
Chapter to appear in Handbook of Logical Thought in India, 2022

Synthesizing Skolem functions: A view from theory and1

practice2

S. Akshay · Supratik Chakraborty3

4

(Pre-print)5

Abstract Skolem functions play a central role in logic, from helping eliminate6

quantifiers in first order logic formulas to providing functional implementations of7

relational specifications. While their existence follows from classical results in logic,8

less is known about how to compute them effectively and efficiently (whenever9

such computation is possible). The problem of computing or synthesizing Skolem10

functions from relational specifications, however, continues to show up in many11

interesting applications. Recently, a rich line of work has considered theoretical12

and practical aspects of the problem in a restricted setting, namely synthesis of13

Boolean Skolem functions from Boolean relational specifications. In this article we14

take an indepth look into this fascinating problem and its various implications,15

from general theoretical and complexity results to practical algorithms, and also16

draw interesting connections to the knowledge representation literature.17

Keywords Boolean functional synthesis, Skolem functions, expansion-based18

algorithms19

1 Introduction20

The genesis of Skolem functions dates back to 1920, when the Norwegian mathe-21

matician, Thoralf Albert Skolem, gave a simplified proof of a landmark result in22

logic, now known as the Löwenheim-Skolem theorem. Leopold Löwenheim had al-23

ready proved this theorem in 1915. However, Skolem’s 1920 proof was significantly24

simpler and made use of a key observation that can be summarized as follows1.25

For every first order logic formula ∃y ϕ(x, y), the choice of y that makes ϕ(x, y) true26

(if at all) depends on x in general. This dependence can be thought of as implicitly27

defining a function that gives the “right” value of y for every value of x. If F denotes28

a fresh function symbol, the second order sentence ∃F ϕ(x, F (x)) formalizes this de-29

pendence explicitly. Thus, the second order sentence ∃F ∀x
(
∃y ϕ(x, y) ⇒ ϕ(x, F (x))

)
30

always holds. Since the implication trivially holds in the other direction too, we31

have ∃F ∀x
(
∃y ϕ(x, y)⇔ ϕ(x, F (x))

)
.32

Indian Institute of Technology Bombay, India

1 We assume the reader is familiar with basic notation and terminology of first order logic.

2 S. Akshay, Supratik Chakraborty

Let ξ1 and ξ2 denote the first order formulas ∃y ϕ(x, y) and ϕ(x, F (x)) respec-33

tively referred to above. The following points are worth noting.34

– While ξ2 has one less existential quantifier than ξ1, the signature of ξ2 has one35

more function symbol than the signature of ξ1. Thus, an existential quantifier36

has been traded off, so to say, for a function symbol.37

– Although ξ1 and ξ2 are not semantically equivalent, there is an interpretation38

of F such that for every assignment of the free variable x, the formula ξ1 is39

satisfiable iff ξ2 is.40

– Every model M of ∀x ξ1 can be augmented with an interpretation of F to yield41

a model M′ of ∀x ξ2. Similarly, for every model M′ of ∀x ξ2, restricting M′ to42

the signature of ξ1 yields a model M of ∀x ξ1.43

The process of transforming ξ1 to ξ2 by eliminating ∃y and substituting F (x) for44

y is an instance of Skolemization. The fresh function symbol F introduced in the45

process is called a Skolem function. Skolem functions play a very important role in46

logic – both in theoretical investigations and in practical applications. The model47

theory of Skolemization in first order logic is rich: for instance, the Skolem ex-48

pansion of a complete theory need no longer be complete, thus inviting further49

characterizations of Skolem hulls and indiscernibles. The extension of Skolemiza-50

tion to higher order logic is problematic and challenging (but needed, for instance,51

in automatic theorem proving).52

While it suffices in some studies to simply know that a Skolem function F53

exists, in other cases (see Section 3 for such examples), we require an algorithm54

that effectively computes F (x) for every x. It turns out that obtaining such an55

algorithm is impossible in general, and even for the subcases where it is possible,56

the computational complexity is often very high. The purpose of this article is to57

discuss these computational challenges, and to survey some techniques for com-58

puting Skolem functions that have been proposed in recent years in the context of59

a significantly restricted yet practically useful logic, viz. quantified propositional60

logic.61

Before delving further, it is important to formally define some notation and62

terminology. We use lower case English letters, viz. x, y, z, possibly with sub-63

scripts, to denote first order variables, and bold-faced upper case English letters,64

viz. X, Y, Z, to denote sequences of first order variables. We use lower case Greek65

letters, viz. ϕ, ξ, α, possibly with subscripts, to denote formulas. For a sequence66

X, we use |X| to denote the count of variables in X, and x1, . . . x|X| to denote67

the individual variables in the sequence. With abuse of notation, we also use |ϕ|68

to denote the size of the formula ϕ, represented using a suitable format (viz. as69

a string, syntax tree, directed acyclic graph etc.), when there is no confusion.70

Let Q denote a quantifier in {∃, ∀}. For notational convenience, we use QX to71

denote the block of quantifiers Qx1 . . . Qx|X|. It is a standard exercise in logic72

to show that every well-formed first order logic formula can be transformed to73

a semantically equivalent prenex normal form, in which all quantifiers appear to74

the left of the quantifier-free part of the formula. Without loss of generality, let75

ξ(X) ≡ ∃Y ∀Z ∃U . . .∀V ∃Wϕ(X,Y,Z,U, . . .V,W) be such a formula in prenex76

normal form, where X is a sequence of free variables and ϕ is a quantifier-free for-77

mula. In case the leading (resp. trailing) quantifier in ξ is universal, we consider Y78

(resp. W) to be the empty sequence. Given such a formula ξ, Skolemization refers79

to the process of transforming ξ to a new (albeit related) formula ξ? without any80

Synthesizing Skolem functions: A view from theory and practice 3

existential quantifiers via the following steps: (i) for every existentially quantified81

variable, say a, in ξ, substitute Fa(X,Sa) for a in the quantifier-free formula ϕ,82

where Fa is a new function symbol and Sa is a sequence of universally quantified83

variables that appear to the left of a in the quantifier prefix of ξ, and (ii) remove all84

existential quantifiers from ξ. The functions Fa introduced above are called Skolem85

functions. In case ξ has no free variables, i.e. X is empty, the Skolem functions for86

variables yi in the leftmost existential quantifier block of ξ have no arguments87

(i.e. are nullary functions), and are also called Skolem constants. The sentence ξ? is88

said to be in Skolem normal form if the quantifier-free part of ξ? is in conjunctive89

normal form. For notational convenience, let ∃F denote the second order quan-90

tifier block ∃Fy1 . . .∃Fy|Y | · · · ∃Fw1 . . .∃Fw|W | that existentially quantifies over all91

Skolem functions introduced above. The key guarantee of Skolemization is that92

the second order sentence ∃F ∀X
(
ξ ⇔ ξ?

)
always holds. Note that substituting93

Skolem functions for existentially quantified variables need not always make the94

quantifier-free part of ξ, i.e. ϕ, evaluate to true. This can happen, for example, if95

there are valuations of universally quantified variables for which no assignment of96

existentially qualified variables renders ϕ true. For every other valuation of univer-97

sally quantified variables, the Skolem functions indeed provide the “right” values98

of existentially quantified variables so that ϕ evaluates to true.99

Example 1 Consider ξ ≡ ∃y∀x∃z∀u∃v ϕ(x, y, z, u, v). On Skolemizing, we get ξ? ≡100

∀x∀uϕ(x,Cy, Fz(x), u, Fv(x, u)), where Cy is a Skolem constant for y, and Fz(x)101

and Fv(x, u) are Skolem functions for z and v respectively.102

As mentioned earlier, the focus of this article is on effective computation of103

Skolem functions. It is well known (see e.g. [31]) that there exist functions that104

cannot be computed by any halting Turing machine, or equivalently, by any algo-105

rithm. Therefore, it is interesting to ask: Can every Skolem function be computed?106

In other words, given a first order formula ξ, does there always exist a halting107

Turing machine that computes each Skolem function appearing in a Skolemized108

version of ξ? In general, such a Turing machine (or algorithm) may need to evalu-109

ate predicate and function symbols that appear in the signature of ξ as part of its110

computation. Therefore, the most appropriate notion of computation in our con-111

text is that of relative computation or computation by oracle machines2. Formally,112

let Pξ and Fξ denote the set of predicate and function symbols respectively in the113

signature of ξ. Given oracles for interpretations of predicate symbols in Pξ and of114

function symbols in Fξ, we ask if every Skolem function F in a Skolemized version115

of ξ can be computed by a halting Turing machine, say MF
ξ , with access to these116

oracles. Note that we require MF
ξ to depend only on ξ and F . However, the oracles117

that MF
ξ accesses can depend on specific interpretations of predicate and function118

symbols.119

Unfortunately, it has been shown in [1] that MF
ξ does not always exist for120

every ξ and F . In other words, Skolem functions cannot be effectively computed121

in general, even in the relative sense mentioned above [1]. In fact, it doesn’t take122

much to hit the uncomputability frontier. As shown in [1], uncomputability arises123

even if we allow a single unary uninterpreted predicate in the signature. What124

happens if all predicates and functions are interpreted, viz. in the theory of natural125

numbers with multiplication and addition? It turns out that Skolem functions126

2 See [7] for a detailed exposition on relative computability.

4 S. Akshay, Supratik Chakraborty

cannot be computed in general in this case too [1]. The proof in this case [1]127

appeals to the Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem [23] that128

equates Diophantine sets with recursively enumerable sets.129

Not all hope is lost however. As shown in [1] again, Skolem functions can indeed130

be computed for formulas in several interesting first order theories. For example,131

every first order theory that is (i) decidable, (ii) has a recursively enumerable do-132

main, and (iii) has computable interpretations of predicates and functions, admits133

effective computation of Skolem functions. Such theories include Presburger arith-134

metic, linear rational arithmetic, countable dense linear order without endpoints,135

theory of evaluated trees, first order theories with bounded domain etc. Whenever136

Skolem functions are computable, one can further ask: Can Skolem functions be137

represented as terms in the underlying logical theory? It is easy to see that a positive138

answer to this question implies an effective procedure for quantifier elimination. We139

also know that some theories, viz. Presburger logic without divisibility predicates,140

do not admit quantifier elimination. Therefore, there exist first order theories for141

which Skolem functions can be effectively computed, but are not expressible as142

terms in the underlying logical theory. The study of algorithmic computation of143

Skolem functions is therefore highly nuanced.144

Given the above discussion, perhaps the simplest theories for which we can145

compute Skolem functions are those with bounded domains. Consider a formula ξ146

in such a theory where the domain D has κ (∈ N) elements. Since the elements of D147

can be encoded as dlog2 κe-tuples of 0’s and 1’s, reasoning about ξ can be reduced148

to reasoning about a quantified propositional formula ξ̂, where |ξ̂| ≤ dlog2 κe · |ξ|.149

While this reduction does not affect the computational complexity results (in terms150

of complexity classes) that we study later, it can have an impact on the practical151

performance of algorithms, especially if log2 κ is large.152

One may argue that over bounded domains, we can replace quantifiers by153

conjunctions or disjunctions and thus work only with propositional logic. This154

leads to an exponential blow-up in the size of the formula, which is undesirable.155

Hence, we are motivated to consider quantified propositional formulas directly.156

This is analogous to satisfiability for quantified Boolean formulas, which is a well-157

studied problem with dedicated techniques and implementations, even though it158

can be reduced to satisfiability for propositional formulas (with an exponential159

blow-up).160

Despite the expressive limitations of quantified propositional logic, there are161

many important applications where quantified propositional formulas play an im-162

portant role [57]. Furthermore, not only can we effectively compute Skolem func-163

tions for formulas in this logic, we can also represent them as Boolean functions.164

We therefore focus on the algorithmic computation of Skolem functions for quan-165

tified propositional logic in the remainder of the article.166

2 Boolean Skolem functions, synthesis and unification167

We use Quantified Propositional Logic (henceforth, QPL) to refer to propositional168

logic augmented with existential and universal quantifiers. Without loss of gener-169

ality, we assume that formulas in quantified propositional logic (QPL) are given in170

prenex normal form. Prenex normal form sentences in this logic with the quantifier-171

