
CS781:
A Quick Primer on

Abstract Interpretation for
Neural Networks

Supratik Chakraborty
IIT Bombay

Notion of State in Neural
Network

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

x
16

x
17

x
18

State: (x
1
, x

2
, ... x

18
) in R18

State Change in Feed-Forward
Neural Network

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

(x’
1
, x’

2
, ... x’

i-1,
x’

i
) = f

i
(x

1
, x

2
, ... x

i-1
), for i in {3, ..., 18 }

State Change in Feed-Forward
NN as a sequence of instrns

 (x’
1
, x’

2
, x’

3
) = f

3
(x

1
, x

2
);

 (x’’
1
, x’’

2
, x’’

3,
x’’

4
) = f

4
(x’

1
, x’

2
, x’

3
);

 …

NN computation: a sequence of state transitions
 caused by seq of instructions

x
1

x
2

x
3

Proving Property of a FF NN

 {Pre-condition on (x1, x2)}

 (x’

1
, x’

2
, x’

3
) = f

3
(x

1
, x

2
);

 (x’’
1
, x’’

2
, x’’

3,
x’’

4
) = f

4
(x’

1
, x’

2
, x’

3
);

 …
 {Post-condition on (x17, x18) }

x
1

x
2

x
3

Pre-
condition
on (x1, x2)

Post-
condition on
(x17, x18)

x
17

x
18

NN Computation as a State Transition
System

 {Pre-condition on (x1, x2)}

 (x’

1
, x’

2
, x’

3
) = f

3
(x

1
, x

2
);

 (x’’
1
, x’’

2
, x’’

3,
x’’

4
) = f

4
(x’

1
, x’

2
, x’

3
);

 …
 {Post-condition on (x17, x18) }

Concrete states

Dealing with State Space Size

 Infinite state space
 Difficult to represent using state transition diagram
 Can we still do some reasoning?

 Solution: Use of abstraction
 Naive view

● Bunch sets of states together “intelligently”
● Don't talk of individual states, talk of a representation of a set

of states
● Transitions between state set representations

 Granularity of reasoning shifted
 Extremely powerful general technique

● Allows reasoning about large/infinite state spaces

Abstract states

Set of abstract statesSet of concrete states

A Generic View of Abstraction

 Every subset of concrete states mapped to
unique abstract state

 Desirable to capture containment relations
 Transitions between state sets (abstract states)

Abstraction (a)

Concretization (g)

Pre-condition:

 NN computation
 as a
 sequence of
state transitions

Post-condition:

The Game Plan

C
O
N
C
R
E
T
E

S
T
A
T
E
S

A
B
S
T
R
A
C
T

S
T
A
T
E
S

C
O
N
C
R
E
T
E

S
T
A
T
E
S

C
O
N
C
R
E
T
E

S
T
A
T
E
S

a

Abstract analysis engine

Yes,
Proof

No,
Counterexample

g

The Game Plan

C
O
N
C
R
E
T
E

S
T
A
T
E
S

A
B
S
T
R
A
C
T

S
T
A
T
E
S

C
O
N
C
R
E
T
E

S
T
A
T
E
S

C
O
N
C
R
E
T
E

S
T
A
T
E
S

a

Abstract analysis engine

Yes,
Proof

No,
Counterexample

g
How do we choose the right abstraction?

Is there a method beyond domain expertise?
Can we learn from errors in abstraction to build

better (refined) abstractions?
Can refinement be automated?

The Game Plan

C
O
N
C
R
E
T
E

S
T
A
T
E
S

A
B
S
T
R
A
C
T

S
T
A
T
E
S

C
O
N
C
R
E
T
E

S
T
A
T
E
S

C
O
N
C
R
E
T
E

S
T
A
T
E
S

a

Abstract analysis engine

Yes,
Proof

No,
Counterexample

g

Abstract state spaces can be infinite.
What can we do to make abstract

analysis practical?
Finite ascending chains

what beyond?

