Formal Methods in Machine Learning A 30000-feet view (Why CS781?)

Supratik Chakraborty IIT Bombay

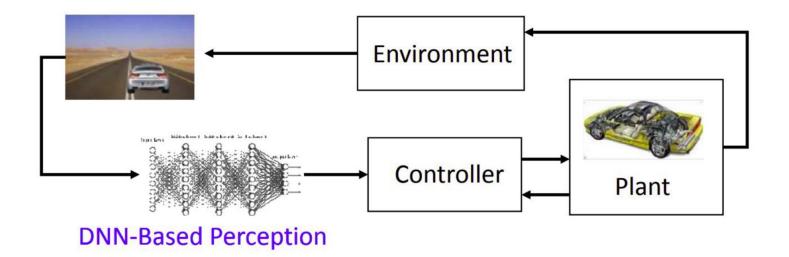

Safety in AI/ML

- AI/ML based systems
 - Computational systems that try to mimic (and improve upon?) human reasoning
- Applications span entire spectrum of consequences
 - Benign
 - Auto completion in chat, game of chess, recommendation of restaurants, ...
 - Potentally serious, but recoverable
 - Approval of bank loans, bail applications, ...
 - Serious irrecoverable consequences
 - Collision avoidance in unmanned drones, self-driving cars, malware detection, ...
- Can we trust decisions by AI/ML based systems in applications where cost of errors is extraordinarily large?
 - Human lives, breach of privacy, security gaps, loss of critical infrastructure ...

Something Requires Attention ...

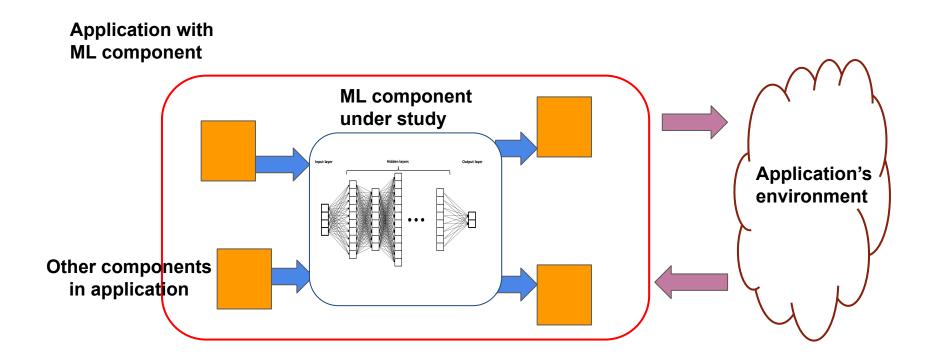
ТС

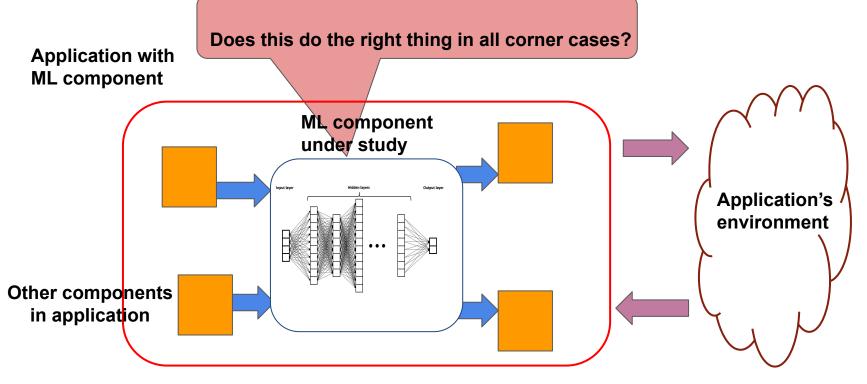
Drone crash near kids leads Swiss Post and Matternet to suspend autonomous deliveries


Devin Coldewey @techcrunch / 5:47 AM GMT+5:30 • July 31, 2019

Comment

Image Credits: Matternet Inc. under a license.


