
CS719 Solutions to Graded Homework #4

• The solutions have been intentionally kept lengthy to help clarify doubts.

• Your solutions need not be this lengthy, and results covered in class can be used by simply mentioning
them.

1. Let L be a Boolean lattice. Suppose L has an infinite ascending chain: a0 < a1 < a2 < . . .. We know
that for a Boolean lattice, if ai < aj , then a′i > a′j (a quick proof: (ai ∨ aj)′ = a′j and also by de
Morgan’s law, (ai∨aj)′ = a′i∧a′j ; hence a′j ≤ a′i, but ai < aj ⇒ a′i 6= a′j since complements are unique
in a Boolean lattice). Therefore, we get an infinite descending chain a′0 > a′1 > a′2 > . . .. Thus, if L
doesn’t have ACC, then it doesn’t have DCC as well. The argument above is completely symmetric
with respect to < and >. Therefore, by a similar argument, if L doesn’t have DCC, it doesn’t have
ACC either. It follows that L has DCC iff it has ACC.

2. (a) Let L be a distributive lattice, and suppose that ((a ∨ b) = (c ∨ b)) and ((a ∧ b) = (c ∧ b)) for
some a, b, c ∈ L. We have a = a ∨ (a ∧ b) = a ∨ (c ∧ b) = (a ∨ c) ∧ (a ∨ b) = (a ∨ c) ∧ (c ∨ b) =
(a ∧ b) ∨ c = (c ∧ b) ∨ c = c.

(b) There seem to be multiple ways to approach this problem. I’m taking the route suggested by
the hint given in the book. This route involves showing that if all chains in L have length ≤ k
and L is distributive, then J (L) is finite. Furthermore, if all chains in L have length ≤ k, L
clearly has DCC. Since in a lattice with DCC, every element can be expressed as the join of
a finite subset of J (L). it then follows that there are only finitely many elements in L. The
crucial part of the proof is therefore to show that J (L) is finite.
Since all chains in L have length ≤ k, there are two consequences:
• There exists a maximal chain, i.e. a chain with maximum length. Let C be such a maximal

chain.
• Every maximal chain has the same smallest element and the same largest element (otherwise

you could take the distinct smallest elements of two maximal chains, compute their meet
and obtain a longer chain; same argument holds for the largest elements). This means that
the lattice has a bottom (⊥) and a top (>), and these are part of every maximal chain.

Let J (L) be the set of join-irreducible elements of L. We will first show that J (L) is non-empty.
Let C be a maximal chain. As argued above, ⊥ is in C. Since C is of finite length, there exists
an element b in C that is covered by ⊥, i.e. ⊥ < b and there doesn’t exist any other element
d ∈ C such that ⊥ < d < b. We claim that b is join-irreducible. Why? Assume the contrary.
Then, there exist x, y ∈ L such that b = x ∨ y and ⊥ < x, y < b. Therefore, C ∪ {x} is a chain
containing one more element than C. This is impoosible since C is a maximal chain. Therefore,
b is join-irreducible, and hence J (L) is non-empty.
Consider the mapping ϕ : J (L)→ C defined by ϕ(x) =

∧
(↑ x ∩C). Thus, ϕ(x) is the smallest

element in C that is ≥ x. Clearly, since > is a part of every maximal chain, ϕ(x) is well-defined
for every x ∈ J (L).
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We now claim that ϕ is a one-to-one mapping. We prove this by contradiction.
Suppose there exist x, y ∈ J (L) such that x 6= y and ϕ(x) = ϕ(y) = a. Since x and y are
join-irreducible, x > ⊥ and y > ⊥ (recall ⊥ is not join-irreducible). Since ϕ(x) ≥ x > ⊥ and
ϕ(y) ≥ y > ⊥, it follows that ϕ(x) = ϕ(y) = a > ⊥. Since ⊥ ∈ C and C is finite, there exists
a cover of a in C. Let this cover be e. In other words, there exists e ∈ C such that e < a and
there is no f ∈ C such that e < f < a. Since C is also a maximal length chain, we can say
further. Specifically, there is no f in L such that e < f < a. Otherwise, we could have obtained
the chain C ∪ {f}, that is longer than the maximal length chain C.
Since a =

∧
(↑ x∩C) =

∧
(↑ y ∩C) and C is a chain, it is easy to see that x ≤ a and y ≤ a. We

can, in fact, say more, i.e. x < a and y < a (strict inequalities). Why? Suppose the contrary
and without loss of generality, let x = a, if possible. Since y ≤ a and e < a, therefore (y∨e) ≤ a.
If e < (y ∨ e) < a, we would have an element f (= y ∨ e) such that e < f < a. However, we
have seen above that such an f doesn’t exist. Therefore, we must have either e = (y ∨ e) or
(y ∨ e) = a. If e = (y ∨ e), then y ≤ e, and since e ∈ C, we should have ϕ(y) =

∧
(↑ y ∩C) ≤ e.

