Helper Slides on Abduction-based Minimal Explanations

Supratik Chakraborty IIT Bombay

Abduction in Logic

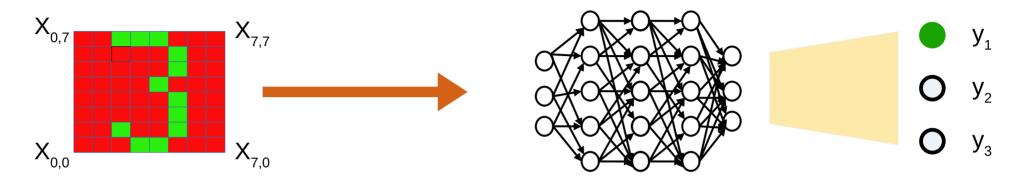
Given a theory (consistent set of sentences) \mathcal{F} and a formula \mathcal{E} in a logic \mathcal{L} Find a formula α such that

- $\alpha \models \mathcal{F} \Rightarrow \mathcal{E}$
- $\mathcal{F} \wedge \alpha$ is consistent

We often want α to be as weak (permissive) as possible.

 α is an "explanation" of \mathcal{E} in theory \mathcal{F}

Formulating Explanation as Abduction

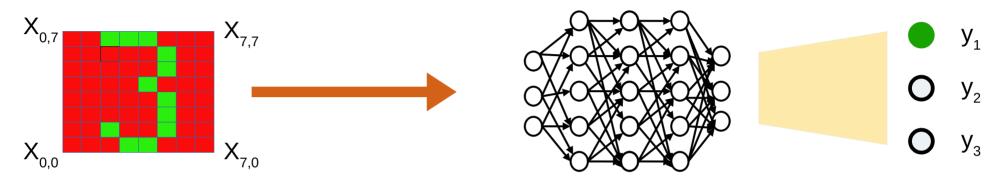


$$C = (x_{0,7} = \mathbf{R}) \land (x_{1,7} = \mathbf{R}) \land (x_{2,7} = G) \land (x_{3,7} = G) \land \cdots (x_{7,7} = \mathbf{R}) \land \mathcal{F} \qquad \mathcal{E} = (y_1 > y_2) \land (y_1 > y_3)$$

$$(x_{0,0} = \mathbf{R}) \land (x_{1,0} = \mathbf{R}) \land (x_{2,0} = \mathbf{R}) \land (x_{3,0} = G) \land \cdots (x_{7,0} = \mathbf{R})$$

Clearly, $\mathcal{C} \wedge \mathcal{F} \wedge \mathcal{E}$ is consistent.

Formulating Explanation as Abduction

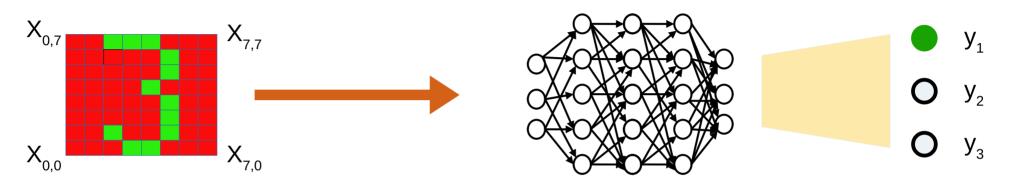


$$C = (x_{0,7} = \mathbf{R}) \land (x_{1,7} = \mathbf{R}) \land (x_{2,7} = G) \land (x_{3,7} = G) \land \cdots (x_{7,7} = \mathbf{R}) \land \mathcal{F} \qquad \mathcal{E} = (y_1 > y_2) \land (y_1 > y_3)$$

$$(x_{0,0} = \mathbf{R}) \land (x_{1,0} = \mathbf{R}) \land (x_{2,0} = \mathbf{R}) \land (x_{3,0} = G) \land \cdots (x_{7,0} = \mathbf{R})$$

Find smallest $\mathcal{C}' \subseteq \mathcal{C}$ s.t. (a) $\mathcal{C}' \wedge \mathcal{F}$ is consistent, and (b) $\mathcal{C}' \models \mathcal{F} \Rightarrow \mathcal{E}$

Building C' Lazily



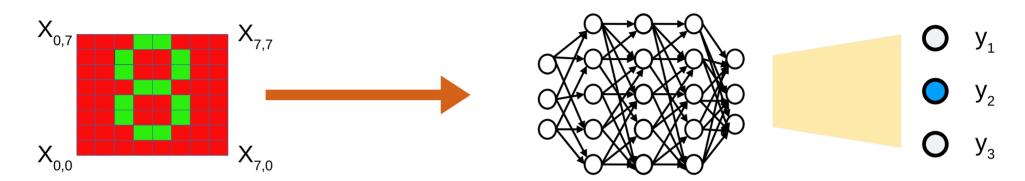
$$C = (x_{0,7} = \mathbf{R}) \land (x_{1,7} = \mathbf{R}) \land (x_{2,7} = G) \land (x_{3,7} = G) \land \cdots (x_{7,7} = \mathbf{R}) \land \mathcal{F} \qquad \mathcal{E} = (y_1 > y_2) \land (y_1 > y_3)$$

$$(x_{0,0} = \mathbf{R}) \land (x_{1,0} = \mathbf{R}) \land (x_{2,0} = \mathbf{R}) \land (x_{3,0} = G) \land \cdots (x_{7,0} = \mathbf{R})$$

