CS719 End-semester Exam

- The exam is open-book, open-notes and open-material-brought-to-exam-hall.
- Be brief, complete and stick to what has been asked. Unnecessarily lengthy solutions may be penalized.
- If you need to make any reasonable assumptions, state them clearly. Unreasonable assumptions run the risk of attracting penalty.
- If you need to use/cite results covered in class, you may simply cite the result, without going into a formal proof.
- Do not copy from others or indulge in unfair means. Students found indulging in such activities will be awarded the FR grade.
- 1. (a) [5 marks] Show that a lattice $(L; \leq)$ is distributive if and only if $x \lor (y \land z) \ge (x \lor y) \land z$ for all $x, y, z \in L$.
 - (b) Let $(L; \leq)$ be a bounded (i.e. has \top and \bot) distributive lattice. In general, some elements of L may have complements. Let $C \subseteq L$ be the set of elements of L that have complements.
 - i. [3 marks] Is $(C; \leq)$ necessarily a sublattice of $(L; \leq)$?
 - ii. [3 marks] Is $(L \setminus C; \leq)$ necessarily a sublattice of $(L; \leq)$?

In each case, you must either give a proof or provide a counter-example.

- (c) Let $(P; \leq)$ be a lattice. Let $(\mathcal{O}(P); \subseteq)$ be the poset of order ideals of P, and $(\mathcal{I}(P); \subseteq)$ be the poset of lattice ideals of P.
 - i. [4 marks] Give an example of P such that P has both ACC and DCC, but $\mathcal{I}(P)$ has neither ACC nor DCC.
 - ii. [5 marks] Suppose P is a complete lattice, but there is no finite subset A of P such that $\bigvee A = \top$ or $\bigwedge A = \bot$. Show that $\mathcal{O}(P)$ has neither ACC nor DCC.
- 2. [10 marks] Consider the first order logic sentence:

```
\varphi \equiv (\forall x \, (P(x) \to \exists y \, Q(x, y))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\exists x \exists y \, (Q(x, y) \land \forall z \ \sim Q(y, z))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \to (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \land (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \land (P(x) \land P(y)))) \land (\forall x \forall y \, (Q(x, y) \land (P(x) \land P(y)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x) \land P(x))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x) \land P(x))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x)))) \land (\forall x \forall y \, (P(x) \land P(x)))) \land (\forall x \forall x \, (P(x) \land P(x)))) \land (\forall x \forall x \, (P(x) \land P(x)))) \land (\forall x \forall x \, (P(x) \land P(x)))) \land (\forall x \, (P(x) \land P(x)))) \land (P(x) \land P(x)))) \land (P(x) \land P(x)))) \land (P(x) \land P(x)))) \land (P(x)
```

Show using resolution for first order logic that φ is unsatisfiable. Note that φ is not in Skolem Normal form, so you must first Skolemize it, find most general unifiers, and then use resolution to show that the formula is unsatisfiable.

3. Let $(L; \leq)$ be a bounded lattice, i.e. a lattice with top (\top) and bottom (\perp) . For every $u, v \in L$ such that u < v, we define the *closed interval* [u, v] to be the poset $(\{x \mid u \leq x \leq v\}; \leq)$.

- (a) [5 marks] Is [u, v] a lattice for every $u, v \in L$ such that u < v? Either give a proof or provide a counterexample.
- (b) [10 marks] For every closed interval [u, v] in L and for every a ∈ [u, v], a relative complement of a with respect to [u, v] is an element b ∈ [u, v] such that a∧b = u and a∨b = v. The complement (as studied in class) is easily seen to be a special case of this, i.e. relative complement with respect to [⊥, ⊤].

Show that if L is modular and $a \in L$ has a complement, then a also has a relative complement \hat{a} with respect to every closed interval [u, v] in L such that $u \leq a \leq v$.

(c) [5 marks] A closed interval [u, v] in L is said to be complemented if every a ∈ [u, v] has a relative complement with respect to [u, v]. The lattice L is said to be relatively complemented if every closed interval [u, v] in L is complemented.
Is it possible for L to be complemented (i.e. every element has a complement), but not be relatively complemented? Either give a proof or provide a counter-example.

Hint: The previous question asked you to show that this is not possible if L is modular.

- (d) [10 marks] Suppose we are told that for every closed interval [u, v] in L and $a \in [u, v]$, either a has a unique relative complement with respect to [u, v] or no relative complement with respect to [u, v]. In other words, relative complements, when they exist, are unique. Show that L must be distributive.
- 4. After spending a sleepless night on the eve of CS719 end-sem exam trying to understand how first order logic can (and cannot) be used to describe properties of directed graphs, two students X and Y have come up with two different conclusions. In the following, all first order logic sentences are assumed to be on the vocabulary $\Sigma = \{E, =\}$, where E is a binary predicate.
 - X thinks that if a certain property of graphs cannot be expressed by any FOL sentence φ on Σ, then such a property cannot be expressed even by an infinite family Γ of FOL sentences on Σ. Although the student isn't sure of the exact argument, she thinks this should be provable using the Compactness Theorem of first order logic.
 - Y thinks that every property of graphs can be expressed by an infinite family Γ of FOL sentences on Σ . Although he doesn't have a proof yet, he intuitively feels that since there are no bounds on the cardinality of Γ , it should be possible to express every property of graphs using a sufficiently large number (possibly infinite) of suitably designed FOL sentences on Σ .

Note that when we say that a FOL sentence φ (or a family of FOL sentences Γ) expresses a property \mathcal{P} of directed graphs, we mean the following. For every directed graph G with property \mathcal{P} , the corresponding Σ -structure M_G is a model of φ (or a model of every FOL sentence in Γ). Similarly, every model M_G of φ (or of Γ) represents a graph G with property \mathcal{P} .

Show that both X and Y are wrong. In other words:

- (a) [7.5 marks] Show that there are properties of graphs that cannot be expressed by an individual FOL sentence on Σ , but can be expressed by an infinite family of FOL sentences on Σ .
- (b) [7.5 marks] Show that there are properties of graphs that cannot be expressed by any infinite family of FOL sentences on Σ .