
CS781 Practice Problem Set 1 (Autumn 2024)

• Be brief, complete and stick to what has been asked.

• Untidy presentation of answers, and random ramblings will be penalized by negative marks.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

1. Consider a DNN N with k ≥ 3 layers (layer 1 is the “input” layer, and layer k is the “output” layer).
For layer i of the network, let Li−1 be the input domain and Li be the output domain. Thus, the input
domain of the overall network N is L0 and its output domain is Lk.
Suppose the transformer associated with the slice of the network from layers i through j, both inclusive,
is νi,j : Li−1 → Lj . So, the overall transformer of the DNN N is ν1,k.

Let Di−1 : Li−1×Li−1 → R≥0 be a distance metric that maps a pair of inputs of the ith layer to a non-
negative real number, such that Di−1(I, I) = 0 for every I ∈ Li−1. For I, J ∈ Li−1, we say Di−1(I, J)
is the distance between the inputs I and J of layer i.

For every layer i < k, we also have four parameters ε1,i, εi,k, δ1,i, δi,k ≥ 0 such that the following two
Hoare triples hold:

• {D0(I0, J0) ≤ ε1,i} Ii ← ν1,i(I0); Ji ← ν1,i(J0); {Di(Ii, Ji) ≤ δ1,i}
• {Di(Ii, Ji) ≤ εi,k} Ik ← νi+1,k(Ii); Jk ← νi+1,k(Ji); {Ik = Jk}.

(a) Let A = {i | δ1,i ≤ εi,k}. What can you say about the input-output behaviour of the overall
network N if:

i. A ̸= ∅?
ii. A = ∅?

Explain your answers clearly with reasons.

(b) Suppose further that we know that there exist inputs I⋆, J⋆ such that ν1,k(I
⋆) ̸= ν1,k(J

⋆). Indicate
with reasons which of the following are necessarily true.

i. There is at least one i < k such that Di(ν1,i(I
⋆), ν1,i(J

⋆)) ≥ δ1,i.

ii. There is at least one i < k − 1 such that Di(ν1,i(I
⋆), ν1,i(J

⋆)) ≥ εi+1,k.

iii. Dk−1(ν1,k−1(I
⋆), ν1,k−1(J

⋆)) cannot be arbitrarily large.

2. Consider an image classification DNN N with an associated input-output transformer ν. Suppose the
input domain, denoted Im, consists of 32 pixel ×32 pixel gray-scale images of animals, where each pixel
is a real number (hence, each pixel can take infinitely many values). Suppose the output domain is the
set of labels {Cat,Dog,Other}.
Let ∆ : Im × Im → R≥0 be a carefully designed image similarity metric that maps a pair of input
images to a non-negative real number, also called their similarity score. Let ε > 0 be a small positive
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real number, called similarity threshold. You are told that for every pair of input images I1, I2 ∈ Im,
the following hold: (i) ∆(I1, I2) = 0 iff I1 = I2, and (ii) ∆(I1, I2) = ∆(I2, I1). Additionally, for
every finite set of images {I1, I2, . . . Ik} ⊆ Im, there exists at least one image Ik+1 ∈ Im such that∧k

j=1

(
∆(Ik+1, Ij) > M

)
holds, where M = maxi,j∈{1,...k}∆(Ii, Ij).

(a) We want a network like N to not classify similar looking images differently. A convenient way of
expressing this is via the Hoare triple HT1:

{∆(I1, I2) < ε} ℓ1 = ν(I1); ℓ2 = ν(I2); {ℓ1 = ℓ2}.

However, we have seen in the lectures that HT1 may (rather unexpectedly) require N to classify
everything with the same label, rendering HT1 meaningless.

It turns out, however, that under certain conditions on the input image space, the triple HT1

can indeed be meaningful and can express our intuitive ask, i.e. similar looking images should be
classified the same.

Give a first order logic sentence (i.e. formula with no free variables), say α, over elements of Im
such that if Im satisfies α, then indeed HT1 specifies the desired (or intended) property of N . Give
as weak a sentence α as you can, so that the restriction on Im is as mild as possible. Explain your
answer clearly.

(b) A student has written the following Hoare triple HT2 for N :

{∆(I1, I2) > ε} ℓ1 = ν(I1); ℓ2 = ν(I2) {ℓ1 ̸= ℓ2}

Intuitively, the student wishes to express the property that if two input images are hugely dissimilar,
then they should not be classified the same.

Prove that if HT2 holds, then for every pair of images I1, I2 ∈ ℑ, we must have ∆(I1, I2) < ε. In
other words, the only way for HT2 to hold is vacuously, i.e. the pre-condition itself is unsatisfiable.

3. Consider the DNN shown in Fig. 1 below. Assume that each node in the hidden and output layers uses
a ReLU activation function.
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Figure 1: A simple DNN

(a) Write the constraints describing the relation between the inputs and outputs of all nodes in the
hidden and output layers of this network.

(b) Let us call a conjunction of linear (in)equalities a linear program. For the DNN in Fig. 1, we
wish to write an equivalent (not approximate) system of constraints that is a disjunction of linear
programs, i.e. a disjunction of conjunction of linear (in)equalities. How many linear programs need
to be reasoned about in general if we were to analyze the DNN in Figure 1 being studied in this
question. reason about in order to analyze the DNN? Give clear explanation for your answer.
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(c) Using ideas discussed in the lectures, write as good a linear program as you can that over-
approximates the behaviour of the DNN in Fig. 1.