Desirable Properties of Abstraction

 Suppose : subsets of concrete states
● Any behaviour starting from can also happen starting from

● If , we want this monotonicity in

behaviour in abstr state space too
● Need ordering of abstract states, similar in spirit to

Set of abstract statesSet of concrete states
Abstraction (a)

Concretization (g)

 Set of concrete states: S
 Concrete lattice C =

Structure of Concrete State Space

Powerset of S

Partial order

Least upper bound

Greatest lower bound

Top element

Bottom
 element

 Abstract lattice A =

 Abstraction function

● Monotone: for all
●

 Concretization function

● Monotone: for all
●

Structure of Abstract State Space

2

A Simple Abstract Domain

 Simplest domain for analyzing numerical programs
 Represent values of each variable separately using intervals
 Example:

Interval Abstract Domain

Represent values of inputs by intervals,
Compute values of hidden layer nodes and outputs as intervals

Pre-
condition
on (x1, x2)

Post-
condition on
(x17, x18)

 Abstract states: intervals of values of x, (ignore values of y)
 [-10, 7]: { (x, y) | -10 <= x <= 7 }

● (-¥, 20]: { (x, y) | x <= 20 }

 relation: Inclusion of intervals
 [-10, 7] [-20, 9],

 and : union and intersection of intervals
 [-10, 9] [-20, 7] = [-20, 9]
 [-10, 9] [-20, 7] = [-10, 7]

 is empty interval of x
 is (-¥, +¥)

Interval Abstract Domain

 Abstract states: intervals of values of x, (ignore values of y)
 [-10, 7]: { (x, y) | -10 <= x <= 7 }

● (-¥, 20]: { (x, y) | x <= 20 }

 relation: Inclusion of intervals
 [-10, 7] [-20, 9],

 and : union and intersection
 [-10, 9] [-20, 7] = [-20, 9]
 [-10, 9] [-20, 7] = [-10, 7]

 is empty interval of x
 is (-¥, +¥)

 a({(1, 3), (2, 4), (5, 7)}) = [1, 5]
 a({(5, 7), (7, 6), (9, 10)}) = [5, 9]
 a({(5, 7)}) = [5, 5]

Interval Abstract Domain

a

a

a

Concrete
States

Abstract
States

 Abstract states: pairs of intervals (one for x, y)
 ([-10, 7] , (-1, 20])
 relation: Inclusion of intervals

([-10, 7] , (-1, 20]) ([-20, 9], (-1, +¥))
 and : union and intersection of intervals
 ([-10, 9] , (-1, 20]) ([-20, 7], [3,+¥)) = ([-10, 7], [3, 20])

● ([-10, 9], (-1, 20]) ([-20, 7], [3,+¥)) = ([-20, 9],(-1,+¥))

 is empty interval of x and y
 is ((-¥, +¥), (-¥, +¥))

Interval Abstract Domain

For all


Desirable Properties of a and g

Set of abstract statesSet of concrete states

C A

S1

a

g

Desirable Properties of a and g

Set of abstract statesSet of concrete states

C Aa1
g

a

forall

forall

a and g form a Galois connection

 and form a Galois connection
 Second (equivalent) view:

Desirable Properties of a and g

Set of abstract statesSet of concrete states

C A

S1

a1
g

a

for all

Computing Abstract State Transitions

(x1’,x2’,x3’) = f(x1,x2)

Abstract state a1

Abstract state a2

Concrete state c1

(x1’,x2’,x3’) = f(x1,x2)

Concrete state c2

c1 Є g(a1)

c2 Є g(a2)

Set of abstract statesSet of concrete states
Abstraction (a)

Concretization (g)

 Concrete state set transformer function
 Example:

Computing Abstract State Transitions

(x1’,x2’,x3’) = f(x1,x2)

S1

S2

S1 = { (x1, x2, x3) | ….. }: set of concr. states

S2 = {(x1’, x2’, x3’) | $ (x1, x2, x3) Î S1, (x1’,x2’,x3’) = f(x1,x2)}

 = FC (S1) : set of concrete states

Monotone concrete
state set transformer
function for function f

 Abstract state transformer function
 Example:

Computing Abstract State Transitions

a2 ÎA

a1 Î A

 a2 = a(FC (g (a1))) ideally, but FA(a1) a(FC (g (a1))) often
used

Set of concrete states

FC

g

a

FA

Summary

● Abstract interpretation is a general framework for
analysis of state transition systems

● Widely used for verification and static analysis of
programs

● Recent applications in neural network analysis
● Choice of right abstraction crucial to success

● Balance between precision and efficiency

This lecture should help you understand the paper
“An Abstract Domain for Certifying Neural Networks” by
Singh et al. better

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