Synthesizing Skolem functions: A view from theory and practice 5

free part expressed in conjunctive normal form (CNF) are also called quantified172

Boolean formulas (QBF).173

We introduce some additional notation for clarity of exposition. Given a propo-174

sitional formula ϕ, its support, denoted sup(ϕ), is the set of variables that appear in175

ϕ. As mentioned earlier, we use bold-faced upper case English letters to denote se-176

quences of variables. To reduce notational clutter, we use the same letter to denote177

the set underlying a sequence as well, when there is no confusion. For example, we178

speak of a propositional formula ϕ(X) having support X. If Y = (y1, . . . yr) is a179

sequence of variables appearing in ϕ, and if Ψ = (ψ1, . . . ψr) is a sequence of propo-180

sitional formulas such that no formula ψi has any variable in Y in its support, we181

use ϕ[Y 7→ Ψ] to denote the propositional formula obtained by substituting ψi182

for each yi in ϕ. If Y = (y) and Ψ = (ψ) are singleton sequences, we simply use183

ϕ[y 7→ ψ] to denote the propositional formula resulting from substituting ψ for y184

in ϕ.185

Let ξ(X) ≡ ∃Y ∀Z ∃U . . .∀V ∃Wϕ(X,Y,Z,U, . . .V,W) be a formula in QPL,186

where ϕ is a purely propositional formula. We wish to find Skolem functions for all187

existentially quantified variables in ξ. Since the domain of variables is {true, false},188

each Skolem function is a mapping from {true, false}k to {true, false}, for some k > 0.189

Such a Skolem function can also be viewed as defining the truth semantics of190

a propositional formula over k variables. We therefore represent every Skolem191

function, say F , in QPL by a propositional formula, say ψ(F), such that F gives the192

truth semantics of ψ(F). Although the distinction between F and ψ(F) is significant193

(one is a function, the other is a formula), for notational convenience, we use the194

formula ψ(F) to refer to the Skolem function F , when there is no confusion. When195

F is implicit from the context, we simply use ψ instead of ψ(F).196

Although the quantifier prefix of the formula ξ mentioned above has multiple197

quantifier alternations, it suffices to know how to generate Skolem functions for198

QPL formulas with only a single block of existential quantifiers. To see why this199

is so, suppose ΨW is a sequence of propositional formulas (representing Skolem200

functions), one for each variable wi in ∃Wϕ. By definition of Skolem functions,201

we have ∃Wϕ ⇔ ϕ[W 7→ ΨW]. Let ϕ′ denote ∃Wϕ. Since ∀V ∃Wϕ ⇔ ∀Vϕ′ ⇔202

¬∃V¬ϕ′, if ΨV represents a sequence of Skolem functions for V in ∃V¬ϕ′, then203

∀V ∃Wϕ ⇔ ¬
(
¬ϕ′[V 7→ ΨV]

)
⇔ ϕ′[V 7→ ΨV] ⇔

(
ϕ[W 7→ ΨW]

)
[V 7→ ΨV]. By204

repeating the above steps, it is possible to successively eliminate all quantifiers in205

ξ. This also yields a sequence of Skolem functions ΨY, ΨU, . . . ΨW for the exis-206

tentially quantified variables in ξ ≡ ∃Y ∀Z ∃U . . .∀V ∃Wϕ(X,Y,Z,U, . . .V,W).207

Note that the Skolem functions in ΨY (for variables in Y) have only the free vari-208

ables X as arguments. Similarly, the Skolem functions in ΨU (for variables in U)209

have only the variables in X,Y and Z as arguments. By substituting ΨY for Y in210

ΨU, we obtain Skolem functions for variables in U in terms of only X and Z, i.e.211

universally quantified variables appearing to the left of U in the quantifier prefix212

of ξ. It is easy to see that by repeating this process, we obtain Skolem functions213

for every existentially quantified variable in terms of (i) free variables X, and (ii)214

universally quantified variables appearing to its left in the quantifier prefix of ξ.215

In light of the above discussion, it makes sense to focus only on QPL formulas216

of the form ∃Yϕ(X,Y) or ∀X∃Yϕ(X,Y) for purposes of computing Skolem func-217

tions. Interestingly, with this restriction on the quantifier prefix, the problem of218

computing Skolem functions can also be viewed as one of synthesis. We elaborate219

more on this connection below.220

6 S. Akshay, Supratik Chakraborty

2.1 The synthesis connection221

Automatically and efficiently synthesizing correct systems from logical specifica-222

tions is one of the holy grails of computer science. Suppose we wish to design a223

system with inputs X and outputs Y. To avoid notational confusion, we call X224

as system inputs, and Y as system outputs to distinguish them from inputs and225

outputs of Skolem functions/formulas. A relational specification ϕ(X,Y) is a log-226

ical formula that implicitly relates desired values of system outputs with values227

of system inputs. Thus, every model of ϕ(X,Y) gives values of X and Y that228

corresponds to a desired output in response to a specific input. Monadic second229

order logic, temporal logic and several variants of these logics [32] have been widely230

used to specify desirable system behaviour. In general, the specification ϕ(X,Y)231

may permit multiple behaviours of the system outputs in response to a given232

input. A correct system design is required to produce any one of these allowed233

behaviours. It is also possible that for some values of the system inputs X, there234

are no values of the system outputs Y that render ϕ(X,Y) true. In such cases,235

the specification cannot always be satisfied, no matter how we design the system.236

Such specifications are also called unrealizable. A correct synthesis procedure gen-237

erates the system outputs Y as a function F of the system inputs X, such that238

∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X))

)
. If a specification is realizable, ∀X∃Yϕ(X,Y) is239

identically true; hence the requirement for synthesis simplifies to designing F(X)240

such that it renders ∀Xϕ(X,F(X)) identically true as well. Interestingly, even if241

a specification is unrealizable, it may be perfectly meaningful to synthesize F(X)242

such that ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X))

)
holds. Indeed, as long as there is at243

least one way to generate system outputs in response to a given input such that244

the specification ϕ is satisfied, we want the system outputs generated by the syn-245

thesized system to satisfy the specification. In other cases, there are effectively no246

requirements on the system outputs.247

Deciding realizability of a specification, and synthesizing a realizable specifi-248

cation are computationally hard problems in general. A relatively simpler cousin249

of the general synthesis problem, called Boolean Functional Synthesis, has recently250

received a lot of attention [36, 47, 38, 26, 53, 65, 2, 3, 54, 4, 52, 5, 29]. This problem251

is ”simpler” in the sense that it concerns synthesis of Boolean functions, repre-252

sented as Boolean circuits with AND, OR and NOT gates, from propositional logic253

specfications. Since every Boolean circuit corresponds to a propositional formula254

and vice versa, Boolean functional synthesis for ϕ(X,Y) with system inputs X255

and system outputs Y can be seen to be equivalent to computing Skolem func-256

tions for the QPL formula ∀X∃Yϕ(X,Y). Therefore, we refer to the problem of257

computing Skolem functions for QPL and that of Boolean functional synthesis258

interchangeably. For notational convenience, we use Boolean Skolem function syn-259

thesis, or BoolSkFnSyn for short, to refer to either problem in the remainder of this260

article. It is worth emphasizing here that Boolean Skolem function synthesis is261

distinct from the problem of combinational logic synthesis and optimization [24]. In262

the former, we start from a relational specification that doesn’t necessarily give263

the system outputs explicitly as functions of system inputs, and our primary task264

is to synthesize these outputs as Boolean functions of system inputs. In contrast,265

in combinational logic synthesis and optimization, we are given system outputs as266

explicit Boolean functions of system inputs, and our goal is to implement these267

Synthesizing Skolem functions: A view from theory and practice 7

functions optimally as Boolean circuits with specified gate types (viz. NAND,268

NOR, XOR, etc.).269

In the context of QPL, the specification ϕ(X,Y) and the Skolem functions for270

Y can be represented in several ways. Some commonly used representations in-271

clude lists of clauses for propositional formulas in conjunctive normal form (CNF),272

Boolean circuits, reduced ordered binary decision diagrams (ROBDDs) [62], and-273

inverter graphs (AIGs) [40], decision lists, decision trees etc. The choice of repre-274

sentation has a bearing on the computational complexity of BoolSkFnSyn; hence it275

is important to spell out the representation clearly when discussing a solution to276

the problem. Interestingly, all the representations mentioned above can be trans-277

lated to Boolean circuits with AND, OR and NOT gates with at most a linear278

blow-up. Hence, we consider Boolean circuits with AND, OR and NOT gates as279

a unifying representation for both relational specifications and for Skolem func-280

tions. Computational hardness (lower bound) results based on Boolean circuit281

representations naturally hold when the other representations are used as well. A282

particularly convenient form of Boolean circuits are those in which every NOT283

gate is immediately fed by a circuit input (labeled by a variable). Such circuits are284

also called Negation Normal Form (or NNF) circuits. For notational convenience,285

we treat every NOT gate fed by a circuit input labeled v in a NNF circuit as a new286

circuit input labeled ¬v. Thus, an NNF circuit can be viewed as one containing287

only AND and OR gates, with the circuit inputs labeled by literals over the set of288

variables, i.e. variables and their negations. It is easy to see that every Boolean289

circuit can be compiled to a NNF circuit that computes the same function as the290

original circuit, and is at most twice its size.291

2.2 The unification connection292

The BoolSkFnSyn problem is related to that of Boolean unification – a classical prob-293

lem studied by George Boole [13] and Leopold Löwenheim [44] much before Alan294

Turing and Alonzo Church formalized the notion of computation. The interested295

reader is referred to an excellent (albeit, dated) survey by Martin and Nipkow [48]296

for details about the Boolean unification problem. For our purposes, Boolean unifi-297

cation may be viewed as asking the following question: Given two Boolean functions298

F,G : {true, false}n → {true, false}, find a map F : {true, false}m → {true, false}n, where299

m ≥ 0 such that F
(
F(σ)

)
= G

(
F(σ)

)
for all σ ∈ {true, false}m, or report that no such300

map exists. The map F, if it exists, is called a unifier of F and G. In general, there301

can be zero, one or multiple unifiers of F and G. A unifier F : {true, false}m →302

{true, false}n is said to be more general than unifier G : {true, false}` → {true, false}n303

if there exists a map H : {true, false}` → {true, false}m such that F
(
H(σ̂)

)
= G(σ̂)304

for all σ̂ ∈ {true, false}`. A most general unifier of F and G is a unifier that is more305

general than all unifiers of F and G. By a result due to Boole [13], we know that306

if two Boolean functions F and G are unifiable, there exists a most general unifier307

of F and G.308

To see the connection of Boolean unification with BoolSkFnSyn, let ϕ(X,Y) be309

a propositional relational specification such that (i) |X| + |Y| = n, and (ii) the310

truth semantics of ϕ is given by F (X,Y). Let G(X,Y) denote the truth semantics311

of ∃Yϕ(X,Y), viewed as a function of X and (redundantly) of Y. A solution to312

the BoolSkFnSyn problem for ϕ yields a vector Ψ of propositional formulas (repre-313

8 S. Akshay, Supratik Chakraborty

senting Skolem functions), one for each variable in Y, that can be converted to a314

unifier of F and G as follows. Note that Ψ represents a mapping from {true, false}|X|315

to {true, false}|Y|. Let Id|X| be the identity mapping on {true, false}|X|. The conca-316

tentation of Id|X| and Ψ, denoted (Id|X|,Ψ), gives a vector of functions mapping317

{true, false}|X| to {true, false}|X|+|Y|, such that F
(
Id|X|(σ),Ψ(σ)

)
= G

(
Id|X|(σ),Ψ(σ)

)
318

for all σ ∈ {true, false}|X|. The above discussion shows that given ϕ(X,Y), if F and319

G are chosen appropriately, then specific unifiers for F and G correspond to Skolem320

functions for Y in ϕ(X,Y) Indeed, if the unifier is a most general unifier, then321

the Skolem functions turn out to be specific instantiations of this most general322

unifier. Interestingly, algorithms for finding the most general unifier in Boolean323

unification were given by both Boole [13] and Lowenheim [44] in their early work.324