Centrality of Machine Learning based Decisions

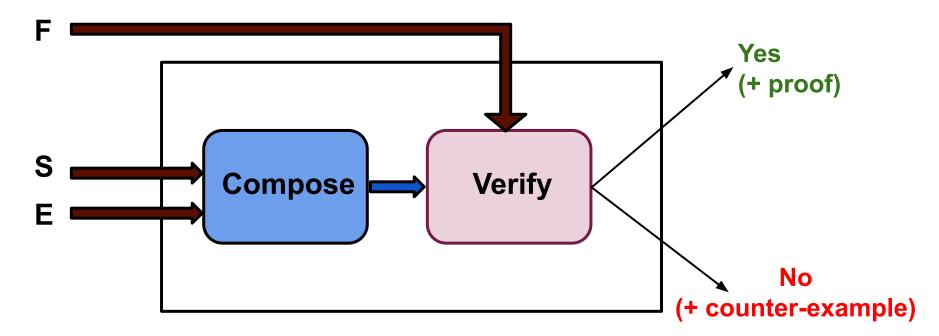

Semi-autonomous Automatic Emergency Braking System: NSF VeHICaL project

Source: Formal Specification for Deep Neural Networks, Seshia et al, 2018

A Typical Setup

A Typical Setup

- Machine learning perspective
 - "Accidents"
 - Unintended, harmful behaviour stemming from "bad" design of ML components?
 - Wrong objective function design?
 - Training based on insufficient or poorly curated data?
 - Errors due to distributional shift of inputs?
 - Core machine learning techniques can reduce "accidents"
 - Scalable, works in a large spectrum of real-world settings
 - Are all corner cases covered? Do we have proofs of correctness?


Can we **depend** on training/designing complex networks using to **always** work **as desired** in previously unseen corner cases, when **the cost of an error is huge**?

ML based techniques to mitigate problem are **important** and **must be used**

But are these sufficient?

• Formal methods perspective

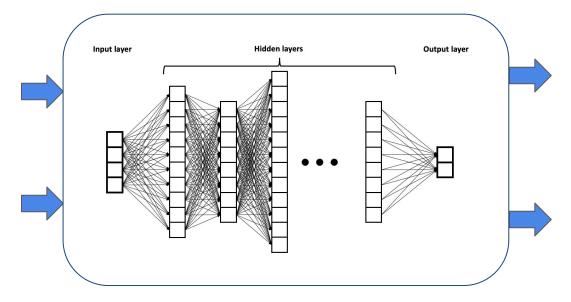
- **System:** E.g., Neural net in self-driving car
 - Mathematical model of system's behaviour (S)
- Environment: E.g., Road, weather, traffic, driver interventions, ...
 - Mathematical model of environment's behaviour (E)
- **Property:** A precise formulation (**F**) of **acceptable behaviour of S operating in E**
- Algorithmic search of proof space
 - Either obtain a proof that system satisfies property
 - (S || E) ⊨ F
 - Counterexample (network inputs) that demonstrate violation of property
 - Model of (S || E) $\land \neg$ F

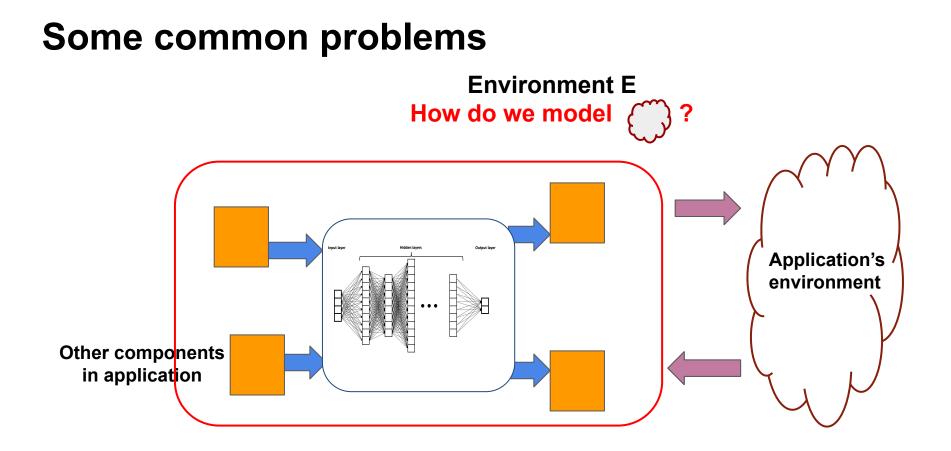
Ref: Towards Verified Artificial Intelligence, Seshia, Sadigh and Sastry

Formal methods perspective

- Hugely successful in hardware industry, software industry
 - Every processor from Intel/AMD has parts of the design formally verified
 - Every time you fly an Airbus aircraft, large parts of auto-pilot software formally verified
 - Every time you insert a USB device into a Windows machine, formal verification of downloaded drivers happens
- Can we make the technology work for AI/ML based systems?