However, we know that ϕ(y) = a > e. If (y ∨ e) = a, then since x(= a) is join-irreducible and
e < a, we must have y = a. However, this contradicts the fact that x 6= y. Therefore, we must
have x < a and similarly, y < a.
Since e < a and e ∈ C, it follows that x 6≤ e and y 6≤ e (otherwise ϕ(x) or ϕ(y) would be ≤ e,
while we know ϕ(x) = ϕ(y) = a > e). So what is the relation of e with x and y? We have the
following two possibilities:

• e < x(< a) or e < y(< a): None of these cases are possible since we know that there is no
f ∈ L such that e < f < a.
• e||x and e||y: This is the only remaining possibility.

Now, consider the element x∧ (e∨ y). Since e, y < a, therefore (e∨ y) ≤ a. Suppose (e∨ y) < a.
Since e||y as seen above, therefore we have e < (e∨ y). But, this gives us an element f(= e∨ y)
such that e < f < a. We know that this is not possible. Therefore, we must have (e ∨ y) = a.
But since x < a, it follows that x ∧ (e ∨ y) = x ∧ a = x.
Since L is distributive, the above equality can be re-written as (x ∧ e) ∨ (x ∧ y) = x. We have
seen above that e||x. Therefore, (x ∧ e) < x. Since x is join-irreducible and (x ∧ e) < x, it
follows that (x ∧ y) = x. However, we also know that x 6= y. Therefore, we must have x < y.
Note that the above argument can be repeated by swapping the roles of x and y. Thus, we
could start from the element y ∧ (e ∨ x) and show that y < x. This contradicts the previous
conclusion x < y.
Therefore, our initial assumption must be wrong. In other words, if x, y ∈ J (L) and x 6= y,
then ϕ(x) 6= ϕ(y). However, the range of ϕ is C, a finite chain. Since ϕ is one-to-one (injective),
it follows that its domain is also finite. In other words, J (L) is finite.

3. (a) Let L be a finite distributive lattice. Since every finite lattice has a top > and a bottom ⊥, so
does L. Therefore, for every a ∈ L, the set Sa = {b | b ∈ L, b ∧ a = ⊥} always includes ⊥, and
is hence non-empty.
Suppose b1, b2 ∈ Sa. Therefore, b1 ∧ a = ⊥ = b2 ∧ a. Since, L is distributive, (b1 ∨ b2) ∧ a =
(b1 ∧ a) ∨ (b2 ∧ a) = ⊥ ∨ ⊥ = ⊥. Therefore, (b1 ∨ b2) ∈ Sa. In other words, Sa is closed under
∨. Similarly, if b1 ∈ Sa and c ∈ L is such that c ≤ b1, then c ∧ a ≤ b1 ∧ a = ⊥. It follows
that c ∧ a = ⊥, and hence c ∈ Sa. Thus, Sa is a lattice ideal of L. Since Sa ⊆ L and L is
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finite, therefore Sa is finite as well. Every finite ideal of a lattice has a maximum element (why?
because it is closed under ∨). Hence, Sa has a unique maximum element.

(b) Let L be a Boolean lattice, and a ∈ L. The set Sa as defined above is non-empty since a′∧a = ⊥.
Now, let b ∈ Sa. Therefore, b ∧ a = ⊥.
Consider b ∧ (a ∨ a′) = b ∧ > = b. Since L is ditributive (every Boolean lattice is distributive),
therefore b can also be written as (b∧ a)∨ (b∧ a′) = ⊥∨ (b∧ a′) = b∧ a′. Therefore, b = b∧ a′.
In other words, b ≤ a′. Therefore, a′ is the unique maximum element in Sa.

(c) Consider the lattices L1 = ℵ× ℵ and L2 = <≥0 ×<≥0, where <≥0 is the set of all non-negative
real numbers.

• L1 is countable, but L2 is not. Therefore, they cannot be isomorphic.
• Since every chain is a distributive lattice, and products of distributive lattices are distribu-

tive lattices, therefore both L1 and L2 are distributive lattices.
• (1, 1) serves as the bottom for L1 = ℵ × ℵ Consider the element a = (1, 2) ∈ L1. Here,
Sa = {(n, 1) | n ∈ ℵ}. Clearly, Sa doesn’t have a maximum element.
Similarly, (0, 0) serves as the bottom for L2. By similar reasoning as above, if a = (0, 1) ∈ L2,
Sa = {(r, 0) | r ∈ <≥0} has no maximum element.