•

Does the empty subset of C suffice? Does $\models \mathcal{F} \Rightarrow \mathcal{E}$ hold?

Building C' Lazily



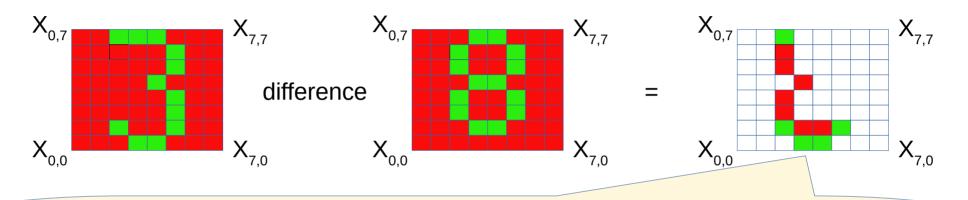
$$\widehat{C} = (x_{0,7} = \mathbf{R}) \wedge (x_{1,7} = \mathbf{R}) \wedge (x_{2,7} = \mathbf{R}) \wedge (x_{3,7} = G) \wedge \cdots (x_{7,7} = \mathbf{R}) \wedge \mathcal{F} \qquad \widehat{\mathcal{E}} = (y_2 > y_1) \wedge (y_2 > y_3)$$

$$(x_{0,0} = \mathbf{R}) \land (x_{1,0} = \mathbf{R}) \land (x_{2,0} = \mathbf{R}) \land (x_{3,0} = \mathbf{R}) \land \cdots (x_{7,0} = \mathbf{R})$$

•

Certainly $\models \mathcal{F} \Rightarrow \mathcal{E}$ doesn't hold!

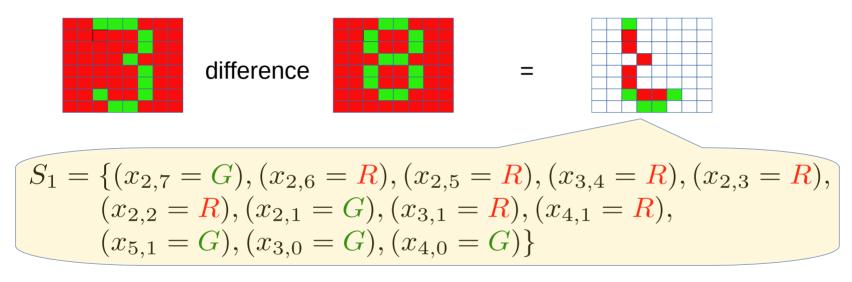
How do the two inputs differ?



$$S_{1} = \{(x_{2,7} = G), (x_{2,6} = R), (x_{2,5} = R), (x_{3,4} = R), (x_{2,3} = R), (x_{2,2} = R), (x_{2,1} = G), (x_{3,1} = R), (x_{4,1} = R), (x_{5,1} = G), (x_{3,0} = G), (x_{4,0} = G)\}$$

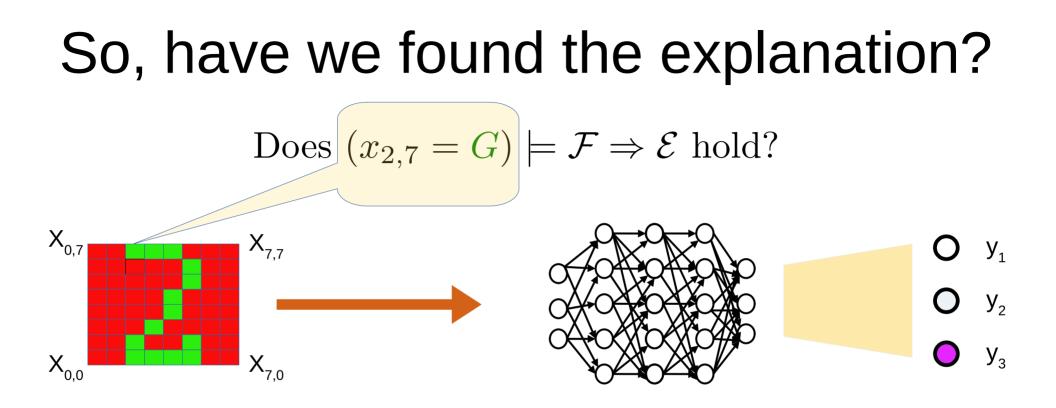
Unless one of the literals in S_1 is included in the explanation C', we can't distinguish between and and