These and other variant algorithms for finding most general unifiers in Boolean325

unification were experimentally evaluated in [45]. Applications of Boolean unifica-326

tion have also been reported in [12, 16, 59, 46]. Unfortunately, solving BoolSkFnSyn327

using the Boolean unification approach turns out to be too inefficient for use in328

practical applications with thousands of variables and beyond.329

3 Applications of Boolean Skolem function synthesis330

Before delving deeper into the compuational aspects of BoolSkFnSyn, let us look at331

a few interesting applications of the problem. These applications provide strong332

motivation for developing algorithms for BoolSkFnSyn that work well in practice,333

despite non-trivial worst-case complexity-theoretic lower bounds.334

We start with a particularly challenging application that illustrates why an335

efficient algorithmic solution of BoolSkFnSyn can have far-reaching implications in336

practice. Consider a system with a single 2n-bit unsigned integer input X, and two337

n-bit unsigned integer outputs Y1 and Y2. Suppose the relational specification is338

given as Ffact(X,Y1,Y2) ≡ ((X = Y1 ×[n] Y2) ∧ (Y1 6= 1) ∧ (Y2 6= 1)), where ×[n]339

denotes n-bit unsigned integer multiplication. This specification requires that Y1340

and Y2 are non-trivial factors of X. Note, however, that if X represents a prime341

number, there are no values of Y1 and Y2 that satisfy the specification. Technically,342

the specification in unrealizable. Nevertheless, we are interested in obtaining values343

of Y1 and Y2 that satisfy the specification, whenever possible. Significantly, the344

above specification can be encoded as a Boolean formula of size O(n2) over the345

individual bits of X, Y1 and Y2. However, if we want to express Y1 and Y2 directly346

as Boolean functions of X, our task turns out to be significantly harder. In fact,347

there are no known polynomial-sized Boolean functions (represented as circuits of348

AND, OR and NOT gates) that can express individual bits of Y1 and Y2 directly in349

terms of the individual bits of X. Otherwise, we could efficiently factorize products350

of n-bit prime numbers, rendering cryptographic systems vulnerable to attacks.351

This application also illustrates how relational specifications can be more natural352

and succinct than expressing outputs directly as functions of inputs.353

As another application, we consider satisfiability checking of quantified boolean354

sentences (also called QBF-SAT), which is increasingly being used in diverse ap-355

plications such as planning, model checking, non-monotonic reasoning, reactive356

synthesis, games, equivalence checking, circuit repair, program synthesis etc. An357

excellent survey of such applications can be found in [57]. Given the sophistication358

of modern QBF-SAT solvers, it is hard to rule out bugs in solver implementations. It359

Synthesizing Skolem functions: A view from theory and practice 9

is therefore desirable that when a QBF-SAT solver is invoked, it not only produces360

a “Yes”/”No” answer to the decision problem, but also a certificate that can be in-361

dependently (machine-)checked to validate the correctness of the answer. Multiple362

notions of certificates have been used in the literature [57, 8, 50], including the use363

of Skolem functions for existentially quantified variables in valid QBFs, and the use364

of Herbrand functions3 for universally quantified variables in unsatisfiable QBFs.365

In addition to their use as certificates of QBF-SAT results, Skolem function based366

certificates also have independent value as they can be used for other objectives,367

such as, to extract a feasible plan in a robotic planning problem, a replacement368

sub-circuit in a circuit repair problem, a program fragment in automated program369

synthesis, a winning strategy in a game. As discussed earlier, knowing how to370

synthesize Skolem functions for QBF formulas of the form ∀X ∃Yϕ(X,Y) suffices371

to generate Skolem functions (resp. Herbrand functions) for all existentially (resp.372

universally) quantified variables in a QBF. This underscores the importance of the373

BoolSkFnSyn problem.374

Talking of synthesis, recall that BoolSkFnSyn can be viewed as a simpler version375

of the more general reactive synthesis problem (see [25] for a survey). It turns out376

that several algorithmic approaches to reactive synthesis use BoolSkFnSyn as a377

key step (see e.g [14, 35]). Hence, a practically efficient algorithmic solution to378

BoolSkFnSyn benefits reactive synthesis as well.379

4 Boolean Skolem function synthesis through lens of computation380

Recall the definition of BoolSkFnSyn from Section 2. We are given a proposi-381

tional formula ϕ(X,Y), specifying a relation between system inputs X and system382

outputs Y. For notational convenience, we use m to denote |X| and n to de-383

note |Y|. The BoolSkFnSyn problem requires us to find a vector of propositional384

formulas (representing Boolean functions) Ψ(X) =
(
ψ1(X), . . . ψn(X)

)
such that385

∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,Ψ(X))

)
is true. The formula ψi(X) represents a Skolem386

function for yi in ϕ, and Ψ(X) is called a Skolem functon vector for Y in ϕ. As387

discussed earlier, we represent all Skolem functions and propositional formulas by388

Boolean circuits comprised of AND, OR and NOT gates.389

Example 2 Consider the relational specification ϕ(X,Y) ≡ (x1 ∨ y2)∧ (¬x2 ∨¬x1 ∨390

y1). A few (among many possible) Skolem function vectors for Y in ϕ are
(
true, true

)
,391 (

true,¬x1
)
,
(
x1,¬x1

)
,
(
x2,¬x1

)
, where each tuple represents (ψ1(X), ψ2(X)).392

While a given problem instance may admit multiple Skolem function vectors, a393

solution to BoolSkFnSyn seeks only one such vector. Thus, there may not be a394

unique solution to an instance of BoolSkFnSyn.395

It is not hard to see that BoolSkFnSyn can be solved in time (and space) expo-396

nential in |ϕ| in the worst-case, simply by brute-force enumeration of all possible397

values of X and Y. However, does the problem admit more efficient solutions? If398

|Y| = n = 1, it turns out that there is a surprisingly efficient solution. To under-399

stand this, we need some additional notation. Let α be a propositional formula400

and v ∈ sup(α). We use α|v (resp. α|¬v) to denote the positive (resp. negative)401

3 A Herbrand function for universally quantified variables in a quantified propositional sen-
tence ϕ may be thought of as Skolem functions for existentially quantified variables in ¬ϕ.

10 S. Akshay, Supratik Chakraborty

co-factor of α with respect to v, i.e. α with v set to true (resp. false). It can now be402

verified that if ϕ(X, y) is a specification with a single system output y, then both403

ϕ|y and ¬(ϕ|¬y) serve as Skolem functions for y in ϕ. This technique for obtaining404

a Skolem function for a single system output is also called self-substitution, and has405

been used in several prior works [66, 36, 26, 38, 2, 29]. In fact, if β(X) denotes ϕ|y406

and γ(X) denotes ϕ|¬y, then the entire set of Skolem functions for y in ϕ can be407

parametrically represented as
(
¬γ(X) ∧ β(X)

)
∨
(
(β(X) ⇔ γ(X)) ∧ δ(X)

)
, where408

δ(X) is any Boolean function on X [66, 36].409

An obvious question to ask at this point is whether the simple solution for410

|Y| = 1 can be extended to the case where |Y| > 1. Unfortunately, this turns411

out to be more difficult, and there are complexity-theoretic barriers along the412

way. Nevertheless, the underlying idea for the |Y| = 1 case can be generalized413

to obtain some insights. Towards this end, let y1 ≺ y2 · · · ≺ yn be a (arbitrary)414

linear ordering of the system outputs, and let Yj
i denote the subsequence (yi, . . . yj)415

of Y, for 1 ≤ i ≤ j ≤ n. Furthermore, let ϕ(i−1)(X,Yn
i) denote ∃Yi−1

1 ϕ(X,Y),416

where ϕ(0) is defined to be ϕ. For every i in 1 to n in that order, suppose we view417

the formula ϕ(i−1)(X, yi,Y
n
i+1) as a specification with system inputs X ∪ Yn

i+1418

and a single system output yi. We can now apply the reasoning for synthesizing419

a single Skolem function, as discussed above, to obtain a Skolem function for420

yi in terms of X ∪ Yn
i+1. Let ψi(X,Y

n
i+1) be such a Skolem function for yi, i.e.421

ϕ(i−1)(X, ψi,Y
n
i+1) ⇔ ∃yiϕ(i−1)(X, yi,Y

n
i+1). Once we have computed ψi for i ∈422

{1, . . . n} in this manner, we can substitute ψi+1 through ψn for yi+1 through yn423

respectively, in the definition of ψi to obtain a Skolem function for yi as a function424

of only X. This approach is widely used in the BoolSkFnSyn literature [36, 37, 38, 26,425

2, 4, 29], and we follow it for the rest of our discussion. Note that this allows us to426

focus on synthesizing ψi in terms of X and Yn
i+1, instead of synthesizing it directly427

in terms of X. Generalizing the idea of the solution when we have a single system428

output, it can be shown that both ¬(ϕ(i−1)|¬yi) and ϕ(i−1)|yi serve as Skolem429

functions for yi (in terms of X and Yn
i+1). Furthermore, if βi(X,Y

n
i+1) denotes430

ϕ(i−1)|yi and γi(X,Y
n
i+1) denotes ϕ(i−1)|¬yi , then every Skolem function for yi can431

be parametrically represented as
(
¬γi(X,Yn

i+1) ∧ βi(X,Y
n
i+1)

)
∨
(
(βi(X,Y

n
i+1)⇔432

γi(X,Y
n
i+1)) ∧ δi(X,Yn

i+1)
)
, where δi(X,Y

n
i+1) is any Boolean function on X and433

Yn
i+1.434

While the above discussion may seem to imply that there is an easy way to435

solve BoolSkFnSyn in general, the difficulty in the above approach lies in com-436

puting a good linear ordering of yi’s and also in computing ϕ(i−1) for 1 ≤ i ≤ n.437

Experiments, e.g, from [38, 2, 29], show that using different linear orderings affects438

the time taken for synthesizing functions considerably. For values of |X| = m and439

|Y| = n running into thousands, these issues can pose enormous scalability chal-440

lenges in practice. However, the computational hurdles are not restricted to only441

the approach discussed above. It turns out that any other algorithmic technique to442

solve BoolSkFnSyn must also encounter scalability hurdles in the worst-case. Com-443

putational complexity theory provides the tools necessary to reason about these444

challenges, by allowing us to derive lower bounds on computational resources (viz.445

space and time) needed to solve BoolSkFnSyn in general. We elaborate on this in446

the next couple of sections.447

Synthesizing Skolem functions: A view from theory and practice 11

4.1 A quick primer on the polynomial hierarchy and related complexity classes448

In computational complexity theory, a decision problem is one that has a “Yes”/”No”449

answer. An example of such a problem is: Given a propositional formula ϕ, is ϕ sat-450

isfiable? A function problem generalizes a decision problem by allowing the answer451

to be more general than “Yes”/”No”. For example, we could ask: Given a proposi-452

tional formula ϕ in conjunctive normal form, what is the maximum number of clauses453

of ϕ that can be simultaneously satisifed? For a large class of function problems,454

an efficient solution to an appropriately defined decision version of the problem455

implies an efficient solution to the function problem itself. Studying the complex-456

ity of decision problems has therefore been a major focus of complexity theoretic457

investigations. A decision problem can also be viewed as a language recognition458

problem, where the input is presented as a finite string over the alphabet {0, 1},459

and the set of all input strings that yield a “Yes” answer comprises the language460

L corresponding to the problem. Thus, given an input string str representing an461

instance of the problem, the decision problem effectively asks if str ∈ L. This is462

equivalent to asking if the problem instance has a “Yes” answer.463

The complexity class P (resp. NP) consists of the set of all languages accepted464

by deterministic (resp. non-deterministic) Turing machines in time that grows at465

most polynomially in the size of the input. The class coNP is the set of all languages,466

the complement of which are in NP. The polynomial hierarchy generalizes these467

classes by defining two inter-related sub-hierarchies – the ΣP-hierarchy and the468

ΠP-hierarchy. We start by defining ΣP
0 = ΠP

0 = P. For every n ∈ N \ {0}, we then469

define ΣP
n and ΠP

n inductively as follows, where {0, 1}∗ denotes the set of all finite470

strings over {0, 1}, and |str| denotes the length of the string str.471

– ΣP
n consists of all languages/problems L such that there exists a language

L′ ∈ ΠP
n−1 and a polynomial q such that

∀x ∈ {0, 1}∗ x ∈ L⇔ ∃y ∈ {0, 1}∗, |y| ≤ q(|x|) and (x, y) ∈ L′.

