Helper Slides on

Abduction-based Minimal Explanations

Supratik Chakraborty IIT Bombay

Abduction in Logic

Given a theory (consistent set of sentences) \mathcal{F} and a formula \mathcal{E} in a $\operatorname{logic} \mathcal{L}$ Find a formula α such that

- $\alpha \models \mathcal{F} \Rightarrow \mathcal{E}$
- $\mathcal{F} \wedge \alpha$ is consistent

We often want α to be as weak (permissive) as possible.
α is an "explanation" of \mathcal{E} in theory \mathcal{F}

Formulating Explanation as Abduction

O	y_{1}
O	y_{2}
O	y_{3}

$C=$
$\left(x_{0,7}=R\right) \wedge\left(x_{1,7}=R\right) \wedge\left(x_{2,7}=G\right) \wedge\left(x_{3,7}=G\right) \wedge \cdots\left(x_{7,7}=R\right) \wedge \quad \mathcal{F} \quad \mathcal{E}=\left(y_{1}>y_{2}\right) \wedge\left(y_{1}>y_{3}\right)$
$\left(x_{0,0}=R\right) \wedge\left(x_{1,0}=R\right) \wedge\left(x_{2,0}=R\right) \wedge\left(x_{3,0}=G\right) \wedge \cdots\left(x_{7,0}=R\right)$

Clearly, $\mathcal{C} \wedge \mathcal{F} \wedge \mathcal{E}$ is consistent.

Formulating Explanation as Abduction

Find smallest $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ s.t.
(a) $\mathcal{C}^{\prime} \wedge \mathcal{F}$ is consistent, and (b) $\mathcal{C}^{\prime} \models \mathcal{F} \Rightarrow \mathcal{E}$

Building C' Lazily

- y_{1}

O y_{2}
O y_{3}

$$
\begin{gathered}
C= \\
\left(x_{0,7}=R\right) \wedge\left(x_{1,7}=R\right) \wedge\left(x_{2,7}=G\right) \wedge\left(x_{3,7}=G\right) \wedge \cdots\left(x_{7,7}=R\right) \wedge \quad \mathcal{F} \\
\vdots \\
\left(x_{0,0}=R\right) \wedge\left(x_{1,0}=R\right) \wedge\left(x_{2,0}=R\right) \wedge\left(x_{3,0}=G\right) \wedge \cdots\left(x_{7,0}=R\right)
\end{gathered}
$$

$$
\mathcal{E}=\left(y_{1}>y_{2}\right) \wedge\left(y_{1}>y_{3}\right)
$$

Does the empty subset of C suffice?
Does
$\vDash \mathcal{F} \Rightarrow \mathcal{E}$ hold?

Building C' Lazily

$$
\begin{gathered}
\hat{C}= \\
\left(x_{0,7}=R\right) \wedge\left(x_{1,7}=R\right) \wedge\left(x_{2,7}=R\right) \wedge\left(x_{3,7}=G\right) \wedge \cdots\left(x_{7,7}=R\right) \wedge \quad \mathcal{F} \\
\vdots \\
\left(x_{0,0}=R\right) \wedge\left(x_{1,0}=R\right) \wedge\left(x_{2,0}=R\right) \wedge\left(x_{3,0}=R\right) \wedge \cdots\left(x_{7,0}=R\right)
\end{gathered}
$$

$$
\widehat{\mathcal{E}}=\left(y_{2}>y_{1}\right) \wedge\left(y_{2}>y_{3}\right)
$$

Certainly $\quad \models \mathcal{F} \Rightarrow \mathcal{E}$ doesn't hold!

