CS719 Practice Homework #4

• Be brief, complete and stick to what has been asked.

• Do not turn in your solutions. These problems are for you practice only.

1. Problems on partial orders:

- From Introduction to Lattices and Order, by Davey and Priestley: Problem nos. 1.5, 1.6, 1.12, 1.16, 1.23, 1.24, 1.29, 1.30 (i) and (ii).
- Let (P, \leq) be a poset of size at least a.b+1, for $a, b \in \aleph$. Show that P either contains a chain of size at least a+1 or an anti-chain of size at least b+1.
- Let (X, \leq) be a non-empty poset and let $P = \wp(X)$, i.e., the powerset of X. Define a relation \ll on P as follows. For $A, B \in P, A \ll B$ iff for every $a \in A$, there exists $b \in B$ such that $a \leq b$. Prove that if $A \ll B$ and $B \ll A$, then A and B have the same set of maximal elements.
- Given a poset (P, \leq) , the down map ϕ_{\downarrow} , and up map ϕ_{\uparrow} are defined as follows:
 - $-\phi_{\downarrow}: P \to \wp(P)$ is given by $\phi_{\downarrow}(a) = \downarrow a = \{b \mid b \in P, b \le a\}$
 - $-\phi_{\uparrow}: P \to \wp(P)$ is given by $\phi_{\uparrow}(a) = \uparrow a = \{b \mid b \in P, a \le b\}$

Show that ϕ_{\downarrow} is an order embedding of (P, \leq) into $(\wp(P), \subseteq)$, i.e. $a \leq b \leftrightarrow \phi_{\downarrow}(a) \subseteq \phi_{\downarrow}(b)$. Similarly, show that ϕ_{\uparrow} is an order anti-embedding of (P, \leq) into $(\wp(P), \subseteq)$, i.e. $a \leq b \leftrightarrow \phi_{\uparrow}(b) \subseteq \phi_{\uparrow}(a)$.

2. Problems on preliminary topics in lattices:

• From Introduction to Lattices and Order, by Davey and Priestley: Problem nos. 2.2, 2.5, 2.6, 2.9, 2.11, 2.13 (ii) and (iii), 2.15, 2.17, 2.19