– ΠP
n consists of all languages/problems L such that there exists a language

L′ ∈ ΣP
n−1 and a polynomial q such that

∀x ∈ {0, 1}∗ x ∈ L⇔ ∀y ∈ {0, 1}∗, |y| ≤ q(|x|)⇒ (x, y) ∈ L′.

It is easy to see from the definitions that NP = ΣP
1 and coNP = ΠP

1 . The hier-472

archy of complexity classes defined above is known as the Polynomial Hierarchy473

(henceforth, PH). The PH is said to collapse to level i ∈ N if ΣP
i = ΣP

i+1. Notice474

that if PH collapses to level 0, then P = NP. It is widely believed that PH is a475

strict infinite hierarchy and does not collapse to any finite level. However, this is476

only a conjecture; the question of whether PH indeed collapses to any finite level477

has remained open for decades, and is one of the outstanding open problems in478

computational complexity theory.479

The classes in PH are also related to the notion of oracle computation or relative480

computation, referred to in Section 1. Recall that an oracle machine is a Turing ma-481

chine with access to a “black-box” (oracle) that can provide “Yes”/”No” answers482

to a specific class of decision problem in a single step. If oracles are restricted to be483

Turing machines themselves with well-defined resource constraints, we obtain an484

alternative characterization of the complexity classes in PH. The interested reader485

12 S. Akshay, Supratik Chakraborty

is referred to [7] for details. For our purposes, it suffices to note that PNP is one486

such complexity class obtained by considering polynomial-time Turing machines487

with access to an NP oracle. That is, any problem in this class can be solved by a488

deterministic Turing machine in polynomially many steps, if it is allowed to make489

at most polynomially many calls to an NP oracle. In fact, the complexity class PNP
490

can be shown to coincide with ΣP
2 ∩ ΠP

2 , and hence is within the second level of491

the polynomial hierarchy!492

Just as P is the class of languages accepted by deterministic Turing ma-493

chines running for at most polynomial time, PSPACE denotes the class of lan-494

guages accepted by deterministic Turing machines that use atmost polynomial495

space. It is known that non-determinism does not add power in this case, i.e.,496

NPSPACE = PSPACE. Also it is known that PH ⊆ PSPACE, i.e., the entire poly-497

nomial hierarchy is contained in the class PSPACE, thereby making this a very498

expressive class. Notice, however, that if a Turing machine can run for exponential499

time, then it can indeed simulate a Turing machine that is allowed to use only500

polynomial space. The class of languages accepted by deterministic Turing ma-501

chines running for exponential time is denoted EXP, and we immediately see that502

PSPACE ⊆ EXP. We refer the interested reader to excellent textbooks, e.g., [7], in503

this area for more information about complexity classes and their relations.504

4.2 Computational hardness of Boolean Skolem Function Synthesis505

With the above notations, we can now present complexity-theoretic hardness re-506

sults for BoolSkFnSyn. As mentioned earlier, we assume the input and output of507

BoolSkFnSyn are represented as Boolean circuits. It turns out that three conditional508

results can be shown, two of which are related to the collapse of the polynomial509

hierarchy defined above.510

The first result is about time-complexity. Specifically, any algorithm that solves511

BoolSkFnSyn must take super-polynomial (i.e., asymptotic growth greater than that512

of any polynomial) time in the worst case, unless the polynomial hierarchy collapses513

to the first level (i.e., P = NP). Since the question of whether P = NP has remained514

open for decades, with the general wisdom being P 6= NP, it is highly unlikely515

that all instances of BoolSkFnSyn can be solved in polynomial time. This easily516

follows from the observation that propositional satisfiability can be reduced to517

BoolSkFnSyn where we have no system inpus X.518

Next, we inquire about the space complexity of BoolSkFnSyn, and ask if it519

is possible to solve BoolSkFnSyn compactly. More precisely, do there always exist520

polynomial-sized Skolem functions for instances of BoolSkFnSyn, even if it takes521

exponential time to synthesize them? Again, the answer turns out to be negative,522

but with a stronger condition. It is shown in [3, 5] that unless the polynomial523

hierarchy collapses to the second level, there must exist instances of BoolSkFnSyn524

for which any algorithm must generate super-polynomial sized Skolem functions.525

The above results provide conditional super-polynomial time and space lower526

bounds for BoolSkFnSyn. On the other hand, a trivial upper bound was mentioned527

earlier, namely, BoolSkFnSyn can be solved in exponential time and space. A naive528

exponential time algorithm would be to enumerate all possible values of system529

inputs X, and for each such valuation, check by enumeration again if there exists530

a valuation of the system outputs Y that satisfies the given specification. Since we531

Synthesizing Skolem functions: A view from theory and practice 13

are concerned about Boolean specifications, this can be done in time exponential532

in |X| and |Y|; of course, in doing so, it may produce Skolem functions of at most533

exponential size.534

Given the large gap between a polynomial lower bound and an exponential535

upper bound, a natural question is whether this gap can be narrowed or bridged.536

In [3, 5], it is shown that under a stronger hypothesis, this gap can in fact be537

completely eliminated giving us optimal and tight (albeit conditional) complex-538

ity bounds. To understand this result, let us start by considering two unproven539

complexity-theoretic conjectures. The exponential-time hypothesis ETH [34] and540

its non-uniform variant, ETHnu [18], are unproven computational hardness con-541

jectures that have been used to show that several classical decision, functional542

and parametrized NP-complete problems are unlikely to have sub-exponential al-543

gorithms. These conjectures are also widely believed to be true. Formally, ETHnu –544

the variant that we need – states that there is no family of algorithms (one for each545

input-size n) that can solve the n-variable instance of the propositional satisfia-546

bility problem (the canonical NP-complete problem) in sub-exponential time (i.e.,547

in time that is lower than any exponential function of n, also written 2o(n)). By548

adapting the earlier result, one can now show that, unless the non-uniform expo-549

nential time hypothesis ETHnu fails, there exist instances of BoolSkFnSyn for which550

any algorithm for must generate exponential-sized Skolem functions. Notice that551

this immediately implies exponential time complexity as well, since generating an552

output of size f(n) requires at least f(n) time.553

Summarizing, we obtain the following theorem, whose details and proof can be554

found in [3, 5].555

Theorem 1 1. BoolSkFnSyn can be solved in exponential time and space.556

2. There exists no algorithm for BoolSkFnSyn that557

(a) always takes polynomial time on all inputs, unless PH collapses to level 0.558

(b) always generates polynomial sized Skolem functions, unless PH collapses to the559

second level.560

(c) always generates sub-exponential sized Skolem functions (and takes sub-exponential561

time), unless the non-uniform exponential-time hypothesis fails.562

Together these results imply that BoolSkFnSyn is unlikely to have polynomial-563

time or polynomial-space algorithms in general. Any such efficient algorithm must564

necessarily falsify one of the above well-regarded and intensely researched conjec-565

tures in complexity theory.566

4.3 Exploiting the structure of the specification567

Given a Boolean relational specification as a circuit, we now ask if there are con-568

ditions on the structure/representation of the circuit that can be exploited to569

efficiently synthesize Skolem functions. Indeed, this turns out to be the case, and570

we discuss some such cases below.571

4.3.1 Unate variables572

Recall that BoolSkFnSyn requires us to synthesize the entire Skolem function vector,573

i.e., Skolem functions for all system outputs in Y. However, synthesizing Skolem574

14 S. Akshay, Supratik Chakraborty

functions for some system output variables may be easier than that for others. For575

example, consider the case of unate variables. The formula ϕ is said to be positive576

unate in v ∈ sup(ϕ) iff ϕ|¬v ⇒ ϕ|v. Similarly, ϕ is said to be negative unate in v iff577

ϕ|v ⇒ ϕ|¬v. Finally, ϕ is unate in v if it is either positive unate or negative unate in578

v. If ϕ is positive unate in v, it immediately follows that ∃v ϕ⇔ (ϕ|v ∨ ϕ|¬v)⇔ ϕ|v.579

As a result, if v is a system output, the constant function true serves as a correct580

Skolem function for v in ϕ. Similarly false serves a correct Skolem function for v581

in ϕ if ϕ is negative unate in ϕ. Thus, we obtain,582

Proposition 1 If a specification ϕ(X,Y) is unate in yi ∈ Y, one can generate583

constant-sized Skolem functions for yi in ϕ in constant time.584

Substituting a constant Skolem function for yi ∈ Y in the specification ϕ(X,Y)585

and simplifiying it may, in turn, reveal that the simplified specification is unate586

in yj (distinct from yi), even if the original specification was not unate in yj . It587

is therefore beneficial to iterate through this process of detecting if a specification588

is unate in a system output variable and substituting a constant Skolem function589

for the variable to simplify the specification.590

591

Example 3 Consider the specification ϕ ≡ (¬x1∨y1)∧ (x1∨¬x2∨y1∨¬y2)∧ (¬x1∨592

¬x2 ∨ y2 ∨ y3) ∧ (x2 ∨ ¬y3 ∨ y2). Applying the checks for positive and negative593

unateness described above, it is easy to verify that ϕ is only positive unate in594

y1, and neither positive nor negative unate in y2 or y3. If we now set the Skolem595

function for y1 to the constant true, the specification simplifies to ϕ|y1 ≡ (¬x1 ∨596

¬x2 ∨ y2 ∨ y3) ∧ (x2 ∨ ¬y3 ∨ y2). Using the unateness checks again, we now find597

that ϕ|y1 is positive unate in y2, but neither positive nor negative unate in y3.598

Setting the Skolem function for y2 to true, the specification further simplifies to599 (
ϕ|y1

)
|y2≡ true. Hence, any Skolem function for y3 suffices; in particular, we choose600

y3 ≡ false. We have thus solved the BoolSkFnSyn problem for the given specification,601

obtaining the constant Skolem functions ψ1 ≡ ψ2 ≡ true and ψ3 ≡ false.602

From the definition of unateness, we can see that checking unateness can be603

reduced to checking (un)satisfiability of a propositional formula: ϕ is positive (resp.604

negative) unate in v iff the formula ϕ|¬v ∧ ¬ϕ|v (resp. ϕ|v ∧ ¬ϕ|¬v) is unsatisfiable.605

A variant of this unateness check is used in [6] and other recent approaches to606

BoolSkFnSyn (e.g., [4, 5]). In the other direction, checking validity of an arbitrary607

formula ϕ can be reduced to checking if the formula z ∨ ϕ is positive unate in z,608

where z 6∈ sup(ϕ). Thus, unateness checking is coNP-hard, and cannot be done in609

polynomial time unless P = NP. However, we can have sufficient conditions for610

unateness that are checkable in polynomial time. For example, if v (resp. ¬v) is a611

pure literal in ϕ, i.e., the negation of the literal does not appear as the label of any612

leaf in a NNF circuit representation of ϕ, then ϕ is positive (resp. negative) unate613

in vi. The above structural condition can clearly be checked in time linear in the614

size of the NNF circuit representing ϕ.615

4.3.2 Functionally determined or implicitly defined variables616

Suppose the specification ϕ uniquely defines a system output variable as a func-617

tion of system input variables and other system output variables. We call such618

Synthesizing Skolem functions: A view from theory and practice 15

a variable functionally determined or implicitly defined in ϕ. For example, if ϕ ≡619

