CS719 Practice Problems (Autumn 2013)

- These problems will not be graded.
- Mutual discussion and discussion with the instructor/TA is strongly encouraged.
- 1. [From HW1, Autumn 2011] Use the proof system of first order logic studied in class to prove each of the following sequents. You must indicate which proof rule you are applying at each step.
 - (a) $\forall x \forall y. ((P(x) \lor Q(y) \land (Q(x) \lor \neg P(y)) \vdash \forall x. Q(x))$
 - (b) $\vdash \exists y. ((\forall x. P(x)) \rightarrow P(y))$
- 2. [From HW1, Autumn 2011] We have seen in class that first-order sentences on a vocabulary consisting of a single binary predicate E (and possibly also using equality) can be used to describe several interesting properties of graphs. Show that there exists a first-order sentence ϕ on the vocabulary $\{E\}$ (and possibly also using equality) that characterizes each of the following classes of graphs. Thus, ϕ should be such that every graph belonging to the class under consideration is a model of ϕ , and every model of ϕ can be viewed as a graph belonging to the class under consideration.
 - (a) Rooted trees with depth (i.e. no. of edges along any path from the root to a leaf) ≤ 3 . Assume that each edge in a tree points from a node to its children.
 - (b) Directed acyclic graphs with diameter (i.e. length of the longest directed path between any pair of vertices) ≤ 3 .
 - (c) Graphs with no vertex covers of size ≤ 3 .

Taking cue from the formulas you have written as part of your solution for the previous sub-problems, either show that the following sets of graphs are inexpressible in first-order logic over the vocabulary consisting of a binary predicate and possibly equality, or give a first-order logic formula characterizing the corresponding set of graphs.

- (a) The set of all finite rooted trees.
- (b) The set of all infinite rooted trees.
- (c) The set of all finite or infinite rooted trees.
- 3. [From Quiz1, Autumn 2011] Consider the following predicate logic sentences (formulae with no free variables):

$$\begin{aligned} \phi &= \forall x (\exists y (E(x, y) \land \neg E(y, x))) \\ \psi &= \forall x (\forall y (\forall z ((E(x, y) \land E(y, z)) \rightarrow E(x, z)))) \end{aligned}$$

We wish to evaluate these sentences (i.e., determine their truth value) over models obtained from directed graphs. Given a directed graph, $G = (V_G, E_G)$, a model \mathcal{M}_G is obtained by letting the

domain of variables be V_G , and by letting predicate E(x, y) evaluate to true if and only if there is a directed edge from x to y in E_G . Since there are no function symbols and only one binary predicate symbol E in ϕ and ψ , every directed graph uniquely defines a model over which ϕ and ψ can be evaluated.

- (a) Give two directed graphs G_1 and G_2 with no more than 5 vertices in each such that ϕ evaluates to True over \mathcal{M}_{G_1} , and $\phi \to \psi$ evaluates to False over \mathcal{M}_{G_2} .
- (b) We now wish to find a directed graph G such that $\phi \wedge \psi$ evaluates to True over \mathcal{M}_G . Indicate with justification whether G can be a finite graph (i.e., graph with finite number of vertices) and yet cause $\phi \wedge \psi$ to evaluate to True over \mathcal{M}_G .
- 4. [From Quiz1, Autumn 2011] Let Σ be a relational signature (i.e., no function symbols). Two Σ structures M_1 and M_2 are said to be isomorphic iff there exists a bijection $f: U^{M_1} \to U^{M_2}$ such
 that for every k-ary predicate P in Σ and every k-tuple $(a_1, a_2, \ldots a_k) \in (U^{M_1})^k$ and $(b_1, b_2, \ldots b_k) \in$ $(U^{M_2})^k$, we have the following: $P^{M_1}(a_1, a_2, \ldots a_k) = P^{M_2}(f(a_1), f(a_2), \ldots f(a_k))$ and $P^{M_2}(b_1, b_2, \ldots b_k) =$ $P^{M_1}(f^{-1}(b_1), f^{-1}(b_2), \ldots f^{-1}(b_k))$. It can be shown that if M_1 and M_2 are isomorphic Σ -structures,
 then for every first-order logic sentence ϕ on the signature Σ , $M_1 \models \phi$ iff $M_2 \models \phi$.

Now consider $\Sigma = \{=\}$, i.e., the signature containing only the equality predicate. We wish to show that there does not exist any first-order logic sentence ϕ over Σ such that $M \models \phi$ iff M has an even number of elements in its universe.

Suppose, by way of contradiction, that there indeed existed such a formula ϕ .

