CS719 Mid-Semester Examination (Autumn 2013)

Max marks: 80 Time: 2 hours

1.

Be brief, complete and stick to what has been asked.

Untidy presentation of answers, and random ramblings will be penalized by negative marks.
Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
If you need to make any assumptions, state them clearly.

Do not copy solutions from others. Penalty for offenders: FR grade.

Consider the relational (i.e. no functions) vocabulary ¥ = {<,=,C, D, P}, where <, C and D are binary
predicates, P is a unary predicate and = is the usual identity (or equality) relation.

We wish to restrict our discussion to Y-structures in which the universe is the set N of natural numbers,
and < is interpreted as the usual less than relation over natural numbers. The predicates C, D and P
can, however, be be assigned different interpretations in different »-structures of interest.

Every Y-structure M satisfying the above restrictions can be thought of as defining a directed (possibly
multi-)coloured graph G as follows:

e The set of vertices V& of G is {i | i € N, PM(i) = True}.
e The set of directed edges EY is {(i,7) | i,5 € N, PM(i) A PM(5) A DM (i, )}
e For every vertex i in the graph (i.e. for every i € N such that PM(4) is true), we say that it is

assigned colour j iff CM (4, ) is true. Note that a vertex may be assigned multiple colours or no
colour at all in a -structure.

Similarly, every directed (possibly multi)-coloured graph G on a countable number of vertices can be
thought of as encoded by a Y-structure M as follows. In the following, we assume that every vertex in
the graph G as well as every colour used to colour vertices is identified by a unique natural number.

e For every i € N, PM (i) = True iff there is a vertex identified by i in G.

e For every i,j € N, CM(i,5) = True iff PM (i) = True and vertex i is coloured by colour j.

e For every i,j € N, DM (i, j) = True iff PM(i) = True and PM(j) = True and (i, ) is a directed
edge in G.

(a) [15 marks] Write a sentence ¢ over X such that the set of X-structures satisfying the above restric-
tions and satisfying ¢ are exactly the set of directed graphs over countable vertices in which (i)
every vertex is coloured with exactly one colour, and (ii) no directed edge has the same colour on
the vertices at its ends, and (iii) only finitely many colours are needed to colour all vertices in the
graph.

(b) [15 marks] We wish to find if it is possible to write a set (not necessarily a singleton set) of first order
logic sentences over the vocabulary ¥ such that every sentence in the set evaluates to T'rue over a
Y-structures iff the X-structure interpretted as a coloured directed graph (as described above) is
one in which (i) every vertex is coloured with exactly one colour, and (ii) no directed edge has the
same colour on the vertices at its ends, and (iii) only finitely many colours are needed to colour
every vertex.

Note that unlike in the previous sub-question, you are no longer required to choose a specific
universe or a specific interpretation of the predicate <. Note also that you are also allowed to use
an infinite set of first order logic sentences to define the desired class of graphs.

If your answer is in the affirmative, describe the set of first order logic sentences. Otherwise, give
a proof of impossibility.



2. Consider the vocabulary ¥ = {=, D}, where D is a binary relation. As discussed in class (and also
explained in the previous question), every X-structure represents a directed graph, and every directed
graph can be represented as a Y-structure. In each subquestion below, you are given two first order
logic sentences ¢4 and pp over the vocabulary . You are required to either show (by any technique
studied in class) that ¢4 A —pp is unsatisfiable, or give a directed graph that serves as a model of ¢4
but not as a model of vp.

(a) [10 marks]
pa =3y (-(y = 2) AD(z,y)) V =D(y, ) A (D(z,2) V (D(z,y) A =D(y,9))))
o = Yo 3yz (D(z,9) V (D(y, 2) A ~D(z, 2)))

(b) [10 marks] (Turned out to be trivial due to a typo in vp)
pa = Ve Iy3z((D(x,y) vV D(x,2)) A (=D(z,y) V D(y, 2)) A (=D(z,2) V D(z,9)))
¢ = VaVy (D(z,y) V-D(z,y))

3. We have seen in class that we can reduce satisfiability checking of an arbitrary first-order logic sentence ¢
to satisfiability checking of a FOL sentence ¢* (Skolem Normal Form of ¢) with only universal quantifiers
in PCNF, such that there is a model of ¢ with universe U iff there is a model of ¢* with universe U. In
this question, we wish to investigate the possibility of a few other such simplifications.

(a) [15 marks] Is it possible to reduce satisfiability checking of an arbitrary FOL sentence ¢ to sat-
isfiability checking of an FOL sentence ¢ in PCNF with no function symbols (but with possibly
existential quantifiers), such that that there is a model of ¢ with universe U iff there is a model of
@ with universe U?

If so, describe clearly the steps how you would transform an arbitrary FOL sentence ¢ with function
symbols to the corresponding equisatisfiable sentence @ in PCNF without function symbols. Other-
wise, give justification for the impossibility of such an equisatisfiability reduction by a deterministic
algorithm. Answers without justification will fetch 0 marks.

(b) [15 marks] Is it possible to reduce satisfiability checking of an arbitrary FOL sentence ¢ to satisfi-

ability checking of an FOL sentence ¢ in PCNF with no function symbols and also no existential
quantifiers, such that that there is a model of ¢ with universe U iff there is a model of @ with
universe U?
If so, indicate clearly the steps how you would transform an arbitrary FOL sentence ¢ with function
symbols to the corresponding equisatisfiable sentence ¢ in PCNF without function symbols and
existential quantifiers. Otherwise, give justification for the impossibility of such an equisatisfiability
reduction by a deterministic algorithm. Answers without justification will fetch 0 marks.