(¬yi ∨ yj) ∧ (¬yi ∨ xk) ∧ (yi ∨ ¬yj ∨ ¬xk) ∧ · · · , then we can infer (yi ⇔ (yj ∧ xk))620

and hence, yi is functionally determined (henceforth called FD) in ϕ. The implied621

functional dependencies like (yi ⇔ (yj ∧ xk)) are called functional definitions of FD622

variables. Given a set T ⊆ Y of FD system outputs in ϕ, we let FunT denote the623

conjunction of functional definitions of all variables in T. We say that (T,FunT)624

is an acyclic system of functional definitions if no variable in T transitively depends625

on itself via the functional definitions in FunT. The main observation is that for a626

given acyclic system (T,FunT) obtained from ϕ, we can simply replace each of the627

output variables in T by their functional definitions. Recall that these functional628

definitions are in terms of system inputs and other system outputs. Thus, once629

Skolem functions for all system outputs other than those in T are generated, we630

can generate Skolem functions for those in T simply by substituting the already631

generated Skolem functions in the functional definitions in FunT. This can be done632

in polynomial time by effectively connecting the outputs of sub-circuits represent-633

ing already generated Skolem functions to corresponding inputs of sub-circuits634

representing functional definitions in FunT.635

The above idea is remarkably simple and results in considerable simplifica-636

tion in practical benchmarks. The reason is that functionally determined variables637

occur widely in practice and are often easy to identify. For instance, specifica-638

tions containing functionally determined variables arise naturally when a non-CNF639

Boolean formula is converted to CNF via Tseitin encoding [67], and are easily iden-640

tifiable as patterns in the formula. Given the widespread use of Tseitin encoding in641

obtaining CNF formulas, such variables have a surprisingly large impact on bench-642

marks. As a result many practical tools for BoolSkFnSyn, (including [53, 5, 4, 29])643

first identify and eliminate (at least some!) functionally determined variables be-644

fore processing the formulas.645

A note about Beth definability, as applied to quantified propositional formulas,646

is pertinent here. By a celebrated theorem of Beth [10], a system output yi that647

is implicitly defined by a specification ϕ also has an expxlicit definition in terms648

of the system inputs and other system outputs. Such an explicit definition can649

indeed serve as the functional definition for yi. However, Beth’s theorem doesn’t650

immediately give us an explicit definition of yi; indeed, it can be computationally651

expensive to extract an explicit definition of yi from ϕ in general. Practical tools652

therefore often use a range of heuristics to efficiently extract explicit definitions of653

implicitly defined system output variables. Fortunately, for variables introduced654

by Tseitin encoding, this can be done easily by matching patterns of clauses in a655

given CNF formula, as was illustrated in the example above. Such techniques, also656

called syntactic gate extraction (see e.g. [27]), are incomplete in general, but can be657

very effective in practice when reasoning about specifications containing Tseitin658

variables. In a recent work [60], a practically efficient, sound and complete semantic659

gate extraction technique for extracting explicit definitions of all implicitly defined660

variables, has been proposed. Incorporation of such techniques in Boolean Skolem661

function synthesis tools is likely to result in improved performance of such tools662

in practice.663

16 S. Akshay, Supratik Chakraborty

4.3.3 Using maximal falsifiable sets of input clauses664

Yet another class of specifications that admit relatively efficient synthesis in prac-665

tice, follows from the work of [17]. Consider a specification ϕ(X,Y) given in666

CNF as a set of implicitly conjoined clauses C = {C1, . . . Ck}. Each clause po-667

tentially has some literals over system inputs X, and some literals over system668

outputs Y. Such a specification can of course be represented as a 3-level NNF669

circuit. For all i ∈ {1, . . . k}, let Ci|X denote the clause formed by taking the670

disjunction of all literals over X in Ci. Similarly, let Ci|Y be the clause formed671

by disjoining all literals over Y in Ci. The set of input clauses of ϕ is then de-672

fined to be Sin = {C1|X, . . . Ck|X}. Similarly, the set of output clauses of ϕ is673

Sout = {C1|Y, . . . Ck|Y}. Note that if a clause has no system input (resp. system674

output) literal, then the corresponding clause in Sin (resp. Sout) is the empty675

clause, representing false.676

Let S be a subset of clauses in Sin . We say S is a maximal falsifiable subset677

(MFS) of Sin if (i) there exists an assignment π that makes all clauses in S false,678

and (ii) for every set S′ such that S ⊂ S′ ⊆ Sin , there exists no assignment that679

makes all clauses in S′ false. In a similar manner, Ŝ ⊆ Sout is said to a maximal680

saitsifable subset (MSS) of Sout if (i) there exists an assignment π that makes all681

clause in Ŝ true, and (ii) for every S′′ such that Ŝ ⊂ S′′ ⊆ Sout , it is not possible682

to find an assignment that renders all clauses in S′′ true.683

With the above notation, the following results follow from the work of [17].684

Proposition 2 (a) Let MFS(Sin) be the set of all MFS of Sin . Given MFS(Sin), the685

BoolSkFnSyn problem for ϕ(X,Y) can be solved in time linear in |MFS(Sin)| ·686

|ϕ(X,Y)|, given access to an NP-oracle.687

(b) Let MSS(Sout) be the set of all MSS of Sout . Given MSS(Sout), the BoolSkFnSyn688

problem for ϕ(X,Y) can be solved in time linear in |MSS(Sout)| · |ϕ(X,Y)|, given689

access to an NP-oracle.690

The intuition behind Proposition 2 can be informally stated as follows. For every691

assignment πX of X, consider the set of input clauses not satisfied by πX. By692

definition, this set is included in some MFS, say S′, of Sin , and πX satisfies all693

input clauses in Sin \S′. Clearly, for each input clause in Sin \S′, the corresponding694

clause in the specification ϕ is also satisfied by πX, regardless of what we assign to695

Y. Therefore, if we assign values to Y such that all output clauses corresponding696

to input clauses in S′ are satisfied, the overall specification is satisfied. This gives a697

way to solve BoolSkFnSyn by considering each MFS of Sin and by finding a satisfying698

assignment of the corresponding subset of Sout . To see how BoolSkFnSyn can be699

solved using MSS of Sout , let πY be an assignment of Y that satisfies an MSS, say700

S′′, of Sout . Since S′′ is an MSS, πY must falsify all clauses in Sout \S′′. Therefore,701

if the assignment of X satisfies all input clauses corresponding to output clauses702

in Sout \ S′′, the overall specification ϕ is again satisfied. Thus, BoolSkFnSyn can703

be solved by considering satisfying assignments of every MSS of Sout .704

In order to use Proposition 2 effectively, we must, of course, find ways to705

compute MFS(Sin) or MSS(Sout) efficiently in practice. Fortunately, finding an706

MFS of a given set of clauses, viz. Sin , is not hard. One way of doing this is by707

analyzing the consensus graph [28] of Sin . This is an undirected graph with a node708

for each clause in Sin , and an edge between two nodes iff the corresponding clauses709

have no literal ` that appear with opposite polarities in the two clauses. It is easy710

Synthesizing Skolem functions: A view from theory and practice 17

to see that two clauses of Sin can be falsified at the same time iff there is an711

edge between the corresponding nodes in the consensus graph. Thus, there is a712

one-to-one correspondence between the MFS of Sin and the maximal cliques in its713

consensus graph. The set of all MFS can therefore be enumerated by enumerating714

the maximal cliques in the consensus graph. Finding a maximal clique in a graph715

can be achieved by a greedy algorithm in time polynomial in the size of the graph.716

This yields an algorithm for enumerating all MFS of Sin that takes time polynomial717

in |Sin | and in the number of maximal cliques in the consensus graph of Sin [33].718

The following result, derived from [17], is an immediate consequence of the above719

observations.720

Proposition 3 [17] Let C be a class of CNF specifications such that the consensus721

graphs of input clauses of specifications in C have polynomially many maximal cliques.722

This is the case, for example, if the consensus graphs are planar or chordal. Then, the723

BoolSkFnSyn problem for class C of specifications is in PNP (i.e. solvable in polynomial724

time by a Turing machine with access to an NP oracle).725

In practice, when implementing an algorithm for solving BoolSkFnSyn, a proposi-726

tional satisfiability solver must be used in place of an NP-oracle. Given the signifi-727

cant advances made in propositional satisfiability solving over the last few decades,728

Proposition 3 allows us to identify a class of specifications for which BoolSkFnSyn729

can be solved efficiently in practice.730

Unlike in the case of finding MFS, however, we do not know of any polynomial-731

time algorithm for finding an MSS of a given set of clauses. Indeed, finding an732

MSS requires solving an instance of the MaxSAT problem, which is known to be733

NP-complete. Therefore, Proposition 2(b) does not yield an easily identifiable class734

of specifications for which BoolSkFnSyn can be solved efficiently in practice.735

Example 4 Consider the specification ϕ ≡ (x1 ∨ y1)∧ (x2 ∨¬y1 ∨¬y2)∧ (x2 ∨¬x3 ∨736

¬y2) ∧ (¬x1 ∨ ¬y1 ∨ y2). Clearly, Sin = {(x1), (x2), (x2 ∨ ¬x3), (¬x1)}, and Sout =737

{(y1), (¬y1∨¬y2), (¬y2), (¬y1∨y2)}. The consensus graph of Sin is shown in Fig. 1.

(x1)

(x2)

(x2 ∨ ¬x3)

(¬x1)

Fig. 1: Consensus graph of Sin

738

Notice that there are two maximal cliques in this graph, corresponding to two MFS739

of Sin , i.e. {(x1), (x2), (x2∨¬x3)} and {(x2), (x2∨¬x3), (¬x1)}. The corresponding740

subsets of Sout are {(y1), (¬y1 ∨ ¬y2), (¬y2)} and {(¬y1 ∨ ¬y2), (¬y2), (¬y1 ∨ y2)},741

with satisfying assignments (y1, y2) = (true, false) and (false, false) respectively. Fur-742

thermore, the subsets of input clauses not included in the MFS are {(¬x1)} and743

{(x1)} respectively. Therefore, using the idea sketched above in the intuition be-744

hind Proposition 2, we can obtain a Skolem function vector (ψ1, ψ2) that evaluates745

as follows:746

if (¬x1) then (ψ1, ψ2) = (true, false) else (ψ1, ψ2) = (false, false)747

18 S. Akshay, Supratik Chakraborty

For more details of the technique, and also to see how a Skolem function vector748

can be obtained from the MSS of Sout , the reader is referred to [17].749

5 Knowledge representation for Boolean Skolem function synthesis750

The representation of the relational specification ϕ(X,Y) has an important bearing751

on the computational complexity of solving BoolSkFnSyn. In the previous sections,752

we assumed that the specification is given by a NNF Boolean circuit, represented753

as a directed acyclic graph (DAG). It turns out that if this circuit has special struc-754

tural and functional properties, BoolSkFnSyn can indeed be solved efficiently. Of755

course, compiling an arbitrary specification to a circuit representation with these756

properties isn’t always easy. Given the hardness results of Section 4.2, such compi-757

lation must necessarily require super-polynomial time and space in the worst-case,758

unless long-standing complexity theoretic conjectures are falsified. Nevertheless, it759

is interesting to study normal forms of circuit-based representations of relational760

specifications that allow efficient synthesis of Boolean Skolem functions.761

We start by considering some circuit (and related) representations of Boolean762

formulas that have been studied extensively in the context of hardware verification,763

model counting, artifical intelligence etc. Consider an NNF circuit representing a764

Boolean formula ϕ. For every node N in a DAG representation of the circuit, let765

lits(N) (resp. vars(N)) denote the set of literals (resp. variables) labeling leaves766

that have a path from N in the DAG. Suppose for each AND-labeled node with767

children c1, . . . ck in the DAG, we have vars(cr) ∩ vars(cs) = ∅ for all distinct768

r, s ∈ {1, . . . k}. The circuit is then said to be in decomposable negation normal form769

or DNNF [20]. DNNF is a popular representation form used in artificial intelligence770

applications, and enjoys many nice properties [20]. Similarly, free/reduced ordered771

binary decision diagrams (collectively, BDDs) [15] is a representation form for772