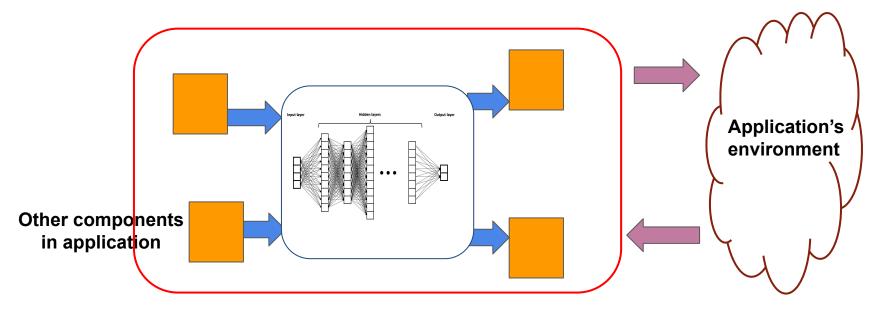
FM in ML goes beyond proofs/counterexamples of safety properties

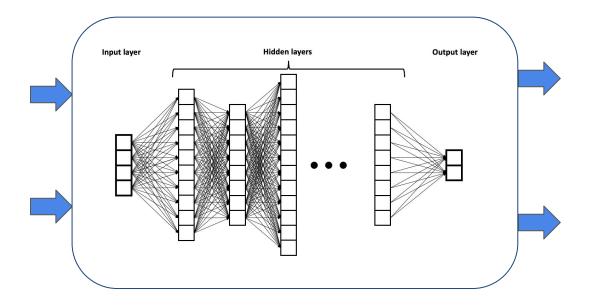

Can we use formal methods based reasoning to


- Verify correctness of algorithms used to train?
- Do correct-by-construction design of ML components?
- Provide explanations based on formal models?
- Fish out adversarial inputs for well-trained ML components?
- Analyze robustness, fairness, privacy, security, transparency etc.?

Some common problems

System S


High dimn input space, parameter space: scalability of analysis?


Some common problems

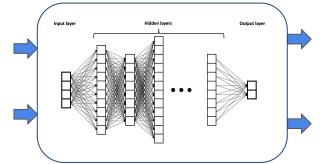
Property F: (Vehicle within 5m on left) $\Rightarrow \neg$ (Steer left)

Some common problems

What is the corresponding property for S?

Realistic expectations

- Given scale and complexity of today's AI/ML based systems
 - Challenging, if not impossible, to design correct-by-construction ML system, or formally verify overall correct operation without restrictive/unrealistic assumptions
 - Nascent area, lots of promising ideas in literature
- Therefore,
 - Core ML techniques, Formal Analysis/Verification AND Run-Time Assurance needed


Formal Methods and Machine Learning must help each other

Some Buzzing Research Topics

- Specifying properties for ML components
- Modeling environments and neural networks
- Abstract interpretation for analyzing deep neural networks
- Customized constraint solvers
- Verified Reinforcement Learning
- Robustness analysis through formal methods lens
- Explainability of ML components: logic based approach

Some Additional Details

Modeling the system

- Very high dimensional input space
- Need abstraction mechanisms suitable for scale of ML component complexity
 - Walking a tight rope -- computational efficiency vs precision of analysis
- Use logical formalisms to "explain" ML components
 - Some of these can be used as models
- Model systems in context
 - Perhaps not necessary to model arbitrary behaviours

Modeling environment

- Uncertainty omnipresent: First class entity in reasoning
- Some things are inherently hard to model
 - Human behaviour, traffic conditions
- Need to combine probabilistic and non-deterministic modeling intelligently
- Markov Decision Processes (MDPs), probabilistic programs, ...
- Abstractions in environment modeling

Specification of what is desired behaviour

- Often hard to formalize
 - Significant chunk of time spent on this even in software/hardware verification
- "Data as specification" vs "formal specification"
 - Can this gap be bridged?
 - Specification mining from behaviours, traces?
- Quantitative vs Boolean specifications
 - Quantitative specs often have an optimization flavour
 - Does a system satisfy/fail a property or get a formal score for property satisfaction?
- Run-time monitors

Practically "efficient" computational techniques

- Hardware & software verification settings
 - Symbolic model checking, SAT/SMT solvers, numerical simulation techinques ...
- AI/ML context
 - Data generation, satisfying soft, hard, distributional constraints (realism)
 - Efficient constraint solving techniques with ReLUs, sigmoids, etc.
 - New abstraction/refinement techniques for ReLUs, sigmoids for sound analysis
 - Compositional reasoning
 - Assume-guarantee reasoning for Boolean models/specifications relatively mature
 - Similar reasoning for probablistic/quantitative models/specifications?