A Note About Dual Norms

Used in Proof of Corollary 3.3 in *Efficient Neural Network Robustness Certification with General Activation Functions* by Zhang et al (NeurIPS 2018)

Corrolary 3.3's proof from paper

• From Appendix B of paper

$$\max_{\mathbf{x}\in\mathbb{B}_{p}(\mathbf{x}_{0},\epsilon)} f_{j}^{U}(\mathbf{x}) = \max_{\mathbf{x}\in\mathbb{B}_{p}(\mathbf{x}_{0},\epsilon)} \left[\mathbf{\Lambda}_{j,:}^{(0)}\mathbf{x} + \sum_{k=1}^{m} \mathbf{\Lambda}_{j,:}^{(k)}(\mathbf{b}^{(k)} + \mathbf{\Delta}_{:,j}^{(k)}) \right]$$
$$= \left[\max_{\mathbf{x}\in\mathbb{B}_{p}(\mathbf{x}_{0},\epsilon)} \mathbf{\Lambda}_{j,:}^{(0)}\mathbf{x} \right] + \sum_{k=1}^{m} \mathbf{\Lambda}_{j,:}^{(k)}(\mathbf{b}^{(k)} + \mathbf{\Delta}_{:,j}^{(k)})$$
$$= \left[\epsilon \left[\max_{\mathbf{y}\in\mathbb{B}_{p}(\mathbf{0},1)} \mathbf{\Lambda}_{j,:}^{(0)}\mathbf{y} \right] + \mathbf{\Lambda}_{j,:}^{(0)}\mathbf{x}_{0} + \sum_{k=1}^{m} \mathbf{\Lambda}_{j,:}^{(k)}(\mathbf{b}^{(k)} + \mathbf{\Delta}_{:,j}^{(k)}) \right]$$

Non-trivial part of proof

• From Appendix B of paper

$$\max_{\mathbf{x}\in\mathbb{B}_{p}(\mathbf{x}_{0},\epsilon)} f_{j}^{U}(\mathbf{x}) = \max_{\mathbf{x}\in\mathbb{B}_{p}(\mathbf{x}_{0},\epsilon)} \left[\mathbf{\Lambda}_{j,:}^{(0)}\mathbf{x} + \sum_{k=1}^{m} \mathbf{\Lambda}_{j,:}^{(k)}(\mathbf{b}^{(k)} + \mathbf{\Delta}_{:,j}^{(k)}) \right] \\ = \left[\max_{\mathbf{x}\in\mathbb{B}_{p}(\mathbf{x}_{0},\epsilon)} \mathbf{\Lambda}_{j,:}^{(0)}\mathbf{x} \right] + \sum_{k=1}^{m} \mathbf{\Lambda}_{j,:}^{(k)}(\mathbf{b}^{(k)} + \mathbf{\Delta}_{:,j}^{(k)}) \\ = \epsilon \left[\max_{\mathbf{y}\in\mathbb{B}_{p}(\mathbf{0},1)} \mathbf{\Lambda}_{j,:}^{(0)}\mathbf{y} \right] + \mathbf{\Lambda}_{j,:}^{(0)}\mathbf{x}_{0} + \sum_{k=1}^{m} \mathbf{\Lambda}_{j,:}^{(k)}(\mathbf{b}^{(k)} + \mathbf{\Delta}_{:,j}^{(k)}) \\ = \epsilon \left[\mathbf{M}_{j,:}^{(0)} \|_{q} + \mathbf{\Lambda}_{j,:}^{(0)}\mathbf{x}_{0} + \sum_{k=1}^{m} \mathbf{\Lambda}_{j,:}^{(k)}(\mathbf{b}^{(k)} + \mathbf{\Delta}_{:,j}^{(k)}) \right]$$

