can we specify these boundaries?

Rules, laws, code of conduct
 Do they have unique interpretations?
 Do they evolve?

Is there a counterpart for neural networks?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

