CS781 Quiz 1 (Autumn 2023)

- The exam is open book and notes. However, you are not allowed to search on the internet or consult others over the internet for your answers.
- Be brief, complete and stick to what has been asked.
- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. Penalty for offenders: FR grade.

1. The neural network shown in Fig. 1 has 1 input layer, 1 hidden layer and 1 output layer. Assume that all hidden and output layer nodes have bias 0 , and a non-linear activation function $\sigma(\cdot)$ is used in the hidden layer nodes (but not in output layer nodes). Thus, the output of node x_{3} is given by $\sigma\left(x_{1}-x_{2}\right)$ and that of node x_{4} is given by $\sigma\left(x_{2}-x_{1}\right)$. The function $\sigma(x)$ is defined as max $(\alpha . x, \beta . x)$, where $0 \leq \alpha<0.25$ and $0.75 \leq \beta \leq 1$.
Our goal in this question is to find out if $\min _{\left(x_{1}, x_{2}\right) \in \mathcal{C}} x_{5} \geq 0$ and also if $\max _{\left(x_{1}, x_{2}\right) \in \mathcal{C}} x_{5} \leq 0.5$, where \mathcal{C} denotes the p-norm unit ball around $(0,0)$, i.e. $\left(x_{1}, x_{2}\right) \in \mathbb{B}_{p}((0,0), 1)$ and $p>1$

Figure 1: A neural network
[5 marks] Using the interval abstract domain studied in class and using only interval propagation, find upper and lower bounds for every node n in the neural network. Upper and lower bounds of x_{3}, x_{4}, x_{5} can be in terms of the parameters α and β.
[10 marks] Next, suppose we wish to use the 4 -tuple abstract domain used in the DeepPoly paper. Using the upper and lower bounds determined above, find the best linear expressions in x_{1} and x_{2} that bound x_{3} and x_{4} from above and below. Your expressions can include α and β and are not required to be linear in these parameters. As in the DeepPoly paper, you must use only a single linear expression (in x_{1} and x_{2}) for each lower/upper bound.
[5 marks] Find linear expressions in x_{1} and x_{2} for the lower and upper bound of x_{5} using the backward propagation of expressions all the way upto the input layer, as explained in the DeepPoly paper. Your expressions can include α and β and are not required to be linear in these parameters.
[5 marks] Use the expressions obtained above and the result about dual norms and Holder's inequality studied in class to find a lower bound of $\min _{\left(x_{1}, x_{2}\right) \in \mathcal{C}} x_{5}$ and an upper bound of $\max _{\left(x_{1}, x_{2}\right) \in \mathcal{C}} x_{5}$ in terms of α and β, where $\mathcal{C}=\mathbb{B}_{p}((0,0), 1)$ and $p>1$.
[5 marks] From the bounds obtained in the previous sub-question, can you find a (possibly non-linear) relation between α and β that ensures that $x_{5} \geq 0$ for all $\left(x_{1}, x_{2}\right) \in \mathcal{C}$ for all $p>1$? Give justification for your answer.