How do the two inputs differ?

$$
\begin{aligned}
S_{1}= & \left\{\left(x_{2,7}=G\right),\left(x_{2,6}=R\right),\left(x_{2,5}=R\right),\left(x_{3,4}=R\right),\left(x_{2,3}=R\right),\right. \\
& \left(x_{2,2}=R\right),\left(x_{2,1}=G\right),\left(x_{3,1}=R\right),\left(x_{4,1}=R\right), \\
& \left.\left(x_{5,1}=G\right),\left(x_{3,0}=G\right),\left(x_{4,0}=G\right)\right\}
\end{aligned}
$$

Unless one of the literals in S_{1} is included in the explanation C^{\prime}, we can't distinguish between \square and

Choosing subset of C

difference

$$
\begin{aligned}
S_{1}= & \left\{\left(x_{2,7}=G\right),\left(x_{2,6}=R\right),\left(x_{2,5}=R\right),\left(x_{3,4}=R\right),\left(x_{2,3}=R\right),\right. \\
& \left(x_{2,2}=R\right),\left(x_{2,1}=G\right),\left(x_{3,1}=R\right),\left(x_{4,1}=R\right) \\
& \left.\left(x_{5,1}=G\right),\left(x_{3,0}=G\right),\left(x_{4,0}=G\right)\right\}
\end{aligned}
$$

Suppose we choose $\left(x_{2,7}=G\right)$ for $C^{\prime} \subseteq C$
Certainly this distinguishes

So, have we found the explanation?

Clearly not!

How do the two inputs differ again?

$$
\begin{aligned}
S_{2}=\{ & \left(x_{4,3}=R\right),\left(x_{5,3}=G\right),\left(x_{3,2}=R\right),\left(x_{5,2}=G\right) \\
& \left.\left(x_{2,0}=R\right),\left(x_{5,0}=R\right)\right\}
\end{aligned}
$$

Unless one of the literals in S_{2} is included in the explanation C^{\prime}, we can't distinguish between \square and

Finding updated C'

$$
\begin{aligned}
S_{1}= & \left\{\left(x_{2,7}=G\right),\left(x_{2,6}=R\right),\left(x_{2,5}=R\right),\left(x_{3,4}=R\right),\left(x_{2,3}=R\right)\right. \\
& \left(x_{2,2}=R\right),\left(x_{2,1}=G\right),\left(x_{3,1}=R\right),\left(x_{4,1}=R\right) \\
& \left.\left(x_{5,1}=G\right),\left(x_{3,0}=G\right),\left(x_{4,0}=G\right)\right\} \\
S_{2}= & \left\{\left(x_{4,3}=R\right),\left(x_{5,3}=G\right),\left(x_{3,2}=R\right),\left(x_{5,2}=G\right)\right. \\
& \left.\left(x_{2,0}=R\right),\left(x_{5,0}=R\right)\right\}
\end{aligned}
$$

Unless one of the literals in S_{1} is included in the explanation C^{\prime}, we can't distinguish between and
Unless one of the literals in S_{2} is included in the explanation C^{\prime}, we can't distinguish between \square and

Finding updated C'

$$
\begin{aligned}
S_{1}= & \left\{\left(x_{2,7}=G\right),\left(x_{2,6}=R\right),\left(x_{2,5}=R\right),\left(x_{3,4}=R\right),\left(x_{2,3}=R\right)\right. \\
& \left(x_{2,2}=R\right),\left(x_{2,1}=G\right),\left(x_{3,1}=R\right),\left(x_{4,1}=R\right) \\
& \left.\left(x_{5,1}=G\right),\left(x_{3,0}=G\right),\left(x_{4,0}=G\right)\right\} \\
S_{2}= & \left\{\left(x_{4,3}=R\right),\left(x_{5,3}=G\right),\left(x_{3,2}=R\right),\left(x_{5,2}=G\right)\right. \\
& \left.\left(x_{2,0}=R\right),\left(x_{5,0}=R\right)\right\}
\end{aligned}
$$

Find a minimum hitting set of S_{1} and S_{2}

$$
C^{\prime}=\left(x_{3,0}=G\right) \wedge\left(x_{2,0}=R\right)
$$

Certainly distinguishes

So, have we found the explanation?

Does $\left(x_{2,0}=R\right) \wedge\left(x_{3,0}=G\right) \models \mathcal{F} \Rightarrow \mathcal{E}$ hold?

Clearly not!

Continuing the process

- Find difference with current counterexample
- Find another set S_{3} from which we must choose a literal
- Find hitting set C^{\prime} of $S_{1}, S_{2}, S_{3}, \ldots$
- Check if C' serves as an abductive explanation - Does $C^{\prime} \models \mathcal{F} \Rightarrow \mathcal{E}$?
- If not, repeat above steps
- If yes, output C' as minimal explanation

