CS781 Quiz 2 (Autumn 2023)

- The exam is open book and notes. However, you are not allowed to search on the internet or consult others over the internet for your answers.
- Be brief, complete and stick to what has been asked.
- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. Penalty for offenders: FR grade.

1. Consider the neural network shown in Fig. 1. Assume that all hidden layer nodes (x_{3} and x_{4}) have bias 1 , the output layer node (x_{5}) has bias 0 , and ReLU activation is used only in hidden layer nodes. As per convention in the Reluplex paper, the inputs and outputs of ReLU are shown separated as x_{i}^{b} and x_{i}^{f}, for $i \in\{3,4\}$.

Figure 1: Simple neural network
We wish to check using Reluplex if x_{5} can have the value 0 , when x_{1} and x_{2} have values in $[-1,1]$. You may assume that the values of x_{1} and x_{2} are set independent of each other.
To help you get going, use the following tableau for (fresh) basic variables b_{3}, b_{4} and b_{5}.

$$
b_{3}=x_{1}-2 x_{2}-x_{3}^{b} \quad b_{4}=2 x_{1}+x_{2}-x_{4}^{b} \quad b_{5}=x_{3}^{f}+x_{4}^{f}-x_{5}
$$

The progress of the Reluplex algorithm can be tracked by filling entries in the following table (using notation from the Reluplex paper), where we have added an extra row ("basic var?") which should have an entry 0 (resp. 1) for a variable iff the variable is non-basic (resp. basic):

variable	x_{1}	x_{2}	x_{3}^{b}	x_{3}^{f}	x_{4}^{b}	x_{4}^{f}	x_{5}	b_{3}	b_{4}	b_{5}													
basic var?	cower bound																						
assignment																							
upper bound																							

(a) [2 marks] Fill in the table with the right values at the start of Reluplex.
(b) [3 marks] Find slack ${ }^{-}\left(b_{3}\right)$, slack ${ }^{-}\left(b_{4}\right)$ and slack ${ }^{+}\left(b_{5}\right)$ at the start of Reluplex.
(c) [5 marks] Show the result of applying rule Pivot ${ }_{2}$ where b_{3} is made non-basic and x_{1} is made basic, followed by applying rule Update for b_{3}. You must show all steps, including the tableau that results after pivoting.
(d) [2 marks] Find slack ${ }^{+}\left(x_{1}\right)$ and slack $^{+}\left(b_{4}\right)$ at the end of the above sequence of Pivot $_{2}$ and Update.
(e) [5 marks] Show the result of applying rule Pivot ${ }_{2}$ where b_{4} is made non-basic and x_{2} is made basic, followed by applying rule Update for b_{4}. You must show all steps, including the tableau that results after pivoting.
(f) [3 marks] Indicate (whether by Reluplex or otherwise) whether x_{5} can indeed become 0 when x_{1} and x_{2} vary betwen -1 and 1 . Provide justification for your answer.
2. [10 marks] Consider the following data for which we wish to construct an optimal binary decision tree. The table below lists values of three binary features f_{1}, f_{2} and f_{3} and the binary label l of the corresponding point in the feature space.

f_{1}	f_{2}	f_{3}	l
0	0	0	1
1	1	1	0
1	1	0	1
0	1	1	0

We wish to design an optimal binary decision tree for this data with a single decision node labeled by one of the features, and two leaf nodes labeled by 0 and 1 .
Following the ideas in the paper studied in class construct a propositional formula using as few variables as you can, such that a satisfying assignment of the formula gives an optimal decision tree with a single decision node, as desired. You may use sub-formulas of the form $\sum b_{i}=c$, where each b_{i} is a propositional variable and c is an integer constant, without expanding the sum into a propositional formula using Sinz' encoding.
You must clearly indicate the meaning of all variables used in your formula.
3. [10 marks] Recall the abduction based algorithm studied in class for finding explanations. We wish to apply this algorithm to a complete binary decision tree with two layers of decision nodes that is used to classify the data shown in the table in the previous question. The root node of the tree is labeled f_{1} and all children of the root are labeled f_{3}. Our goal in this question is to find an abduction based explanation of row 3 of the table shown in the previous question (i.e. $f_{1} f_{2} f_{3}=110$ and $l=1$).
Find the abductive explanation obtained by applying the algorithm studied in class to the above binary decision tree for row 3 . Show all steps clearly.