- (a) Show using the Compactness Theorem and other arguments as appropriate that we must then have countably infinite Σ -structures M_1 and M_2 such that $M_1 \models \phi$ and $M_2 \models \neg \phi$.
- (b) Argue that both M_1 and M_2 must satisfy ϕ as well as $\neg \phi$. This is of course a contradiction; hence such a formula ϕ on the signature Σ cannot exist.
- 5. [From Endsem, Autumn 2010]

Let $\psi = \forall x_0(\forall x_1 \exists x_2 \forall x_3 \exists x_4 (\phi_1(x_1, x_3, x_4) \lor \phi_2(x_0, x_2, x_4)) \land \exists x_1 \forall x_2 \forall x_3 \exists x_4 (\phi_3(x_2, x_3, x_4) \lor \phi_4(x_0, x_1)))$, where ϕ_1, ϕ_2, ϕ_3 and ϕ_4 are quantifier-free predicate logic subformulae. You are also told that the ϕ_i 's are syntactically constructed by applying propositional connectives on k ternary predicates $P_1, P_2, \ldots P_k$ and m binary predicates $Q_1, Q_2, \ldots Q_m$. Moreover, none of the ϕ_i 's have any function symbols.

A smart logician now claims that she has an algorithm that can take arbitrary three-argument formulae ϕ_1, ϕ_2, ϕ_3 and an arbitrary two-argument formula ϕ_4 subject to the restrictions in the previous paragraph, and can determine the validity of ψ given above. If you think the logician is right, briefly describe how you would go about algorithmically checking the validity of ψ (you could give a pseudo-code, for example). If you think the logician is incorrect, describe your reasons for the same.

6. [From Endsem, Autumn 2010] Let f be a unary function and \mathcal{M} be a model containing an interpretation of f. In general, some elements x in the universe (or domain) of \mathcal{M} satisfy f(x) = x, while other elements satisfy $\neg(f(x) = x)$.

- (a) We wish to write a predicate logic sentence ϕ that evaluates to True in \mathcal{M} if and only if the universe of \mathcal{M} has more elements x satisfying $\neg(f(x) = x)$ than elements y satisfying f(y) = y. Is it possible to have such a predicate logic sentence ϕ ? If your answer is in the affirmative, you must provide ϕ . If your answer is in the negative, you must prove that such a sentence ϕ cannot exist.
- (b) Suppose we now wish to obtain a predicate logic sentence ψ that evaluates to True in \mathcal{M} if and only if there are infinitely many elements x in the universe of \mathcal{M} that satisfy f(x) = x. Is it possible to have such a predicate logic sentence ψ ? If your answer is in the affirmative, you must provide ψ . If your answer is in the negative, you must prove that such a sentence ψ cannot exist.
- 7. [From Endsem, Autumn 2010] Consider the predicate logic sentence $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3$, where $\phi_1 = \forall x (f(g(x)) = g(x)),$ $\phi_2 = \forall x (g(f(x)) = f(x)),$ $\phi_3 = \forall x \exists y ((x = g(y)) \lor (x = f(y)))$
 - (a) Let \mathcal{H} be the Herbrand Universe for the sentence ϕ . Let $M_{\mathcal{H}}$ be a model with the universe (or domain) being \mathcal{H} , and with the obvious interpretations of functions f and g, i.e., if t is a term in \mathcal{H} , the terms f(t) and g(t) in \mathcal{H} , are defined to be the result of applying f and g respectively to t. If $M_{\mathcal{H}} \models \phi$, how many distinct elements can be present in the universe of $M_{\mathcal{H}}$.
 - (b) Let $\phi_4 = \exists x \neg (f(x) = g(x))$. Show using Herbrand's Theorem that $\phi_1 \land \phi_2 \land \phi_3 \land \phi_4$ is unsatisfiable.
- 8. [From Endsem, Autumn 2011] Let ϕ be a formula in first order (FO) logic, such that ϕ has at least one existential quantifier. Let ϕ^* be the formula obtained by transforming ϕ to Skolem Normal Form (SNF).
 - (a) Give an example of ϕ over the vocabulary $\{=\}$ such that both ϕ and $\neg \phi^*$ are satisfiable but $\phi \land \neg \phi^*$ is unsatisfiable.
 - (b) Give an example of ϕ over the vocabulary $\{=\}$ such that $\phi \wedge \neg \phi^*$ is satisfiable. Give also a model of $\phi \wedge \neg \phi^*$.
 - (c) Suppose ϕ_1 and ϕ_2 are FO formulae over the vocabulary $\{=\}$, each containing existential quantifier(s), such that:
 - i. Each of ϕ_1 , ϕ_2 , $\neg \phi_1^*$ and $\neg \phi_2^*$ are satisfiable.
 - ii. Each of $\phi_1 \wedge \neg \phi_1^*$ and $\phi_2 \wedge \neg \phi_2^*$ are unsatisfiable.

Show that $\phi_1 \wedge \phi_2$ must be satisfiable.

9. [From Endsem, Autumn 2011] Given below is a collection of first order sentences over the relational vocabulary $\{P_1, P_2, G\}$.

