CS781:
 A Quick Primer on Abstract Interpretation for Neural Networks

Supratik Chakraborty IIT Bombay

Notion of State in Neural Network

State: $\left(X_{1}, X_{2}, \ldots x_{18}\right)$ in R^{18}

State Change in Feed-Forward Neural Network

$\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{i-1}^{\prime}, x_{i}^{\prime}\right)=f_{i}\left(x_{1}, x_{2}, \ldots x_{i-1}\right)$, for i in $\{3, \ldots, 18\}$

State Change in Feed-Forward NN as a sequence of instrns

$$
\begin{array}{ll}
\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) & =f_{3}\left(x_{1}, x_{2}\right) ; \\
\left(x_{1}^{\prime \prime}{ }_{1}, x^{\prime \prime}{ }_{2}, x^{\prime \prime \prime}{ }_{3,} x^{\prime \prime \prime}{ }_{4}\right) & =f_{4}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) ;
\end{array}
$$

NN computation: a sequence of state transitions caused by seq of instructions

Proving Property of a FF NN

Pre-
condition on (x1, x2)

Post-
condition on (x17, x18)
\{Pre-condition on (x1, x2)\}

$$
\begin{array}{ll}
\left(x^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) & =f_{3}\left(x_{1}, x_{2}\right) ; \\
\left(x^{\prime \prime}{ }_{1}, x^{\prime \prime}{ }_{2}, x^{\prime \prime}{ }_{3,} x^{\prime \prime}{ }_{4}\right) & =f_{4}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) ;
\end{array}
$$

\{Post-condition on $(x 17, x 18)\}$

NN Computation as a State Transition System

$$
\begin{aligned}
& \text { \{Pre-condition on }(x 1, x 2)\} \\
& \begin{array}{ll}
\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) & =f_{3}\left(x_{1}, x_{2}\right) ; \\
\left(x^{\prime \prime \prime}, x_{1},{ }_{2}^{\prime \prime}, x^{\prime \prime}{ }_{3} x^{\prime \prime \prime}{ }_{4}\right) & =f_{4}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) ; \\
\ldots & \\
\text { \{Post-condition on }(x 17, x 18)\}
\end{array}
\end{aligned}
$$

Dealing with State Space Size

- Infinite state space
- Difficult to represent using state transition diagram
- Can we still do some reasoning?
» Solution: Use of abstraction
Concrete states
- Naive view
- Bunch sets of states together"ntelligently"
- Don't talk of individual states, talk of a representation of a set of states
- Transitions between state set representations
- Granularity of reasoning shifted
- Extremely powerful general technique
- Allows reasoning about large/infinite state spaces

A Generic View of Abstraction

Set of concrete states Set of abstract states

Abstraction (α)

ン Every subset of concrete states mapped to unique abstract state

- Desirable to capture containment relations
> Transitions between state sets (abstract states)

The Game Plan

Abstract analysis engine

The Game Plan

How do we choose the right abstraction? Is there a method beyond domain expertise? Can we learn from errors in abstraction to build better (refined) abstractions? Can refinement be automated?

The Game Plan

Abstract state spaces can be infinite. What can we do to make abstract analysis practical? Finite ascending chains what beyond?

A
 T
 E

Abstract analysis engine

Desirable Properties of Abstraction

Set of concrete states

Set of abstract states

Abstraction (α)

Concretization (γ)

> Suppose $S_{1} \subseteq S_{2}$: subsets of concrete states

- Any behaviour starting from S_{1} can also happen starting from S_{2}
- If $\alpha\left(S_{1}\right)=a_{1}, \alpha\left(S_{2}\right)=a_{2}$ we want this monotonicity in behaviour in abstr state space too
- Need ordering of abstract states, similar in spirit to $S_{1} \subseteq S_{2}$

Structure of Concrete State Space

- Set of concrete states: S

Structure of Abstract State Space

${ }^{\text {' }}$ Abstract lattice $\mathrm{A}=(\mathcal{A}, \sqsubseteq, \sqcup, \sqcap, \top, \perp)$
, Abstraction function $\alpha: \wp(S) \rightarrow \mathcal{A}$

- Monotone: $S_{1} \subseteq S_{2} \Rightarrow \alpha\left(S_{1}\right) \sqsubseteq \alpha\left(S_{2}\right)$ for all $S_{1}, S_{2} \subseteq S$
- $\alpha(S)=$ Т, $\quad \alpha(\emptyset)=\perp$
- Concretization function $\gamma: \mathcal{A} \rightarrow \wp(S)$
- Monotone: $a_{1} \sqsubseteq a_{2} \Rightarrow \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{2}\right)$ for all $a_{1}, a_{2} \in \mathcal{A}$
- $\gamma(\top)=S, \quad \gamma(\perp)=\emptyset$

