CS719 Practice Homework \#4

- Be brief, complete and stick to what has been asked.
- Do not turn in your solutions. These problems are for you practice only.

1. Problems on partial orders:

- From Introduction to Lattices and Order, by Davey and Priestley: Problem nos. 1.5, 1.6, 1.12, $1.16,1.23,1.24,1.29,1.30$ (i) and (ii).
- Let (P, \leq) be a poset of size at least $a . b+1$, for $a, b \in \aleph$. Show that P either contains a chain of size at least $a+1$ or an anti-chain of size at least $b+1$.
- Let (X, \leq) be a non-empty poset and let $P=\wp(X)$, i.e., the powerset of X. Define a relation \ll on P as follows. For $A, B \in P, A \ll B$ iff for every $a \in A$, there exists $b \in B$ such that $a \leq b$. Prove that if $A \ll B$ and $B \ll A$, then A and B have the same set of maximal elements.
- Given a poset (P, \leq), the down map ϕ_{\downarrow}, and up map ϕ_{\uparrow} are defined as follows:
- $\phi_{\downarrow}: P \rightarrow \wp(P)$ is given by $\phi_{\downarrow}(a)=\downarrow a=\{b \mid b \in P, b \leq a\}$
- $\phi_{\uparrow}: P \rightarrow \wp(P)$ is given by $\phi_{\uparrow}(a)=\uparrow a=\{b \mid b \in P, a \leq b\}$

Show that ϕ_{\downarrow} is an order embedding of (P, \leq) into $(\wp(P), \subseteq)$, i.e. $a \leq b \leftrightarrow \phi_{\downarrow}(a) \subseteq \phi_{\downarrow}(b)$. Similarly, show that ϕ_{\uparrow} is an order anti-embedding of (P, \leq) into $(\wp(P), \subseteq)$, i.e. $a \leq b \leftrightarrow$ $\phi_{\uparrow}(b) \subseteq \phi_{\uparrow}(a)$.

2. Problems on preliminary topics in lattices:

- From Introduction to Lattices and Order, by Davey and Priestley: Problem nos. 2.2, 2.5, 2.6, 2.9, 2.11, 2.13 (ii) and (iii), 2.15, 2.17, 2.19