Boolean formulas that is widely used in hardware verification, symbolic model773

checking etc. As shown in [20], every such BDD can be converted to DNNF in774

linear time [20]. In [4], a slight generalization of DNNFs, called weak decomposable775

negation normal form, or wDNNF, was introduced. In wDNNF, for each AND-labeled776

internal node with children c1, . . . ck in an NNF circuit, we have lits(cr)∩{¬` | ` ∈777

lits(cs)} = ∅ for every distinct r, s ∈ {1, . . . k}. Note that every DNNF circuit is also778

a wDNNF circuit.779

We now have the following result from [4], which says that for all the above780

normal forms BoolSkFnSyn is easy, i.e., solvable in polynomial time and size.781

Theorem 2 ([4]) Given an input specification ϕ(X,Y) as a DNNF or wDNNF cir-782

cuit, or as a BDD, BoolSkFnSyn can be solved in time polynomial in the size of the783

representation. This yields a polynomial-sized Skolem function vector.784

Example 5 Consider the following Boolean formulas in NNF over the set of variables
x1, x2, x3, y1, y2, y3:

ϕ1 ≡ (x1 ∨ x2) ∧ (x3 ∨ ¬y1) ∧ (¬y2 ∨ y3) (1)

ϕ2 ≡ (x1 ∨ x2) ∧ (x2 ∨ ¬y1) ∧ (¬y1 ∨ y2) (2)

ϕ3 ≡ (¬x1 ∨ x2) ∧ (x1 ∨ ¬y2) ∧ (y1 ∨ y2) (3)

Synthesizing Skolem functions: A view from theory and practice 19

Each of these formulas is naturally represented as a 3-level NNF circuit with785

an AND-labeled root node having three OR-labeled children, and leaves labeled786

by literals as shown in Figure 2. Note that the representation of ϕ1 is in DNNF, and787

hence also in wDNNF. However, the representation of ϕ2 is not in DNNF, although788

it is in wDNNF. Indeed, in the circuit representing ϕ2, the label ¬y1 appears in789

a leaf reachable from two distinct children of the AND-labeled root. However,790

there is no literal ` such that a leaf labeled ` is reachable from one child of the791

AND-labeled root, and a literal labeled ¬` is reachable from another child of the792

root. Hence, the requirement for wDNNF is satisfied by the representation of ϕ2.793

Finally, the representation of ϕ3 is not in wDNNF since the AND-labeled root has794

two distinct children such that leaves labeled y2 and ¬y2 are reachable from these795

children. Of course, this also means that the representation of ϕ3 is not in DNNF796

either.797

By Theorem 2, it is “easy” to synthesize Skolem functions for ϕ1 and ϕ2, as798

given in Example 5. Importantly, the above theorem only gives a sufficient, but799

not necessary condition for efficient Boolean Skolem function synthesis. Indeed,800

it turns out that even for ϕ3 given in Example 5, Boolean Skolem functions can801

be synthesized efficiently. It is therefore interesting to ask if we can weaken the802

representational requirements beyond that of wDNNF, while ensuring polynomial803

time synthesis of Boolean Skolem functions. One easy way is to require the wDNNF804

condition only on literals corresponding to system outputs. This captures NNFs805

that are decomposable except on a set of atoms [20]. It can be seen that Theorem 2806

applies in this setting as well. However, it turns out that we can go significantly807

beyond this, as we discuss in the next section.808

5.1 A representation for efficient synthesis809

Recall from the discussion in the initial part of Section 4 that if we can efficiently810

compute ϕ(i−1)(X,Yn
i), i.e. ∃y1, . . . yi−1 ϕ(X,Y), for all i ∈ {2, . . . n}, then we811

can solve BoolSkFnSyn efficiently. We will therefore try to arrive at a representa-812

tional requirement weaker than that of wDNNF and that allows us to compute813

ϕ(i−1)(X,Yn
i) for all i ∈ {2, . . . n}.814

Consider an NNF circuit representing the formula ϕ(X,Y). The output-positive815

form of ϕ, denoted ϕ̂, is obtained by replacing all leaves labeled ¬yi by new816

variables yi in the NNF circuit representation of ϕ(X,Y). Thus, ϕ̂ is a formula817

with support X∪Y ∪Y, where Y denotes the sequence (or set, depending on the818

ϕ1

∧

∨

x1 x2

∨

x3 ¬y1

∨

¬y2 y3

ϕ2

∧

∨

x1 x2

∨

x2 ¬y1

∨

¬y1 y2

ϕ3

∧

∨

¬x1 x2

∨

x1 ¬y2

∨

y1 y2

Fig. 2: NNF circuit representations of formula ϕ1, ϕ2, ϕ3 from Example 5.

20 S. Akshay, Supratik Chakraborty

context) (y1, . . . yn). It is easy to see that ϕ(X,Y) ⇔
(
ϕ̂
)
[Y 7→ ¬Y], where ¬Y819

denotes the sequence (¬y1, . . .¬yn). Since the output-positive form, represented as820

a NNF circuit, does not have any leaf labeled ¬yi or ¬yi for any i ∈ {1, . . . n}, it821

follows that ϕ̂ is monotone with respect to every such yi and yi.822

An immediate consequence of the above monotonicity is that we have

∃y1 ϕ(X,Y)⇔ (ϕ|y1 ∨ ϕ|¬y1)⇒
(
ϕ̂|y1,y1

)
[Y

n
2 7→ ¬Yn

2], (4)

where we have used ϕ̂|y1,y1 to denote (ϕ̂[y1 7→ true])[y1 7→ true], and Y
n
2 and ¬Yn

2823

to denote the sequences (y2, . . . yn) and (¬y2, . . .¬yn), respectively. In general, the824

converse of the above implication, i.e.
(
ϕ̂|y1,y1

)
[Y

n
2 7→ ¬Yn

2] ⇒ (ϕ|y1 ∨ ϕ|¬y1),825

doesn’t always hold. However, if we can ensure (for example, by imposing restric-826

tions on the representation of ϕ) that the converse implication also holds, then we827

will have ∃y1 ϕ(X,Y) ⇔
(
ϕ̂|y1,y1

)
[Y

n
2 7→ ¬Yn

2]. This will immediately give us an828

efficient way to obtain ∃y1 ϕ(X,Y). Specifically, we can simply set y1 and y1 to true829

in ϕ̂, and set all other yi to ¬yi, in order to obtain ∃y1 ϕ(X,Y). As already seen830

earlier, efficient existential quantification of system output variables from ϕ(X,Y)831

directly leads to an efficient way of computing Skolem functions. Hence, it is mean-832

ingful to investigate what restrictions on the representation of ϕ ensure that the833

converse of implication (4) holds.834

We start by asking: when is implication (4) given above strict, i.e. when does its835

converse not hold? Clearly, this happens iff there is an assignment π of X and Yn
2836

that renders
(
ϕ̂|y1,y1

)
[Y

n
2 7→ ¬Yn

2] true and also simultaneously renders ∃y1 ϕ(X,Y)837

false. It follows from the definitions of ∃y1 ϕ(X,Y) and ϕ̂(X,Y,Y) that assignment838

π must cause both
(
ϕ̂|y1,¬y1

)
[Y

n
2 7→ ¬Yn

2] and
(
ϕ̂|¬y1,y1

)
[Y

n
2 7→ ¬Yn

2] to evalu-839

ate to false. Since ϕ is monotone with respect to y1 and y1, it also follows that840 (
ϕ̂|¬y1,¬y1

)
[Y

n
2 7→ ¬Yn

2] evaluates to false under assignment π. Thus, assignment841

π causes ϕ̂[Y
n
2 7→ ¬Yn

2] to “semantically behave like” y1 ∧ y1.842

The above discussion yields the important intuition that ∃y1 ϕ(X,Y) is se-
mantically equivalent to

(
ϕ̂|y1,y1

)
[Y

n
2 7→ ¬Yn

2] iff ϕ̂[Y
n
2 7→ ¬Yn

2] can never be
made to behave like y1 ∧ y1 under any assignment of X and Yn

2 . In other words,
∀y1∀y1

(
ϕ̂[Y

n
2 7→ ¬Yn

2]⇔ (y1 ∧ y1)
)

must be unsatisfiable. By virtue of the mono-
tonicity properties of ϕ̂, the above condition simplifies to the requirement that
(ϕ̂|y1,y1)[Y

n
2 7→ ¬Yn

2] ∧ ¬(ϕ̂|¬y1,y1)[Y
n
2 7→ ¬Yn

2] ∧ ¬(ϕ̂|y1,¬y1)[Y
n
2 7→ ¬Yn

2]
is unsatisfiable. This intuition can now be inductively lifted to the general case.

Towards this end, let (

t︷ ︸︸ ︷
true . . . true) denote a sequence of t Boolean constants, each

being true. For each i ∈ {1, . . . n}, we now define a formula [ϕ̂]i, also called the ith

reduct of ϕ, as follows.

[ϕ̂]i ≡
(
(ϕ̂[Yi−1

1 7→ (

i−1︷ ︸︸ ︷
true . . . true)])[Y

i−1
1 7→ (

i−1︷ ︸︸ ︷
true . . . true)]

)
[Y

n
i+1 7→ ¬Yn

i+1]. (5)

Thus, we take ϕ̂ and set all yj and yj for j ∈ {1, . . . i− 1} to true, and all yk for843

k ∈ {i+ 1, . . . n} to ¬yk, in order to get [ϕ̂]i. The reduct [ϕ̂]1 is simply defined as844

ϕ̂[Y
n
2 7→ ¬Yn

2]. Note that the support of [ϕ̂]i includes yi in addition to X ∪Yn
i .845

Using arguments similar to that used above, we can now show that ∃Yi
1 ϕ(X,Y)846

⇒ ([ϕ̂]i)|yi,yi . Furthermore, the converse implication holds iff [ϕ̂]i cannot be made847

to semantically behave like yi ∧ yi for any assignment of X and Yn
i+1, i.e. iff848

([ϕ̂]i)|yi,yi ∧ ¬([ϕ̂]i)|¬yi,yi ∧ ¬([ϕ̂]i)|yi,¬yi is unsatisfiable. Referring back to849

Synthesizing Skolem functions: A view from theory and practice 21

the discussion in the initial part of Section 4, it follows that if the above unsatisfi-850

ability condition holds, then both ([ϕ̂]i+1)|yi+1,¬yi+1
and ¬([ϕ̂]i+1)|¬yi+1,yi+1

serve851

as Skolem functions for yi+1 (in terms of X∪Yn
i+2) in ϕ(X,Y). Specifications that852

satisfy the above unsatisfiability condition for all reducts [ϕ̂]i are said to be in Syn-853

thesis Negation Normal Form or SynNNF, and the corresponding Skolem functions854

alluded to above are called GACKS functions, following the terminology of [4]. Note855

that if ϕ(X,Y) is in SynNNF, then computing the GACKS functions is easy, i.e.,856

can be done in polynomial time. Formally, we have the following definition.857

Definition 1 [4] An NNF circuit representing a specification ϕ(X,Y) is said to858

be in SynNNF with respect to the sequence Y of system outputs iff the formula859

([ϕ̂]i)|yi,yi ∧ ¬([ϕ̂]i)|¬y1,y1 ∧ ¬([ϕ̂]i)|y1,¬y1 is unsatisfiable for all i ∈ {1, . . . n}860

Example 6 Consider again ϕ3 ≡ (¬x1 ∨x2)∧ (x1 ∨¬y2)∧ (y1 ∨ y2) from Example 5,861

represented as the rightmost circuit in Fig. 2. We have seen that this representation862

is neither in wDNNF nor in DNNF. However, with respect to the sequence of system863

outputs (y1, y2), it is in SynNNF. To see this, note that [ϕ̂3]1 cannot be equivalent864

to y1∧y1 for any assignment of the other variables as y1 does not occur negatively865

at all. Furthermore, in obtaining [ϕ̂3]2, we must assign true to y1; hence the clause866

y1∨y2 becomes true. As a result, [ϕ̂3]2 cannot evaluate to y2∧y2 for any assignment867

of x1 and x2. Hence, we conclude that the representation of ϕ3 as the rightmost868

circuit in Fig. 2 is in SynNNF.869

Note that the definition of SynNNF makes crucial reference to a sequence (or870

ordering) of variables in Y. Indeed, if we change the ordering of system output871

variables, say from (y1, y2) to (y2, y1) in the example of ϕ3 discussed above, then872

