CS719 Practice Homework \#1

- Be brief, complete and stick to what has been asked.

- Do not turn in your solutions. These problems are for you practice only.

Problems on Propositional Logic:

1. We have learnt about clauses and conjunctive normal forms (CNF) of propositional logic formulae in class. A clause is said to be a Horn clause if it contains at most one positive (or unnegated) literal. A conjunction of Horn clauses is said to to be a Horn formula.
As examples, $(\sim a \vee \sim b \vee c \vee d)$ is not a Horn clause since it has two unnegated literals. On the other hand, $(\sim a \vee \sim b \vee c)$ is a Horn clause, and $(\sim a \vee \sim b \vee c) \wedge(\sim c \vee a)$ is a Horn formula.
It is known that a Horn formula can be checked for satisfiability in polynomial time (you are encouraged to find out how).
Now consider the following variant of Horn clauses and formulae. A relaxed Horn clause is one that has two unnegated literals. The unnegated literals appearing in a relaxed Horn clause are said to be paired. A relaxed Horn formula φ is a CNF formula defined as follows:

- Every clause is either a Horn clause or a relaxed Horn clause.
- If u and v are paired literals in a relaxed Horn clause, then every clause C in φ satisfies the following:
P1 C contains u iff it also contains v.
P2 If $C \equiv(D \vee \sim u)$, then there exits a clause $C^{\prime} \equiv(D \vee \sim v)$ in φ.
P3 No clause contains both a literal and its negation.
Show that the satisfiability of a relaxed Horn formula can be checked in polynomial time [Hint: You need to first read up on how satisfiability of Horn formulas is checked in order to answer this question.]
Suppose properties P1 and P2 above are not satisfied by clauses of φ. If there are k relaxed Horn clauses in φ, show that satisfiability of φ can be checked in time that is polynomial in n (size of the formula) and exponential in k.

2. Suppose we are given two (potentially infinite) sets of propositional logic formulae \mathcal{F} and \mathcal{G} on the same set, X, of propositional variables.

- We say that $\mathcal{F} \equiv \mathcal{G}$ iff every satisfying assignment μ of \mathcal{F} is also a satisfying assignment of \mathcal{G} and vice versa.
- We say that $\mathcal{F} \simeq_{1} \mathcal{G}$ iff for every $\varphi \in \mathcal{F}, \mathcal{G} \vdash \varphi$, and for every $\psi \in \mathcal{G}, \mathcal{F} \vdash \psi$.
- We say that $\mathcal{F} \simeq_{2} \mathcal{G}$ iff for every $\varphi \in \mathcal{F}$, there exists some $\psi \in \mathcal{G}$ such that $\psi \vdash \varphi$, and for every $\psi \in \mathcal{G}$, there exists some $\varphi \in \mathcal{F}$ such that $\varphi \vdash \psi$.

Are the three relations $\equiv, \simeq_{1}, \simeq_{2}$ equivalent? If not, which of them is the strongest and which is the weakest?
3. A set \mathcal{S} of propositional logic formulae is said to form a minimal unsatisfiable core if \mathcal{S} is unsatisfiable, but every proper subset of \mathcal{S} is satisfiable.
(a) Given an unsatisfiable set \mathcal{S} of propositional logic formulae, does there always exist a unique subset of \mathcal{S} that forms a minimal unsatisfiable core? If so, give a proof. Otherwise, give a counterexample.
(b) Show that there exists a minimal unsatisfiable core of n propositional logic formulae, for every $n>0$.
(c) The compactness theorem tells us that if \mathcal{S} is an unsatisfiable set of propositional logic formulae, there must exist a finite subset of \mathcal{S} that is unsatisfiable. Does this contradict the statement of the previous subquestion? If not, why?
4. Let φ and ψ be propositional logic formulae such that $\vDash \varphi \rightarrow \psi$ (i.e. $\varphi \rightarrow \psi$ is a tautology). Let $\operatorname{Var}(\varphi)$ and $\operatorname{Var}(\psi)$ denote the set of propositional variables in φ and ψ respectively. Show that there exists a propositional logic formula ζ with $\operatorname{Var}(\zeta)=\operatorname{Var}(\varphi) \cap \operatorname{Var}(\psi)$ such that $\models \varphi \rightarrow \zeta$ and $\models \zeta \rightarrow \psi$. This result is also known as Craig's interpolation theorem as applied to propositional logic.
5. We have studied ground resolution for propositional logic in class.
(a) Use ground resolution to establish the following:
i. $\sim A$ is a consequence of $(A \rightarrow B) \wedge(A \rightarrow \sim B)$.
ii. The set of formulae $\{(A \rightarrow B),(B \rightarrow C),(C \rightarrow \sim A)\}$ is satisfiable.
(b) Consider the following pseudo-code for ground-resolution:

```
Input: A propositional logic formula F in CNF.
Res_0 = {C | C is a clause of F};
n = 0;
do {
    Res_{n+1} = Res_n Union {R | R is a resolvent of two clauses in Res_n};
    n = n+1;
} until ((empty clause in Res_n) or (Res_n = Res_{n-1}))
```

If F has k propositional variables, what is the maximum number of times the above loop can iterate?
What is the maximum number of new resolvents that can be added in the $n^{\text {th }}$ iteration of the loop?

