CS719 Mid-Semster Examination

Max marks: 50
Time: 2 hours

- Be brief, complete and stick to what has been asked.
- If needed, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others or indulge in unfair means.

1. $[5+5+5$ marks $]$

Let $(L ; \wedge, \vee)$ be a lattice. An ideal I of L is called proper if $I \neq L$. Furthermore, ideal I is called prime if I is proper, and for every $a, b \in L, a \wedge b \in I$ implies $a \in I$ or $b \in I$. Let $\operatorname{Spec}(L)$ (also called the spectrum of L) denote the set of prime ideals of L.
(a) Let $f: L \rightarrow M$ be a lattice homomorphism.
i. Show that if P is an ideal of M, then $f^{-1}(P)$ is an ideal of L.
ii. Show that if $P \in \operatorname{Spec}(M)$, then $f^{-1}(P) \in \operatorname{Spec}(L)$.
(b) For this subquestion, assume that L is a bounded lattice (i.e. has \top and \perp), and I is a non-empty prime ideal of L. Show that for every $a \in L$, if a has a complement $a^{\prime} \in L$, then exactly one of a or a^{\prime} is in I.
2. [5 +5 marks] Let P and Q be partially ordered sets, and $f: P \rightarrow Q$ be a map.
(a) Prove that f is monotone if and only if the induced inverse map satisfies $f^{-1}(D) \in \mathcal{O}(P)$ for all $D \in \mathcal{O}(Q)$.
(b) Assuming f to be monotone, and $f^{-1}: \mathcal{O}(Q) \rightarrow \mathcal{O}(P)$ to be the induced inverse map (as in the previous subquestion), show that f is surjective if and only f^{-1} is injective.
3. $\left[5+5+5\right.$ marks] Let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots\right\}$ be disjoint countably infinite sets. Define a relation R on $A \cup B$ as follows: $a_{i+1} R a_{i}, \quad b_{i+1} R b_{i}, \quad$ and $b_{i} R a_{i}$ for all $i \in\{1,2, \ldots\}$.
(a) Show that R is a covering relation.
(b) Show that the corresponding partially ordered set $L=(A \cup B ; R)$ is a lattice.
(c) What are the join-irreducible elements of L ? Does the set of join-irreducible elements form a join-dense subset of L ? Give justification for your answer.
4. $[5+5$ marks]
(a) Let L be a lattice. Prove that $I \subseteq L$ is an ideal of L if and only if I is a sublattice and that $i \in I, a \in L$ implies $a \wedge i \in I$.
(b) Let L be a lattice. Show that if $a \in L$, then the join map $j_{a}: L \rightarrow L$ defined by $j_{a} x=x \vee a$ is monotone. Indicate with justification if it is also an order embedding.