ϕ3 is no longer in SynNNF with respect to this new ordering. Specifically, for873

the assignment in which x1 = false and y1 = false, [ϕ̂3]1 becomes semantically874

equivalent to y2 ∧ y2.875

In [4], it is also shown that SynNNF strictly subsumes (ϕ3 being an example!)876

previously considered normal forms including wDNNF, DNNF and BDDs. In fact,877

we can say more. In the following theorem, sizes and times are in terms of the878

number of system input and system output variables, i.e. |X|+ |Y|.879

Proposition 4 ([4]) Every specification in BDD, DNNF or wDNNF form is either880

already in SynNNF or can be compiled in linear time to SynNNF. Moreover, there exist881

polynomial-sized SynNNF specifications that only admit882

(i) exponential sized BDD representations883

(ii) super-polynomial sized wDNNF and DNNF representations, unless P = NP.884

Finally, we come to the practical utility of SynNNF, which is formalized in the885

following result.886

Theorem 3 ([4]) If a relational specification ϕ(X,Y) is given in SynNNF, the GACKS887

functions serve as polynomial sized Skolem functions for ϕ, and can be computed in888

polynomial time. Hence BoolSkFnSyn is solvable in polynomial time for SynNNF speci-889

fications.890

From Theorem 1 and Theorem 3, it follows that it is not possible to compile891

an arbitrary relational specifications to SynNNF in polynomial time, unless some892

long-standing complexity-theoretic conjectures are falsified. Such hardness results893

22 S. Akshay, Supratik Chakraborty

for knowledge compilation are not uncommon in Computer Science, and similar894

results are known for other important problems like model counting, satisfiabil-895

ity checking, consistency checking and the like. Nevertheless, this has motivated896

researchers to build compilers that work well in practice, thereby facilitating ef-897

ficient solutions for important classes of problems. For example, several compil-898

ers for converting an arbitrary formula into DNNF and its variants are presented899

in [20, 22, 51, 43, 49]. Similarly, there are several mature tools (viz. [30, 63, 11])900

that can be used to compile a propositional formula into a BDD. This approach of901

converting a given specification into a BDD and then generating Skolem functions902

is used, for instance, in [26] and also in one of the experimental pipelines reported903

in [5]. In [4], a compiler called C2Syn was described that converts a relational904

specification given in CNF directly to SynNNF. We refer the interested reader to [4]905

for more details of C2Syn.906

To complete the discussion on SynNNF, we note that SynNNF captures a seman-907

tic requirement. This is unlike BDD, DNNF and wDNNF, all of which impose purely908

syntactic requirements on the structure of the representation, that can be checked909

in time polynomial in the size of the representation. Normal forms defined by se-910

mantic conditions are however not new, e.g., the disjoint decomposable negation911

normal form (dDNNF) uses a semantic condition in its definition (see [21]). The912

semantic condition does, however, mean that the problem of checking if a circuit913

is in SynNNF is not always easy.914

Proposition 5 ([56]) Checking whether a given formula is in SynNNF w.r.t a given915

ordering on the variables is coNP-complete. Further, checking whether it is in SynNNF916

w.r.t any ordering is in ΣP
2 .917

In [56], the above result was established for a more general normal form. In fact,918

the normal form considered in [56] not only generalizes SynNNF but also precisely919

characterizes polynomial time and polynomial sized Boolean Skolem function syn-920

thesis. We refer interested readers to [56] for more details regarding this form.921

6 Algorithmic Paradigms for Boolean Skolem function synthesis922

We have seen earlier that efficient algorithms for BoolSkFnSyn are unlikely, due to923

the hardness results given in Theorem 1. However, this refers to the “worst-case924

complexity” or efficiency for all inputs, which does not always translate to use-case925

hardness. Given the practical relevance of the problem, different approaches have926

been tried to design algorithms and build software tools that work well for real-927

life benchmarks. Indeed, these tools have also been shown to work well in several928

practical instances. In this section, we discuss in some detail one such approach,929

that we call the guess-check-repair paradigm for Boolean Skolem function synthesis.930

Before that, let us quickly survey other (mostly orthogonal) approaches that have931

been explored for algorithmic solutions to BoolSkFnSyn.932

– Proof systems and proof rules. This approach is mostly applicable to specifica-933

tions ϕ(X,Y) that are realizable, i.e. ∀X∃Yϕ(X,Y) is valid. In [47, 9, 39, 8],934

special proof systems for quantified Boolean formulas have been proposed,935

and then Skolem functions have been extracted from a proof of validity of936

∀X∃Yϕ(X,Y). While this works well with short proofs of validity, there are937

Synthesizing Skolem functions: A view from theory and practice 23

challenges when such proofs are long or when no such proof exists, e.g. if the938

specification is unrealizable. As the factorization example in Section 3, it is of-939

ten important and useful to synthesize Skolem functions even for unrealizable940

specifications.941

– Incremental determinization. A relational specification may functionally deter-942

mine some system outputs, as explained in Section 4.3.2. However, there may943

be other system outputs that are constrained but not completely functionally944

determined. In [53], a technique for incrementally determinizing such system945

outputs is described. The technique makes us of highly effective strategies used946

in modern conflict-driven clause learning (CDCL) based propositional satisfi-947

ability solvers to yield a practically efficient algorithm for Boolean Skolem948

function synthesis. The interested reader is referred to [58] for details of CDCL949

satisfiability solvers. The incremental determinization technique of [53] was950

further developed as a system of proof rules in [54, 52].951

– Synthesis via functional composition of circuits. A completely different approach952

to BoolSkFnSyn is considered in [36, 37, 66], where iterated compositions (or953

substitutions) of Boolean circuits are used to synthesize Skolem functions.954

Given ϕ(X,Y), the basic idea here is to express one system output, say y1,955

as a Skolem function in terms of other system outputs and system inputs.956

While techniques similar to self-substitution have been used to generate such957

a Skolem function in [36, 66], interpolation based techniques have been used958

in [37]. Once such a Skolem function is obtained, it is composed with (or sub-959

stituted in) ϕ(X,Y) to effectively existentially quantify y1 from ϕ(X,Y). This960

yields a simplified specification with one less system output. By repeating this961

process, we can eventually obtain a Skolem function for yn in terms of only962

the system inputs. Subsequently, the Skolem function for yn (in terms of only963

system inputs) can be substituted in the Skolem function for yn−1 (in terms964

of yn and system inputs) to obtain a Skolem function for yn−1 in terms of965

only system inputs. By continuing this process, Skolem functions for all sys-966

tem outputs in terms of system inputs can be obtained. While this approach is967

simple to understand, it suffers from the drawback that iterated composition968

(or substitution) can result in an exponential blow-up in the representation969

of Boolean formulas. Hence, tools using this approach have been empirically970

found not to scale well to large benchmarks.971

– ROBDD-based techniques. ROBDDs are widely used as compact representations972

of complex Boolean formulas. Researchers have therefore developed techniques973

for synthesizing Boolean Skolem functions from relational specifications given974

as ROBDDs. In [41], Kukula and Shiple presented one such technique in which975

a circuit that is structurally similar to the ROBDD representation of the spec-976

ification is generated to implement Boolean Skolem functions. In Kuncak et977

al [42], a generic framework for functional synthesis with unbounded domains978

like integers is described. As part of their exposition, the authors of [42] also979

suggest using ROBDDs with input-first ordering of variables. This approach has980

been developed further in [26], where a new algorithm called TrimSubstitute was981

proposed that optimizes the application of the self-substitution technique (see982

Section 4) to ROBDDs with input-first variable ordering. For factored specifica-983

tions, i.e, specifications that are conjunctions of sub-specifications, ideas from984

symbolic model checking using implicitly conjoined ROBDDs have been used985

to enhance the scalability of ROBDD-based synthesis further in [65]. Note that986

24 S. Akshay, Supratik Chakraborty

the works of [42, 26, 65] attempt to synthesize Skolem functions directly as987

ROBDDs. This can be significantly more difficult than generating Skolem func-988

tions as Boolean circuits from ROBDD specifications. Indeed, we know from989

Proposition 4 and Theorem 3 that it is possible to generate Boolean circuits990

representing Skolem functions in polynomial-time from specifications given as991

ROBDDs. This holds regardless of the variable order used in the ROBDD repre-992

senting the specification. Note, however, that the Skolem functions generated993

by application of Theorem 3 may not be compactly representable as ROBDDs.994

Interestingly, the requirement of having input-first ordering of variables when995

representing specifications as ROBDDs, as in the works of [42, 26, 65], may996

result in significantly larger ROBDDs compared to the case when there are no997

restrictions on the variable ordering. This may be viewed as the price that has998

to be paid in order to obtain the Skolem functions as ROBDDs themselves.999

– Input-output separation. We have already discussed in Section 4.3.3 how literals1000

in the clauses of a CNF specification can be partitioned to yield a set of input1001

clauses and a set of output clauses. We also discussed in the same section spe-1002

cific conditions under which either the set of input clauses can be processed to1003

obtain Skolem functions efficiently in practice. This idea has been developed1004

further in [17], yielding a back-and-forth algorithm that alternates between pro-1005

cessing of input clauses and output clauses to generate Skolem functions as1006

decision lists [55]. This approach has been shown to work on some difficult1007

classes of benchmarks, for which several other state-of-the-art techniques run1008

out of steam.1009

– Template/sketch-based techniques. In addition to the above algorithmic tech-1010

niques, template-based [64] and sketch-based [61] approaches have been devel-1011

oped, when we have information about the set of candidate Skolem functions.1012

In the absence of such information, however, these techniques are not very1013

effective.1014

We wish to emphasize that despite the diversity of techniques, there is no single1015

technique that dominates others when solving BoolSkFnSyn. Furthermore, it is still1016

largely unclear which technique would perform best for a given benchmark. This1017

suggests the use of a portfolio solver, in which we can try multiple techniques and1018

choose the one that best suits a given problem instance. On a related note, the1019

knowledge representation approach presented earlier allows us to understand what1020

input representations make the problem easy to solve, without providing an effi-1021

cient technique to compile a given specification into a desired normal form. Coming1022

up with better compilation algorithms and insights into which tool performs well1023

on which benchmark, are part of ongoing and future work.1024

6.1 A guess, check and repair paradigm for synthesis1025

In the rest of this section, we focus on one specific algorithmic paradigm for solving1026

BoolSkFnSyn, that has been developed recently in a series of papers [38, 2, 3, 5] and1027

further augmented in [29]. Let us start by recalling that, sometimes we may get1028

“lucky” in that the representation of the relational specification may already have1029

structure (as explained in the previous sections) that permits efficient Boolean1030

Skolem function synthesis. However, this raises three questions: (i) how do we get1031

lucky? (ii) how easy is it to check if we have been lucky and (ii) what do we do when1032

Synthesizing Skolem functions: A view from theory and practice 25

we are not lucky? Indeed, in practical applications, there is no guarantee that the1033

representation of the relational specification has structure that makes it amenable1034

to efficient synthesis. The guess, check and repair paradigm, that lies (sometimes1035

implicitly) at the heart of several existing works on BoolSkFnSyn, address these1036

questions very elegantly. In this section, we elucidate this generic paradigm as1037

well as show how it is instantiated in practice. The paradigm can be broken into1038

three key steps.1039

– The first step runs efficiently in practice (viz. polynomial time relative to an1040

NP-oracle) and generates polynomial-sized guesses (or candidates) for Skolem1041

functions. If the representation of the relational specification has desirable1042

properties (such as those mentioned in previous sections), then these candi-1043

dates are often good enough to serve as Skolem functions themselves.1044

– Even if the representation of the relational specification does not satisfy re-1045

strictions that guarantee correctness of the guesses made above, the guessed1046

Skolem functions may still be correct. We must therefore check if the guessed1047

Skolem functions can indeed serve as correct Skolem functions. As we show be-1048

low, this requires a single call to an NP-oracle, practically implemented using1049

a propositional satisfiability solver.1050

– Finally, if the above check results in a negative answer (i.e. not all the guessed1051

Skolem functions are correct), we need to repair the guesses to obtain correct1052