4. There could be multiple solutions to this question. I am providing one of the simplest examples.

(a) Consider the sentence ϕ ≡ ϕ1∧ϕ2 (not exactly satisfying the conditions of the question, but we’ll
fix this soon), where ϕ1 ≡ (∃x∀y ¬(f(y) = x)) and ϕ2 ≡ (∀x∀y ¬(x = y) → ¬(f(x) = f(y))).
ϕ1 asserts that f is not a surjective function, and ϕ2 asserts that f is injective.
We claim that every model of ϕ must have infinitely many elements in the universe. Why?
Suppose the contrary, and let (UM , fM ) be a model of ϕ, where |UM | = k ∈ ℵ. From ϕ2,
it follows that fM : UM → UM is an injective function. From ϕ1, it follows that fM is not
surjective. Therefore, the domain of fM has the same cardinality as that of a strict subset of
the range. Since the domain and range of fM are finite, this implies that the cardinality of the
range is higher than that of the domain. However, both the domain and range of fM are UM .
Therefore, k > k for some k ∈ ℵ, which is an absurdity.
Note that the argument italicized above does not apply if the domain and range of fM are
infinite. Indeed g : ℵ → ℵ defined by g(n) = 2.n is injective but not surjective, but the set of
even natural numbers has the same cardinality as the set of all natural numbers. It is possible
to define an injective function from the set of even natural numbers to the set of all natural
numbers and vice versa, and therefore by the Bernstein-Schröder theorem, there is a bijection
between these two sets. In other words, their cardinalities are the same.
So now we have a sentence ϕ such that all models of ϕ are necessarily infinite. But this ϕ
doesn’t suit our purpose, since it contains a function symbol f . We will now obtain a sentence
ψ without f , but with uninterpretted predicates such that for every model M of ϕ, there is a
model M ′ of ψ with the same universe, and vice versa. Note that ϕ and ψ are not semantically
equivalent – they cannot be, since their signatures are not the same and hence their models
cannot be the same. However, ϕ and ψ are equisatisfiable. Even more importantly, for every
model M of ϕ, there is a model M ′ of ψ with the same universe, and vice versa. Since we have
shown above that every model of ϕ must have an infinite universe, every model of ψ must also
have an infinite universe.
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The only part remaining is to obtain ψ from ϕ. But this is a standard trick: replacing functions
in a FOL formula with appropriate predicates. After all, an n-ary function is a special case
of an n + 1-ary predicate. Since we have a unary function f , intuitively, we want to have an
uninterpretted binary predicate Pf (z, w) that evaluates to True exactly for one value of w for
every value of z. This would then encode a functional relation between w and z, similar to what
w = f(z) captures. This is done through ψ1 below. Once we have such a predicate Pf , we must
replace every occurence of f(z) with w and add the constraint that Pf (z, w) evaluates to True.
Thus, we have ψ ≡ ψ1 ∧ ψ2 ∧ ψ3, where

• ψ1 ≡ (∀z∃wPf (z, w)) ∧ (∀z∀w1∀w2 Pf (z, w1) ∧ Pf (z, w2) → (w1 = w2)). This asserts that
there is a functional dependence of w on z if Pf (z, w) = True.
• ψ2 ≡ (∀x∃y Pf (x, y)). This, along with ψ1, captures the constraint specified by ϕ1.
• ψ3 ≡ (∀x∀y∀w1∀w2 ¬(x = y) ∧ Pf (x,w1) ∧ Pf (y, w2)→ ¬(w1 = w2)). This, along with ψ1,

captures the constraint specified by ϕ2.

Note that ψ uses no function symbols, but an uninterpretted predicate Pf . How do we show
that for every model of ϕ, there is a model of ψ with the same universe and vice versa? Let
M = (UM , fM ) be a model of ϕ. It follows that N = (UM , PN

f ) is a model of ψ1, ψ2 and ψ3,
where PN

f (x, y) = True iff y = fM (x). Similarly, let N = (UN , PN
f ) be a model of ψ. Then

M = (UN , fM ) is a model of ϕ1 and ϕ2, where y = f(x) iff PN
f (x, y) = True.

(b) Not every model of the sentence ψ above has a finite universe.
Let M = (ℵ, PM

f ), where PM
f (x, y) is defined to be True for all x, y ∈ ℵ. Clearly, M doesn’t

satisfy ψ1, and therefore doesn’t satisfy ψ. In other words, M |= ¬ψ although the universe of
M is infinite.

5. Given φ ≡ ∀x ∃y ∀z (P (x, y) ∨ ¬P (z, y)) and ψ ≡ ∀x ((∃y P (x, y)) ∨ (∀y ¬P (y, x))).

Let M = (UM , PM ) |= ψ. Let UM
1 = {x | ∃y PM (x, y) = True} and UM

2 = UM \ UM
1 .

Since M |= ψ, we have the following:

• ((∃y PM (x, y)) ∨ (∀y ¬PM (y, x))) = True for all x ∈ UM
1 . This, of course, follows trivially from

the definition of UM
1 .

