CS719 Quiz

Max marks: 30
Time: 1 hour

- The exam is open-book, open-notes and open-material-brought-to-exam-hall.
- Be brief, complete and stick to what has been asked. Unnecessarily lengthy solutions may be penalized.
- If you need to make any reasonable assumptions, state them clearly. Unreasonable assumptions run the risk of attracting penalty.
- If you need to use/cite results covered in class, you may simply cite the result, without going into a formal proof.
- Do not copy from others or indulge in unfair means.

Students found indulging in such activities will be summarily awarded the $F R$ grade.

1. $[10+10$ marks $]$ Let $(L ; \leq)$ be a bounded lattice, i.e. a lattice with top (T) and bottom (\perp). For every $u, v \in L$ such that $u<v$, we define the closed interval $[u, v]$ to be the poset $(\{x \mid u \leq x \leq v\} ; \leq)$. For every closed interval $[u, v]$ in L and for every $a \in[u, v]$, a relative complement of a with respect to $[u, v]$ is an element $b \in[u, v]$ such that $a \wedge b=u$ and $a \vee b=v$. The complement of a in L is simply its relative complement with respect to $[\perp, \top]$.
A closed interval $[u, v]$ in L is said to be complemented if every $a \in[u, v]$ has a relative complement with respect to $[u, v]$. The lattice L is said to be relatively complemented if every closed interval $[u, v]$ in L is complemented.
(a) Is $[u, v]$ a lattice for every $u, v \in L$ such that $u<v$? Either give a proof or provide a counterexample.
(b) Is it possible for L to be complemented (i.e. every element has a complement), but not be relatively complemented? Either give a proof or provide a counter-example.
2. [10 marks] Show that if L is a lattice and if every two element subset of L is a sub-lattice, then L must be a chain.
