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Notion of State in Neural 
Network
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State Change in Feed-Forward 
Neural Network
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State Change in Feed-Forward 
NN as a sequence of instrns 
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                                         …

NN computation: a sequence of state transitions
                              caused by seq of instructions
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Proving Property of a FF NN 

           {Pre-condition on (x1, x2)}
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                                         …
          {Post-condition on (x17, x18) }  
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NN Computation as a State Transition 
System
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Concrete states

Dealing with State Space Size

 Infinite state space
 Difficult to represent using state transition diagram
 Can we still do some reasoning?

 Solution: Use of abstraction
 Naive view

● Bunch sets of states together “intelligently”
● Don't talk of individual states, talk of a representation of a set 

of states
● Transitions between state set representations 

 Granularity of reasoning shifted
 Extremely powerful general technique

● Allows reasoning about large/infinite state spaces

Abstract states



Set of abstract statesSet of concrete states

A Generic View of Abstraction

 Every subset of concrete states mapped to 
unique abstract state

 Desirable to capture containment relations
 Transitions between state sets (abstract states)

Abstraction (a)

Concretization (g)



Pre-condition:

 NN computation   
         as a 
    sequence of 
state transitions

Post-condition:

The Game Plan
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The Game Plan
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How do we choose the right abstraction? 

Is there a method beyond domain expertise?
Can we learn from errors in abstraction to build

better (refined) abstractions?
Can refinement be automated?



The Game Plan
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Abstract state spaces can be infinite. 
What can we do to make abstract

analysis practical?
Finite ascending chains

what beyond?



Desirable Properties of Abstraction

 Suppose                :  subsets of concrete states
● Any behaviour starting from     can also happen starting from 

     
● If                                      ,       we want this monotonicity in 

behaviour in abstr state space too
● Need ordering of abstract states, similar in spirit to 

Set of abstract statesSet of concrete states
Abstraction (a)

Concretization (g)



 Set of concrete states:  S
 Concrete lattice C = 

Structure of Concrete State Space

Powerset of S

Partial order

Least upper bound

Greatest lower bound

Top element

Bottom
 element



 Abstract lattice  A = 

 Abstraction function

● Monotone:                                               for all
●

 Concretization function

● Monotone:                                                 for all  
●

Structure of Abstract State Space

2



A Simple Abstract Domain



 Simplest domain for analyzing numerical programs
 Represent values of each variable separately using intervals
 Example:

Interval Abstract Domain 

Represent values of inputs by intervals, 
Compute values of hidden layer nodes and outputs as intervals

Pre-
condition 
on (x1, x2)

Post-
condition on 
(x17, x18)



 Abstract states: intervals of values of x, (ignore values of y)
  [-10, 7]:  { (x, y) | -10 <= x <= 7 }

●   (-¥, 20]: { (x, y) | x <= 20 }

       relation: Inclusion of intervals
  [-10, 7]     [-20, 9],  

         and     : union and intersection of intervals
  [-10, 9]     [-20, 7] = [-20, 9] 
  [-10, 9]     [-20, 7] = [-10, 7] 

      is empty interval of x 
       is (-¥, +¥)

Interval Abstract Domain



 Abstract states: intervals of values of x, (ignore values of y)
  [-10, 7]:  { (x, y) | -10 <= x <= 7 }

●   (-¥, 20]: { (x, y) | x <= 20 }

       relation: Inclusion of intervals
  [-10, 7]     [-20, 9],  

         and     : union and intersection
  [-10, 9]     [-20, 7] = [-20, 9] 
  [-10, 9]     [-20, 7] = [-10, 7] 

      is empty interval of x 
      is (-¥, +¥)

   a( {(1, 3),  (2, 4), (5, 7)} ) = [1, 5]
   a( {(5, 7),  (7, 6), (9, 10)} ) = [5, 9]
   a( {(5, 7)} ) = [5, 5]

Interval Abstract Domain

a

a

a

Concrete 
States

Abstract 
States



 Abstract states: pairs of intervals (one for x, y)
 ( [-10, 7] ,  (-1, 20] )
       relation: Inclusion of intervals

( [-10, 7] ,  (-1, 20] )      ( [-20, 9],  (-1, +¥) )
      and       : union and intersection of intervals
    ([-10, 9] , (-1, 20])    ([-20, 7], [3,+¥)) = ([-10, 7], [3, 20])

● ([-10, 9], (-1, 20])     ([-20, 7], [3,+¥)) = ([-20, 9],(-1,+¥))

      is empty interval of x and y
      is ( (-¥, +¥), (-¥, +¥) )

Interval Abstract Domain



For all         


                      

Desirable Properties of a and g
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Desirable Properties of a and g

Set of abstract statesSet of concrete states

C Aa1
g

a

forall

forall

a and g form a Galois connection 



       and         form a Galois connection
 Second (equivalent) view:

Desirable Properties of a and g

Set of abstract statesSet of concrete states

C A

S1

a1
g

a

for all



Computing Abstract State Transitions

(x1’,x2’,x3’) = f(x1,x2)

Abstract state a1   

Abstract state a2     

Concrete state c1

(x1’,x2’,x3’) = f(x1,x2)

Concrete state c2

c1 Є g(a1)

c2 Є g(a2)

Set of abstract statesSet of concrete states
Abstraction (a)

Concretization (g)



 Concrete state set transformer function
 Example:     

Computing Abstract State Transitions

(x1’,x2’,x3’) = f(x1,x2)

S1

S2

S1 = { (x1, x2, x3) | ….. }: set of concr. states

S2 =  {(x1’, x2’, x3’) | $ (x1, x2, x3) Î S1,  (x1’,x2’,x3’) = f(x1,x2)} 

       =  FC (S1) : set of concrete states 

Monotone concrete 
state set transformer 
function for function f



 Abstract state transformer function
 Example:     

Computing Abstract State Transitions

a2 ÎA

a1 Î A

 a2 = a( FC (g (a1)))  ideally, but FA(a1)      a( FC (g (a1))) often 
used 

Set of concrete states

FC

g

a

FA



Summary

● Abstract interpretation is a general framework for 
analysis of state transition systems

● Widely used for verification and static analysis of 
programs

● Recent applications in neural network analysis 
● Choice of right abstraction crucial to success

● Balance between precision and efficiency

This lecture should help you understand the paper
“An Abstract Domain for Certifying Neural Networks” by 
Singh et al. better
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