CS719 Mid-Semster Examination

Max marks: 50

- Be brief, complete and stick to what has been asked.
- If needed, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others or indulge in unfair means.
- 1. [5 + 5 + 5 marks]

Let $(L; \land, \lor)$ be a lattice. An ideal I of L is called *proper* if $I \neq L$. Furthermore, ideal I is called *prime* if I is proper, and for every $a, b \in L$, $a \land b \in I$ implies $a \in I$ or $b \in I$. Let Spec(L) (also called the spectrum of L) denote the set of prime ideals of L.

- (a) Let $f: L \to M$ be a lattice homomorphism.
 - i. Show that if P is an ideal of M, then $f^{-1}(P)$ is an ideal of L.
 - ii. Show that if $P \in Spec(M)$, then $f^{-1}(P) \in Spec(L)$.
- (b) For this subquestion, assume that L is a bounded lattice (i.e. has \top and \bot), and I is a non-empty prime ideal of L. Show that for every $a \in L$, if a has a complement $a' \in L$, then exactly one of a or a' is in I.
- 2. [5 + 5 marks] Let P and Q be partially ordered sets, and $f: P \to Q$ be a map.
 - (a) Prove that f is monotone if and only if the induced inverse map satisfies $f^{-1}(D) \in \mathcal{O}(P)$ for all $D \in \mathcal{O}(Q)$.
 - (b) Assuming f to be monotone, and $f^{-1}: \mathcal{O}(Q) \to \mathcal{O}(P)$ to be the induced inverse map (as in the previous subquestion), show that f is surjective if and only f^{-1} is injective.
- 3. [5 + 5 + 5 marks] Let $A = \{a_1, a_2, \ldots\}$ and $B = \{b_1, b_2, \ldots\}$ be disjoint countably infinite sets. Define a relation R on $A \cup B$ as follows:

 $a_{i+1} R a_i, b_{i+1} R b_i, \text{ and } b_i R a_i \text{ for all } i \in \{1, 2, \ldots\}.$

- (a) Show that R is a covering relation.
- (b) Show that the corresponding partially ordered set $L = (A \cup B; R)$ is a lattice.
- (c) What are the join-irreducible elements of L? Does the set of join-irreducible elements form a join-dense subset of L? Give justification for your answer.
- 4. [5 + 5 marks]
 - (a) Let L be a lattice. Prove that $I \subseteq L$ is an ideal of L if and only if I is a sublattice and that $i \in I, a \in L$ implies $a \wedge i \in I$.
 - (b) Let L be a lattice. Show that if $a \in L$, then the join map $j_a : L \to L$ defined by $j_a x = x \lor a$ is monotone. Indicate with justification if it is also an order embedding.