CS719 Practice Homework #1

- Be brief, complete and stick to what has been asked.
- Do not turn in your solutions. These problems are for you practice only.

Problems on Propositional Logic:

1. We have learnt about clauses and conjunctive normal forms (CNF) of propositional logic formulae in class. A clause is said to be a *Horn clause* if it contains at most one positive (or unnegated) literal. A conjunction of Horn clauses is said to be a *Horn formula*.

As examples, $(\sim a \lor \sim b \lor c \lor d)$ is not a Horn clause since it has two unnegated literals. On the other hand, $(\sim a \lor \sim b \lor c)$ is a Horn clause, and $(\sim a \lor \sim b \lor c) \land (\sim c \lor a)$ is a Horn formula.

It is known that a Horn formula can be checked for satisfiability in polynomial time (you are encouraged to find out how).

Now consider the following variant of Horn clauses and formulae. A *relaxed Horn clause* is one that has two unnegated literals. The unnegated literals appearing in a relaxed Horn clause are said to be *paired*. A *relaxed Horn formula* φ is a CNF formula defined as follows:

- Every clause is either a Horn clause or a relaxed Horn clause.
- If u and v are paired literals in a relaxed Horn clause, then every clause C in φ satisfies the following:
 - P1 C contains u iff it also contains v.
 - P2 If $C \equiv (D \lor \sim u)$, then there exits a clause $C' \equiv (D \lor \sim v)$ in φ .
 - P3 No clause contains both a literal and its negation.

Show that the satisfiability of a relaxed Horn formula can be checked in polynomial time [Hint: You need to first read up on how satisfiability of Horn formulas is checked in order to answer this question.]

Suppose properties P1 and P2 above are not satisfied by clauses of φ . If there are k relaxed Horn clauses in φ , show that satisfiability of φ can be checked in time that is polynomial in n (size of the formula) and exponential in k.

- 2. Suppose we are given two (potentially infinite) sets of propositional logic formulae \mathcal{F} and \mathcal{G} on the same set, X, of propositional variables.
 - We say that $\mathcal{F} \equiv \mathcal{G}$ iff every satisfying assignment μ of \mathcal{F} is also a satisfying assignment of \mathcal{G} and vice versa.
 - We say that $\mathcal{F} \simeq_1 \mathcal{G}$ iff for every $\varphi \in \mathcal{F}, \mathcal{G} \vdash \varphi$, and for every $\psi \in \mathcal{G}, \mathcal{F} \vdash \psi$.
 - We say that $\mathcal{F} \simeq_2 \mathcal{G}$ iff for every $\varphi \in \mathcal{F}$, there exists some $\psi \in \mathcal{G}$ such that $\psi \vdash \varphi$, and for every $\psi \in \mathcal{G}$, there exists some $\varphi \in \mathcal{F}$ such that $\varphi \vdash \psi$.

Are the three relations $\equiv, \simeq_1, \simeq_2$ equivalent? If not, which of them is the strongest and which is the weakest?

- 3. A set S of propositional logic formulae is said to form a *minimal unsatisfiable core* if S is unsatisfiable, but every proper subset of S is satisfiable.
 - (a) Given an unsatisfiable set S of propositional logic formulae, does there always exist a *unique* subset of S that forms a minimal unsatisfiable core? If so, give a proof. Otherwise, give a counterexample.
 - (b) Show that there exists a minimal unsatisfiable core of n propositional logic formulae, for every n > 0.
 - (c) The compactness theorem tells us that if S is an unsatisfiable set of propositional logic formulae, there must exist a finite subset of S that is unsatisfiable. Does this contradict the statement of the previous subquestion? If not, why?
- 4. Let φ and ψ be propositional logic formulae such that $\models \varphi \rightarrow \psi$ (i.e. $\varphi \rightarrow \psi$ is a tautology). Let $Var(\varphi)$ and $Var(\psi)$ denote the set of propositional variables in φ and ψ respectively. Show that there exists a propositional logic formula ζ with $Var(\zeta) = Var(\varphi) \cap Var(\psi)$ such that $\models \varphi \rightarrow \zeta$ and $\models \zeta \rightarrow \psi$. This result is also known as *Craig's interpolation theorem* as applied to propositional logic.
- 5. We have studied ground resolution for propositional logic in class.
 - (a) Use ground resolution to establish the following:
 - i. $\sim A$ is a consequence of $(A \rightarrow B) \land (A \rightarrow \sim B)$.
 - ii. The set of formulae $\{(A \to B), (B \to C), (C \to \sim A)\}$ is satisfiable.
 - (b) Consider the following pseudo-code for ground-resolution:

Input: A propositional logic formula F in CNF.

Res_0 = {C | C is a clause of F}; n = 0; do { Res_{n+1} = Res_n Union {R | R is a resolvent of two clauses in Res_n}; n = n+1; } until ((empty clause in Res_n) or (Res_n = Res_{n-1}))

If F has k propositional variables, what is the maximum number of times the above loop can iterate?

What is the maximum number of new resolvents that can be added in the n^{th} iteration of the loop?