CS781:
 A Quick Primer on
 Abstract Interpretation for Neural Networks

Supratik Chakraborty IIT Bombay

A Simple Abstract Domain

Interval Abstract Domain

- Simplest domain for analyzing numerical programs
, Represent values of each variable separately using intervals
- Example:

Pre-
condition
on (x1, x2)

$$
\begin{aligned}
& \text { Post- } \\
& \text { condition on } \\
& (x 17, x 18)
\end{aligned}
$$

Represent values of inputs by intervals,
Compute values of hidden layer nodes and outputs as intervals

Interval Abstract Domain

- Abstract states: intervals of values of x, (ignore values of y)
$[-10,7]:\{(x, y) \mid-10<=x<=7\}$
- $(-\infty, 20]:\{(x, y) \mid x<=20\}$
- \sqsubseteq relation: Inclusion of intervals

$$
[-10,7] \sqsubseteq[-20,9]
$$

- $\sqcup \quad$ and \sqcap : union and intersection of intervals

$$
\begin{aligned}
& {[-10,9] \sqcup[-20,7]=[-20,9]} \\
& {[-10,9] \sqcap[-20,7]=[-10,7]}
\end{aligned}
$$

- \perp is empty interval of x
- T is $(-\infty,+\infty)$

Interval Abstract Domain

- Abstract states: intervals of values of x, (ignore values of y)
$[-10,7]:\{(x, y) \mid-10<=x<=7\}$
- $(-\infty, 20]:\{(x, y) \mid x<=20\}$
- \sqsubseteq relation: Inclusion of intervals $[-10,7] \sqsubseteq[-20,9]$
- $\sqcup \quad$ and Π : union and intersection
$[-10,9] \sqcup[-20,7]=[-20,9]$
$[-10,9] \sqcap[-20,7]=[-10,7]$
- \perp is empty interval of x
- T is $(-\infty,+\infty)$
$\alpha(\{(1,3),(2,4),(5,7)\})=[1,5]$
$\alpha(\{(5,7),(7,6),(9,10)\})=[5,9]$
$\alpha(\{(5,7)\})=[5,5]$

Interval Abstract Domain

» Abstract states: pairs of intervals (one for x, y)

- ([-10, 7], (-1, 20])
- \sqsubseteq relation: Inclusion of intervals

$$
([-10,7],(-1,20]) \sqsubseteq([-20,9],(-1,+\infty))
$$

- \sqcup and \sqcap : union and intersection of intervals
- $([-10,9],(-1,20]) \sqcap([-20,7],[3,+\infty))=([-10,7],[3,20])$
- $([-10,9],(-1,20]) \sqcup([-20,7],[3,+\infty))=([-20,9],(-1,+\infty))$
- \perp is empty interval of x and y
- \top is $((-\infty,+\infty),(-\infty,+\infty))$

Desirable Properties of α and γ

For all $\quad S_{1} \subseteq \mathcal{C} \quad S_{1} \subseteq \gamma\left(\alpha\left(S_{1}\right)\right)$

Set of concrete states
C

Set of abstract states

Desirable Properties of α and γ

$$
\begin{array}{lll}
S_{1} \subseteq \gamma\left(\alpha\left(S_{1}\right)\right) & \text { forall } & S_{1} \subseteq \mathcal{C} \\
\alpha\left(\gamma\left(a_{1}\right)\right) \sqsubseteq a_{1} & \text { forall } & a_{1} \in \mathcal{A}
\end{array}
$$

Set of concrete states Set of abstract states

α and γ form a Galois connection

Desirable Properties of α and γ

- α and γ form a Galois connection
- Second (equivalent) view:

$$
\alpha\left(S_{1}\right) \sqsubseteq a_{1} \Leftrightarrow S_{1} \subseteq \gamma\left(a_{1}\right) \text { for all } S_{1} \subseteq S, a_{1} \in \mathcal{A}
$$

Set of concrete states

Computing Abstract State Transitions

Set of concrete states
Set of abstract states

Abstraction (α)

Concretization (γ)

Concrete state c1

c1 $\in \gamma(a 1)$

Computing Abstract State Transitions

- Concrete state set transformer function
- Example:

S1 $=\{(x 1, x 2, x 3) \mid \ldots .$.$\} : set of concr. states$

$$
\begin{aligned}
& \text { Monotone concrete } \\
& \text { state set transformer } \\
& \text { function for function f }
\end{aligned}
$$

$\mathrm{S} 2=\left\{\left(x 1^{\prime}, x 2^{\prime},{ }^{\prime} 3^{\prime}\right) \mid \exists(x 1, x 2, x 3) \in S 1,\left(x 1^{\prime}, x 2^{\prime}, x 3^{\prime}\right)=f(x 1, x 2)\right\}$
$=F^{c}(S 1)$: set of concrete states

Computing Abstract State Transitions

- Abstract state transformer function
- Example:

Set of concrete states

$$
\begin{aligned}
& \text { a2 }=\alpha\left(\mathrm{F}^{\mathrm{C}}(\gamma(\mathrm{a} 1))\right) \text { ideally, but } \mathrm{F}^{A}(\mathrm{a} 1) \sqsupseteq \alpha\left(\mathrm{F}^{\mathrm{C}}(\gamma(\mathrm{a} 1))\right) \text { often } \\
& \text { used }
\end{aligned}
$$

Summary

- Abstract interpretation is a general framework for analysis of state transition systems
- Widely used for verification and static analysis of programs
- Recent applications in neural network analysis
- Choice of right abstraction crucial to success
- Balance between precision and efficiency

This lecture should help you understand the paper "An Abstract Domain for Certifying Neural Networks" by Singh et al. better