• ((∃y PM (x, y))∨(∀y ¬PM (y, x))) = True for all x ∈ UM
2 . From the definition of UM

2 , this implies
that ∀y ¬PM (y, x) = True for all x ∈ UM

2 .

When evaluating φ on M , we must try to select a value of y for every value of x (similar in spirit
to a Skolem function) such that for all values of z,

(
PM (x, y) ∨ ¬PM (z, y)

)
evaluates to True. We

choose to select y in the following manner.

• If x ∈ UM
1 , then by definition, ∃y PM (x, y) = True. Let yx be the corresponding value of y, i.e.,

PM (x, yx) = True. We therefore choose y = yx for every x ∈ UM
1 when evaluating φ on M .

Since PM (x, yx) = True, it follows that ∀z
(
PM (x, yx) ∨ ¬PM (z, y)

)
= True.

• If x ∈ UM
2 , then as seen above ∀y ¬PM (y, x) = True. We therefore choose y = x for every

x ∈ UM
2 when evaluating φ on M . It then follows that (∀z ¬PM (z, y)) = True and therefore,

∀z
(
PM (x, y) ∨ ¬PM (z, y)

)
= True.
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Thus, with the above choice of y, we have ∃y∀z
(
PM (x, y) ∨ ¬PM (z, y)

)
= True for every x ∈ UM .

Hence M |= φ. In other words, ψ → φ.

6. (a) Consider the infinite family of sentences Γ = {ψi | i ∈ ℵ}, where ψi = ∃x1 . . . ∃xi
∧

1≤j<k≤i ¬(xj =
xk). Thus, a model of ψi must have at least i elements, for every i ∈ ℵ. It follows that a model
of Γ must have infinitely many elements.
Now consider Γ′ = Γ ∪ {φ}. Let S be a finite non-empty subset of Γ′. If S ∩ Γ = ∅, then
S = {φ}. Therefore, S can be satisfied by a model which has exactly two elements in its
universe. If S ∩ Γ 6= ∅, let k be the highest subscript of a sentence from Γ that appears in S.
Consider a model M with a universe having k′ elements, where k′ is the smallest even natural
number ≥ k. Clearly, M |= ψi for every ψi ∈ S ∩ Γ and M |= φ as well. Therefore, M |= S.
Thus, every finite subset of Γ′ is satisfiable, and hence, by the Compactness Theorem, Γ′ has
a model. Since Γ ⊂ Γ′, every model of Γ′ is also a model of Γ. However, as seen above, every
model of Γ must have an infinite universe. Therefore, every model of Γ′ necessarily has an
infinite universe. Since Γ′ is satisfiable, we also know from the Lowenheim-Skolem Theorem
that there exists a countable model of Γ′. Thus, there exists a countably infinite model M1 of
Γ′. Since φ ∈ Γ′, therefore, M1 |= φ.
Let Γ′′ = Γ ∪ {¬φ}. By repeating the same argument as above, and choosing models of odd
but finite sizes, we can show that every finite subset of Γ′′ is satisfiable. Therefore, by the
Compactness Theorem, Γ′′ is satisfiable. Since Γ ⊂ Γ′′, every model of Γ′′ is a model of Γ, and
therefore has infinitely many elements. By the Lowenheim-Skolem Theorem, Γ′′ has a countable
model. Therefore, Γ′′ has a countably infinite model. Let this be M2. Since ¬φ ∈ Γ′′, M2 |= ¬φ.

(b) Since the signature of Γ′ as well as Γ′′ is {=}, and equality is an interpetted predicate, therefore
both M1 and M2 simply have a universe each (no interpretations of predicates or functions). In
other words, M1 is simply a countably infinite set and so is M2.
We now claim that M1 and M2 are isomorphic. Since both M1 and M2 are countably infinite,
there exist bijections f1 : M1 → ℵ and f2 : M2 → ℵ. Therefore, f−1

2 ◦ f1 : M1 →M2 defined by
f−1
2 ◦ f1(x) = f−1

2 (f1(x)) is also a bijection. Let us denote f−1
2 ◦ f1 by f .

The only predicate of concern is =. Since f is a bijection, it is easy to see that for every
x1, y1 ∈M1, (x1 = y1) iff (f(x1) = f(y1)). Similarly, since f−1 is a bijection, it follows that for
every x2, y2 ∈ M2, (x2 = y2) iff (f−1(x2) = f−1(y2)). Therefore, M1 and M2 are isomorphic.
Hence for every formula ψ on the signature {=}, M1 |= ψ iff M2 |= ψ (given as part of the
question). We already know that M2 |= ¬φ. Therefore, M1 |= ¬φ as well. However, we have
already seen that M1 |= φ. This gives a contradiction. Hence our original assumption must
be wrong. In other words, there cannot be a FOL formula φ on the signature {=} such that
M |= φ iff M has an even number of elements in its universe.
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