CS781 Midsem Exam (Autumn 2023)

- The exam is open book and notes. However, you are not allowed to search on the internet or consult others over the internet for your answers.
- Be brief, complete and stick to what has been asked.
- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. Penalty for offenders: FR grade.

Consider the neural network shown in Fig. 1. All hidden and output layer nodes have bias 0. All hidden layer nodes use ReLU activation function. For each hidden layer node x_{i}, we will use $x_{i}^{\text {pre }}$ to denote the pre-activation value of x_{i} and $x_{i}^{\text {post }}=\operatorname{Re} L U\left(x_{i}^{\text {pre }}\right)$ to denote the post-activation value of x_{i}. Nodes x_{5} and x_{6} of the network give the scores of two possible output labels for a given input (x_{1}, x_{2}). Node x_{7} is used to find the difference $x_{5}-x_{6}$, so that we can figure out whether $x_{5} \geq x_{6}$ or not by inspecting the sign of x_{7}.

Figure 1: A neural network

1. Assume $w_{1,3}=w_{2,4}=w_{3,6}=w_{4,5}=4$ and $w_{1,4}=w_{2,3}=w_{3,5}=w_{4,6}=-3$. Please draw the neural network carefully with the above weights annotated on the edges before proceeding further.
(a) [2 marks] For $\left(x_{1}, x_{2}\right)=(0,1)$, find the sign (+ ve, 0 or -ve$)$ of x_{7}.
(b) [3 marks] Now consider perturbation of the above input, such that $\left(x_{1}, x_{2}\right)$ lies in $\mathbb{B}_{2}((0,1), 1)$, i.e. in an ℓ_{2}-norm ball of radius 1 around $(0,1)$. Using Holder's inequality, find lower and upper bounds of the pre-activation values of x_{3} and x_{4}.
(c) [2 marks] Using interval propagation and the pre-activation bounds of x_{3} and x_{4} obtained above, compute lower and upper bounds of the pre-activation values of x_{5} and x_{6}.
(d) [10 marks] Using the DeepPoly algorithm studied in class, find lower and upper bound linear expressions for x_{7} in terms of x_{1} and x_{2}. You must show each step of application of your algorithm clearly.
(e) [3 marks] Find the tightest upper and lower numerical bounds of x_{7} from the above expressions, and with knowledge of the fact that $\left(x_{1}, x_{2}\right)$ lies in $\mathbb{B}_{2}((0,1), 1)$.
2. Now consider the same neural network with the following edge weights: $w_{1,3}=w_{2,4}=w_{3,6}=w_{4,5}=2$ and $w_{1,4}=w_{2,3}=w_{3,5}=w_{4,6}=-1$. Please draw the neural network carefully with the above weights annotated on the edges before proceeding further. For this question, the inputs are perturbed such that $x_{1} \in[-1,1], x_{2} \in[-1,1]$, i.e. $\left(x_{1}, x_{2}\right) \in \mathbb{B}_{\infty}((0,0), 1)$.
(a) [10 marks] We wish to use the α-CROWN approach to find bounds on x_{7}. Assuming that the slopes of the lower bounding approximations for each of the ReLUs in x_{5} and x_{6} are 1 , and that for each of the ReLUs in x_{3} and x_{4} are α (the same parameter for both ReLUs), where $0 \leq \alpha \leq 1$, find lower and upper bounding linear expressions of x_{7} (these can be in terms of α).
Use simple interval propagation to obtain initial bounds on pre-activation values of hidden layer neurons.
(b) [3 marks] Find the best numeric lower and upper bounds of x_{7} that you can obtain by optimizing the above expressions over the allowed range of α.
(c) [10 marks] Now suppose we fix $\alpha=1$ in the above sub-problem, but wish to split the unstable neuron x_{3} as is done in the β-CROWN approach. Therefore, we will use a β parameter for this neuron, where $\beta \geq 0$. All other unstable neurons are assumed to be left unsplit. For the same perturbation as above, find lower and upper bounding expressions of x_{7} in terms of β. Solve the problem for both branches of the split of neuron x_{3}.
As before, use simple interval propagation to obtain initial bounds on pre-activation values of hidden layer neurons.
(d) [2 marks] Find the best numeric lower and upper bounds of x_{7} that you can obtain by optimizing the above expressions over the allowed range of β.