Choosing subset of C



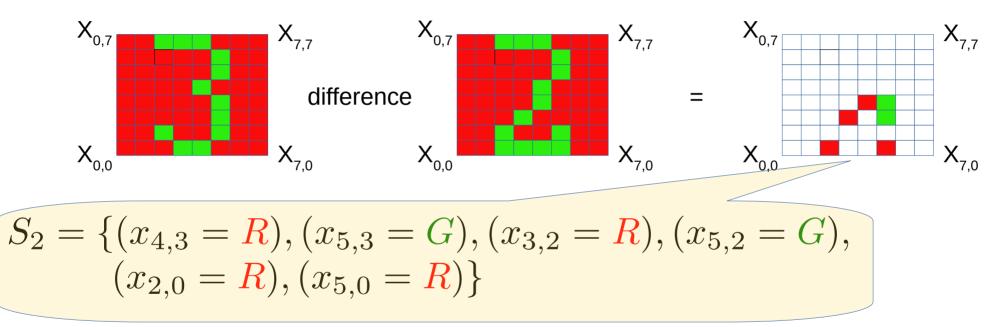
Suppose we choose $(x_{2,7} = G)$ for $C' \subseteq C$

Certainly this distinguishes **F** from



Clearly not!

How do the two inputs differ again?



Unless one of the literals in S₂ is included in the explanation C', we can't distinguish between and and

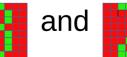
Finding updated C'

$$S_{1} = \{(x_{2,7} = G), (x_{2,6} = R), (x_{2,5} = R), (x_{3,4} = R), (x_{2,3} = R), (x_{2,2} = R), (x_{2,1} = G), (x_{3,1} = R), (x_{4,1} = R), (x_{5,1} = G), (x_{3,0} = G), (x_{4,0} = G)\}$$

$$S_{2} = \{ (x_{4,3} = \mathbf{R}), (x_{5,3} = G), (x_{3,2} = \mathbf{R}), (x_{5,2} = G), (x_{2,0} = \mathbf{R}), (x_{5,0} = \mathbf{R}) \}$$

Unless one of the literals in S_1 is included in the explanation C', we can't distinguish between **and** and

Unless one of the literals in S_2 is included in the explanation C', we can't distinguish between **to** and



Finding updated C'

$$S_{1} = \{(x_{2,7} = G), (x_{2,6} = R), (x_{2,5} = R), (x_{3,4} = R), (x_{2,3} = R), (x_{2,2} = R), (x_{2,1} = G), (x_{3,1} = R), (x_{4,1} = R), (x_{5,1} = G), (x_{3,0} = G), (x_{4,0} = G)\}$$

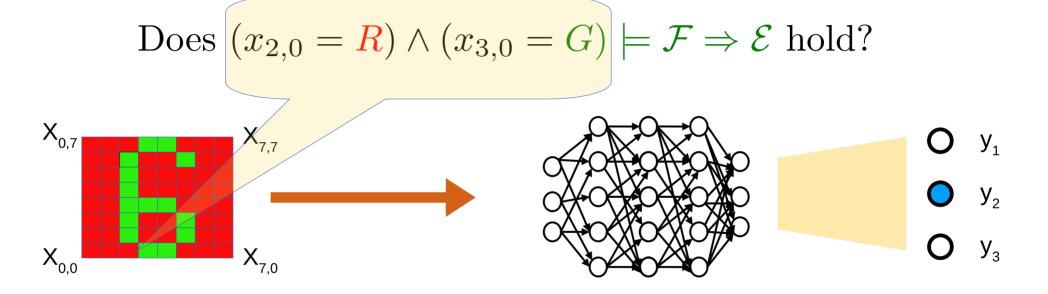
$$S_{2} = \{ (x_{4,3} = \mathbf{R}), (x_{5,3} = G), (x_{3,2} = \mathbf{R}), (x_{5,2} = G), (x_{2,0} = \mathbf{R}), (x_{5,0} = \mathbf{R}) \}$$

Find a minimum hitting set of S_1 and S_2

$$C' = (x_{3,0} = G) \land (x_{2,0} = R)$$

Certainly distinguishes from both and

So, have we found the explanation?



Clearly not!

Continuing the process

- Find difference with current counterexample
- Find another set S_3 from which we must choose a literal
- Find hitting set C' of S_1 , S_2 , S_3 , ...
- Check if C' serves as an abductive explanation

- Does
$$C' \models \mathcal{F} \Rightarrow \mathcal{E}$$
 ?

- If not, repeat above steps
- If yes, output C' as minimal explanation