4. In the DeepPoly paper, we saw how a ReLU and a few other non-linear activation functions can be
bounded by linear expressions. A saturating and leaky ReLU is defined as follows:

g(x) = max
(
β, α.x,min(γ, x)

)
, (1)

where β < 0, 0 ≤ α < 1 and γ > 0.

The input-output behaviour of such a ReLU is plotted in Fig. 2.
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Figure 2: A saturating leaky ReLU

Indicate with justification how you would bound g(x) by a linear expression in x (one each for lower
bound and upper bound) to obtain the best 4-tuple abstraction (as used in the DeepPoly paper) of the
relation between g(x) and x. Since a saturating leaky ReLU becomes indistinguishable from a ReLU
when β = 0 and γ = ∞, you must ensure your bounds reduce to those given in the DeepPoly paper
when β = 0 and γ =∞ in your bounds.

5. Consider the neural network shown in Fig. 3. This network consists of 1 input layer, 1 hidden layer and
1 output layer. Assume that all hidden and output layer nodes have bias 0, and ReLU functions are
used only for hidden layer nodes.
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Figure 3: Simple neural network

In our study of DeepPoly, we have seen that approximations used in representing ReLUs can cause
conservative intervals to be computed for outputs in general, i.e. the interval computed for an output
contains at least one value that cannot actually appear at the output.
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Under certain input interval conditions however, this conservatism can be avoided and we can compute
precise intervals, i.e. all values in the interval computed for an output can indeed appear at the output.
One such obvious condition is when the input intervals are such that the lower and upper bounds of the
input of each ReLU are both non-negative or are both negative. Indeed, DeepPoly does not introduce
approximations in representing ReLUs under this condition. We will call this condition SimpleCond for
convenience.

Give an interval for each input of the network in Fig. 3 such that SimpleCond described above is not
satisfied, and yet the interval computed for the output by DeepPoly is precise.

You must give the bounding inequalities and bounding constants for each hidden layer node and output
layer node, as calculated by DeepPoly, starting from your input intervals. If you need to make any
assumptions, state them clearly.

6. Suppose the ReLUs used in the nodes of the hidden layer in Fig. 3 are replaced by SpecialReLUs that
have the following functionality: SpecialReLU(x) = max(0,min(1, x)).

Assume that the inputs to the network are restricted to the set {0, 1} and the output node uses a
SpecialReLU after adding the sum of the hidden layer nodes. It turns out that in this case, the output
of the neural network can be expressed as a propositional formula in terms of the inputs.

Give a propositional formula φ expressing the output of the neural network as a function of its inputs.

7. The most time-consuming step in DeepPoly is propagation of affine constraints at every layer L back
to the input layer in order to find constant bounds of neuron values. One way of limiting the time
complexity of this step is to propagate the affine constraints back upto a fixed number, say K, of
layers, instead of propagating back all the way to the input layer. Let us call this technique K-bounded
DeepPoly.

Show by means of a counter-example that K-bounded DeepPoly can yield unachievable constant bounds
of the output values of neurons even when there are no non-linear activation functions (like ReLUs) in
the neural network.

To keep your answer simple, you may choose K = 1, i.e. affine constraints are propagated back only a
single layer. Your answer should provide a specific neural network N without ReLUs (or other non-linear
activation functions) along with intervals for each input, and show that there is at least one neuron in N
for which the constant bounds obtained using 1-bounded DeepPoly are conservative and not achievable.

8. Consider the neural network shown in Fig. 4. Nodes 3, 4, 7 and 8 in this network linearly aggregate
outputs of neurons from the previous layers and add a bias (b3, b4, b7, b8 respectively) to the resulting
linear sum. There are two ReLUs, represented by the dotted lines, with outputs x5 and x6 respectively.
We wish to apply the CROWN algorithm studies in class to identify if x7 > x8, when −1 ≤ x1, x2 ≤ 1.

Assume that for each ReLU of the form z = ReLU(w), where l ≤ w ≤ u and l < 0 < w, we use the
following inequality to bound the output from above: z ≤ u

u−l

(
w − l). Similarly, assume that the lower

bound of the output is given by z ≥ αw, where 0 ≤ α ≤ 1 is a parameter that can be different for each
ReLU.

For the ReLUs with outputs x5 and x6 in Fig. 4, let the α parameters used in the lower bounds be
denoted α5 and α6 respectively. Assume b3 = 1, b4 = 0, b7 = 1 and b8 = −1.

(a) Use a simple interval propagation forward pass to find constant lower and upper bounds of x3 and
x5.
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Figure 4: Neural network

(b) Let In denote the vector (x1, x2)
T and let Out denote the vector (x7, x8)

T . Using the bounds
obtained in part (a), and assuming α5 = α6 = 0.5, compute 2 × 2 matrices Λ(0), Ω(0), and 2 × 1
vectors µ and ν as in the CROWN algorithm such that

Ω(0)In+ ν ≤ Out ≤ Λ(0)In+ µ, (2)

where the inequalities are evaluated component-wise.

(c) Now suppose the values of α5 and α6 are not known, i.e. assume them to be symbols. Find
symbolic expressions for the lower and upper bounds of x7 and x8 in terms of x1, x2, α5 and α6.

(d) Recalling that every value of α5, α6 in [0, 1] yield sound bounds of x7 and x8 as long as 0 ≤ α5, α6 ≤
1, find the best numeric lower and upper bounds of x7 − x8. You must indicate values of α5 and
α6 that allow you to compute these numeric bounds.
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