Let $\mathbf{a} = (a_1, \dots, a_n)$ be a vector with *p*-norm $||\mathbf{a}||_p = (|a_1|^p + \dots + |a_2|^p)^{\frac{1}{p}}$ The dual norm of $\mathbf{a} = \sup\{|\mathbf{a}^\top \cdot \mathbf{x}| \text{ s.t. } ||\mathbf{x}||_p \leq 1\}$

 $||\mathbf{x}||_p \leq 1$ defines region of allowed \mathbf{x} To maximize $\mathbf{a}^\top \cdot \mathbf{x}$, choose optimal \mathbf{x} that has maximum projection on \mathbf{a} in direction of \mathbf{a} . Compute $\mathbf{a}^\top \cdot \mathbf{x} = a_1 \cdot x_1 + \cdots + a_n \cdot x_n$ for optimal \mathbf{x}

For all $p \ge 1$, dual norm of $\mathbf{a} = ||a||_q$, where $\frac{1}{p} + \frac{1}{q} = 1$

Holder's Inequality (simplified) Holder conjugates Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q}$ Then $\|\mathbf{a}^{\top} \cdot \mathbf{x}\|_1 \leq \|\mathbf{a}\|_q \cdot \|\mathbf{x}\|_p$ $\sum_{i=1}^{n} |a_i \cdot x_i| \leq \|\mathbf{a}\|_q \cdot \|\mathbf{x}\|_p$

Some Illustrations of Result

- Consider 2 dimensional vectors
- Consider p-norms for $p = 1, 2, \infty$
- Corresponding q values: ∞ , 2, 1 1/p + 1/q = 1

Not a proof; just some geometric intuition for simple cases

Playing with norms (p = 2, q = 2)

Let
$$\mathbf{a} = (a_1, a_2)$$
 be a fixed vector
Let $\mathbf{x} = (x_1, x_2)$ be a vector s.t. $||\mathbf{x}||_2 \leq 1$
i.e. $x_1^2 + x_2^2 \leq 1^2$
What is max value of $\mathbf{a}^\top \cdot \mathbf{x}$. i.e. $a_1.x_1 + a_2.x_2$?

Playing with norms ($p = \infty, q = 1$)

Let $\mathbf{a} = (a_1, a_2)$ be a fixed vector Let $\mathbf{x} = (x_1, x_2)$ be a vector s.t. $||\mathbf{x}||_{\infty} \leq 1$ i.e. $\max(|x_1|, |x_2|) \leq 1$ What is max value of $\mathbf{a}^{\top} \cdot \mathbf{x}$. i.e. $a_1.x_1 + a_2.x_2$?

Playing with norms ($p = \infty, q = 1$)

Let $\mathbf{a} = (a_1, a_2)$ be a fixed vector Let $\mathbf{x} = (x_1, x_2)$ be a vector s.t. $||\mathbf{x}||_{\infty} \leq 1$ i.e. $\max(|x_1|, |x_2|) \leq 1$ What is max value of $\mathbf{a}^{\top} \cdot \mathbf{x}$. i.e. $a_1.x_1 + a_2.x_2$?

Playing with norms ($p = 1, q = \infty$)

Let $\mathbf{a} = (a_1, a_2)$ be a fixed vector Let $\mathbf{x} = (x_1, x_2)$ be a vector s.t. $||\mathbf{x}||_1 \leq 1$ i.e. $|x_1| + |x_2| \leq 1$ What is max value of $\mathbf{a}^\top \cdot \mathbf{x}$. i.e. $a_1.x_1 + a_2.x_2$?

Playing with norms ($p = 1, q = \infty$)

Let $\mathbf{a} = (a_1, a_2)$ be a fixed vector Let $\mathbf{x} = (x_1, x_2)$ be a vector s.t. $||\mathbf{x}||_1 \leq 1$ i.e. $|x_1| + |x_2| \leq 1$ What is max value of $\mathbf{a}^\top \cdot \mathbf{x}$. i.e. $a_1.x_1 + a_2.x_2$?