ϕ_1	$\forall x \forall y. (P_1(x) \to (G(x,x) \lor \neg G(x,y)))$		
ψ_1	$\forall x \forall y. (P_2(x) \to (G(x, x) \lor \neg G(x, y)))$		
ϕ_2	$\forall x. \left(G(x, x) \to P_1(x) \right)$		
ψ_2	$\forall x. \left(G(x, x) \to P_2(x) \right)$		
ϕ_3	$\forall x. \left(P_1(x) \lor \exists z. G(x, z) \right)$		
ψ_3	$\forall x. \left(P_2(x) \lor \exists z. G(x, z) \right)$		
α	$\exists x. \neg (P_1(x) \leftrightarrow P_2(x))$		

Show using first-order resolution that the conjunction of these sentences is unsatisfiable.

You must use the following table to present your resolution proof. Each row in this table has four columns: a numerical clause id, the clause from an SNF representation, how this clause was obtained, and substitutions used (if any) to obtain the clause. A couple of rows of the table have been filled to illustrate its usage. The third column should contain one of the following comments: "Given" (if the clause is given) or "Resolvent of i, j" (if the clause is obtained by resolving clauses with ids i and j). In the latter case, you must also indicate the substitution used for resolving in the final column.

ID	Clause	Genesis	Substitution (if any)
1	$\neg P_1(x) \lor G(x,x) \lor \neg G(x,y)$	Given (from ϕ_1)	_
2	$\neg G(a,a) \lor P_1(a)$	Given (from ϕ_2)	-
3	$\neg P_1(x) \lor \neg G(x,y) \lor P_1(x) \equiv True$	Resolvent of 1, 2	$a \mapsto x \text{ in } 2$

10. [From Endsem, Autumn 2011] Consider an employee relational database containing three tables R_1 , R_2 and R_3 , each with two columns. The columns of R_1 are labeled "Name" and "ID", those of R_2 are labeled "ID" and "Dept", while those of R_3 are labeled "Name" and "Name". Table R_1 gives the association between names and IDs of employees, table R_2 gives the association between IDs and departments, while table R_3 gives the association between employees and their supervisors $((x, y) \in R_3 \text{ means } x \text{ is a supervisor of } y)$. Note that R_3 **may not** be a transitive relation. You may however assume that each name is associated with a unique ID, and each ID is associated with at least one department.

Every instance D of such a database can be viewed as a first-order structure M_D over the relational vocabulary $\Sigma : \{=, R_1, R_2, R_3, \mathsf{Name}, \mathsf{ID}, \mathsf{Dept}\}$, where R_1, R_2 and R_3 are binary predicates and Name , ID and Dept are unary predicates. The universe of M_D is the set of all names, IDs and departments in D. The interpretation of the predicate Name in M_D is such that $\mathsf{Name}(x)$ evaluates to True iff xis a name in D. The interpretations of predicates ID and Dept in M_D are similar. The interpretation of R_1 in M_D is such that $R_1(x, y)$ evaluates to True iff x is a name, y is an ID , and there is a row in table R_1 of D that contains the tuple (x, y). The interpretations of R_2 and R_3 in M_D are similar.

A first-order formula over Σ can now be viewed as a query over the corresponding relational database. For example, given an instance D of the database, the formula $\varphi(x) \equiv (\mathsf{Dept}(x) \land \exists y. (\mathsf{ID}(y) \land R_2(y, x)))$ corresponds to a query that returns all departments in D with at least one ID associated with them. For each of the following queries described in English, either give a first-order formula over the vocabulary Σ or prove that such a formula cannot exist.

- (a) Find all departments in which every employee is her own supervisor.
- (b) An employee x is said to be *isolated* from a department y iff x doesn't belong to y, and x is not related to anybody belonging to y in the transitive closure of R_3 . Find all employees who are isolated from some department.
- 11. Consider the vocabulary $\Sigma = \{=, f, c\}$, where = is the usual equality predicate, f is a unary function and c is a constant (or null-ary function). Clearly, there are infinitely many Σ -structures. A subset S of these structures is said to be first-order definable iff there is a first-order logic sentence φ over Σ such that the set of models of φ is exactly S.
 - (a) Describe a subset S of Σ -structures such that S contains at least one Σ -structure of every (finite and infinite) non-zero cardinality, but S is not first-order definable. You must prove why the subset S you have chosen is not first-order definable using Σ .
 - (b) Give a first-order logic sentence φ over Σ such that φ has models of every (finite and infinite) non-zero cardinality, and for every cardinality greater than 1, there are exactly two non-isomorphic models of φ.
- 12. (a) Consider the following procedure that attempts to determine the satisfiability of a first-order logic sentence in SNF.

```
i = 1;
while (true)
Check unsatisfiability of the set of all ground clauses
  using terms of length at most i;
If unsatisfiability detected, return UNSAT;
Check satisfiability of the formula using all structures
  on the vocabulary with at most i elements in the universe;
If satisfiablity detect, return SAT;
  i++;
// end while
```

Give an example of a first-order logic sentence for which the above procedure fails to terminate.

(b) Is it possible to have a set of first-order sentences such that the only models of the entire set of sentences have uncountable universes? If so, give an example. Otherwise, prove why this is not possible.