Skolem functions. This is the third step of the paradigm, and can be done in1053

several ways. Given the computational hardness results, we know that in the1054

worst case, this phase may take exponential time. However, in practice, we are1055

often able to do much better!1056

The reason we call this a paradigm, rather than an algorithm, is that one can1057

take different algorithms for solving each of the above steps and put them together1058

to obtain an overall algorithm that solves BoolSkFnSyn. We describe each of these1059

steps in more detail, along with some algorithms for implementing the steps, in1060

the next three subsections.1061

6.1.1 Science of Guessing1062

It is not surprising that the initial guesses of Skolem functions play an important1063

role in the guess-check-repair paradigm of solving BoolSkFnSyn. As mentioned ear-1064

lier, if the representation of the relational specification has desirable properties1065

(viz. being in SynNNF), then the initial guesses (viz. the GACKS functions alluded1066

to in Section 5) already serve as correct Skolem functions without any need for1067

further checking. Note, however, that Theorem 2 only asserts that a specification1068

being in SynNNF is a sufficient, not necessary, condition for the GACKS functions to1069

be correct Skolem functions. So, if GACKS functions are used as the initial guesses1070

for Skolem function, they may work for more general specifications (that are not1071

in SynNNF) too! This is indeed what was empirically observed in [3, 5], where1072

GACKS functions were found to be correct Skolem functions for a large collection1073

of benchmarks, not all of which were in SynNNF. In the works of [47, 53], coming1074

up with good initial candidates for Skolem functions from appropriate representa-1075

tions of the specification (or from a proof of its realizability), has often been called1076

preprocessing, or initialization. It turns out that this is not only a crucial step for1077

effective Boolean Skolem function synthesis, but also has deep connections with1078

26 S. Akshay, Supratik Chakraborty

the area of knowledge representation and compilation. Indeed, in [4], this aspect1079

has been explored in detail, and an algorithm presented to compile a specifica-1080

tion given in CNF to a representational form (SynNNF) where the initial guesses of1081

Skolem functions can always be correctly made.1082

Another important consideration when guessing candidate Skolem functions1083

is the kind of “errors” that are allowed in the guessed functions. For example,1084

the work of [38, 5] requires the guessed Skolem functions to either be under-1085

approximations or over-approximations of correct Skolem functions. Thus, the1086

error in a candidate Skolem function is always one-sided in these approaches.1087

While this allows for easier proofs of soundness and termination (when applied in1088

conjunction with appropriate techniques for repair), the repair of guessed Skolem1089

functions with one-sided error may take longer in practice. Other more recent1090

approaches, e.g. [29], have relaxed the restriction of one-sided errors, and used1091

machine-learning based heuristics for arriving at good initial guesses of Skolem1092

functions, albeit with two-sided errors.1093

6.1.2 Checking the guess1094

This step involves deciding whether a guessed Skolem function vector suffices to1095

serve as a correct Skolem function vector for the given relational specification. If1096

the answer turns out to be in the negative, it is also useful to obtain a valuation1097

of the system inputs X for which at least one of the guessed Skolem functions1098

generates an incorrect value for the corresponding system output. It turns out1099

that this problem can be easily reduced to checking the unsatisfiability of an1100

appropriately constructed propositional formula, called the error formula in [38].1101

Given the relational specification ϕ(X,Y), suppose the vector of guessed Skolem
functions for the system outputs Y is Ψ = (ψ1, . . . ψn). Following [38], the error
formula for ϕ with respect to this guess is defined as:

εϕ,Ψ(X,Y,Y′) ≡ ϕ(X,Y′) ∧
n∧
i=1

(yi ⇔ ψi) ∧ ¬ϕ(X,Y)

Note that the first sub-formula in εϕ,Ψ has free variables from Y′ = (y′1, . . . y
′
n),1102

where each y′i is a fresh variable, not originally present in ϕ(X,Y). This sub-1103

formula asserts that there exists some valuation of Y that renders ϕ(X,Y) true.1104

This is needed in order to focus only on those assignments of X for which ϕ(X,Y)1105

is satisfiable. The second sub-formula in εϕ,Ψ assigns variables in Y to the values1106

given by the corresponding guessed Skolem functions in Ψ, and the third sub-1107

formula checks if this assignment falsifies the specification ϕ. As proved in [38, 5],1108

the formula εϕ,Ψ is unsatisfiable iff Ψ is a correct Skolem function vector for the1109

specification ϕ(X,Y).1110

Thus, checking if a candidate Skolem function vector suffices to serve as a cor-1111

rect Skolem function vector can be done using a single call to an NP-oracle. In1112

practice, a propositional satisfiability solver is used for this purpose, and this has1113

its own advantages. Unlike an NP-oracle that simply yields a “Yes”/”No” answer,1114

an invokation of a propositional satisfiability solver also generates a satisfying as-1115

signment, say π, of εϕ,Ψ(X,Y,Y′) in case the candidate Skolem function vector1116

is incorrect. From the definition of εϕ,Ψ, it is easy to see that in such a case, the1117

projection of π on X gives an assignment of system inputs for which at least one1118

Synthesizing Skolem functions: A view from theory and practice 27

guessed Skolem function in Ψ generates an incorrect value for the corresponding1119

system output. Indeed, there exists an assignment of system outputs (viz. projec-1120

tion of π on Y′) that satisfies the specification ϕ for the above assignment of X,1121

and yet the values given by the guessed Skolem function vector (viz. projection of1122

π on Y) fail to satisfy the specification with the same assignment of X.1123

6.1.3 The Art of Repairing1124

Finally, if the above check reports that the guessed Skolem function vector is incor-1125

rect, we need a way to repair the guess. As mentioned above, using a propositional1126

satisfiability solver to check the satisfiability of the error formula also gives us an1127

assignment of X,Y and Y′ that demonstrates why the guessed Skolem function1128

vector Ψ is not correct. This information is crucial in repairing the incorrect guess.1129

Indeed, multiple approaches have been used in the literature to repair incorrect1130

guesses of Skolem functions.1131

– In [38, 3, 5], the authors use an approach called expansion based repair. This1132

works when the guessed Skolem functions always have one-sided error. Intu-1133

itively, if a guessed Skolem function is an under-approximation of a correct1134

Skolem function, the set of assignments on which it evaluates to true must be1135

“expanded” to repair the guess. Similarly, if a guess Skolem function is an1136

over-approximation of a correct Skolem function, the set of assignments on1137

which it evaluates to false must be “expanded” to effect the repair. For every1138

Skolem function in error, the repair strategy ensures that errors, if any, of the1139

repaired Skolem function are of the same nature (i.e. under-approximation er-1140

ror or over-approximation error) as in the original erroneous Skolem function.1141

Thus, the erroneous Skolem function vector monotonically approaches a cor-1142

rect Skolem function vector, with at least one erroneous Skolem function in the1143

vector being changed in each iteration of repair. The actual repair is obtained1144

by examining the satisfying assignment returned by the (un)satisfiability check1145

of εϕ,Ψ to determine which Skolem functions in Ψ need to be repaired. In ad-1146

dition, the satisfying assignment is “generalized” to obtain a set of (instead of1147

a single) assignments of X for which the same expansion-based repair must be1148

applied. This helps in reducing the number of repair iterations, since a good1149

“generalization” may address problems that can arise with multiple valuations1150

of X. After each iteration of repair, the error formula is reconstructed for1151

the repaired Skolem function vector, and its (un)satisfiability checked again.1152

Since there are only finitely many valuations of X and finitely many Skolem1153

functions to repair, it is not hard to show that expansion based repair is guar-1154

anteed to terminate with a correct Skolem function vector. However, the way1155

in which the expansion is done crucially determines how fast and effective the1156

repair algorithm is. The interested reader is referred to [5] for more details of1157

expansion-based repair techniques.1158

– In [2], the authors use the circuit structure of the input specification to paral-1159

lelize the task of repairing an incorrectly guessed Skolem function vector. While1160

the basic approach remains one of expansion-based repair, the added benefit of1161

parallelization shows in significantly reduced synthesis times, as demonstrated1162

in [2].1163

– In a recent work [29], a new and powerful idea of repair has been used in a1164

guess-check-repair tool for solving BoolSkFnSyn. Specifically, the authors of [29]1165

28 S. Akshay, Supratik Chakraborty

delve deeper into the reason why an assignment of X leads some candidate1166

Skolem functions in Ψ to evaluate to the wrong values for the corresponding1167

system outputs. Using powerful techniques based on minimal unsatisfiable core1168

extraction, they are able to obtain significant generalizations starting from a1169

single satisfying assignment of εϕ,Ψ. This technique has the advantage that it1170

can repair initial guesses of Skolem functions that even have two-sided errors1171

(i.e. the guessed Skolem function is neither an under-approximation nor an1172

over-approximation of a correct Skolem function). As shown by an extensive1173

set of experiments in [29], allowing two-sided errors in the initial guesses of1174

Skolem functions chosen by means of machine learning techniques, followed1175

by powerful unsatisfiable core based repair techniques can be very effective in1176

synthesizing Boolean Skolem functions for a large set of benchmarks.1177

While we have given a high-level overview of some algorithms that implement1178

the guess-check-repair paradigm of solving BoolSkFnSyn, there appears to be a1179

lot of uncharted territory, and the last word on the topic of practically efficient1180

algorithm for BoolSkFnSyn is yet to be said. Our primary focus in this article has1181

been on the theory behind the algorithms. However, the proof of the pudding is1182

indeed in the eating, and we strong recommend the interested reader to go through1183

the relevant papers to see the practical performance of the ideas and algorithms1184

sketched above.1185

7 Conclusion1186

In this article, we have explained how Skolem function synthesis lies at the heart1187

of several lines of research. These have spanned from theoretical questions, both1188

about existence and explicit construction of Skolem functions in the general setting1189

of first order logic, to more practical questions about the computational hardness1190

and efficient algorithms in simpler settings. In the simplest case of the proposi-1191

tional setting, we have presented a deeper insight into computational hardness1192

issues, and also how specific properties of the representation of the specification1193

can be exploited to design practically efficient algorithms. Finally, we have dis-1194

cussed a powerful paradigm, called guess-check-repair, that has been instantiated1195

in multiple tools to obtain practically efficient strategies to solve the BoolSkFnSyn1196

problem on a large suite of benchmarks.1197

Multiple lines of research emerge most naturally from the results discussed1198

here. One immediate question is whether structural (or even functional) proper-1199

ties for representations of specifications can be identified for non-Boolean settings,1200

such that they allow efficient synthesis of Skolem functions. Furthermore, can we1201

lift the ideas and techniques for synthesis beyond Boolean specifications, to say1202

specifications in temporal logics? Similarly, the synthesis question discussed in1203

this article does not take into account dependency information for existentially1204

quantified variables. Finding Skolem functions for dependency quantified Boolean1205

formulas is an important problem, and it would be interesting to consider exten-1206

sions of existing BoolSkFnSyn techniques to solve this problem. Overall, given its1207

central importance, we hope researchers will be encouraged to pursue research on1208

synthesis of Skolem functions for richer classes of specifications, both from theo-1209

retical and practical points of view.1210

Synthesizing Skolem functions: A view from theory and practice 29

References1211

1. Akshay S, Chakraborty S (2021) On synthesizing Skolem func-1212

tions for first-order logic formulae. CoRR Identifier: 2102.07463,1213

(https://arxiv.org/abs/2102.07463)1214

2. Akshay S, Chakraborty S, John AK, Shah S (2017) Towards parallel boolean1215

functional synthesis. In: TACAS 2017 Proceedings, Part I, pp 337–353, URL1216

https://doi.org/10.1007/978-3-662-54577-5_191217

3. Akshay S, Chakraborty S, Goel S, Kulal S, Shah S (2018) How hard is boolean1218

functional synthesis. In: In CAV 2018 Proceedings, URL https://doi.org/10.1219

1007/978-3-662-54577-5_191220

4. Akshay S, Arora J, Chakraborty S, Krishna S, Raghunathan D, Shah S (2019)1221

Knowledge compilation for boolean functional synthesis. In: Proc. of Formal1222

Methods in Computer Aided Design (FMCAD)1223

5. Akshay S, Chakraborty S, Goel S, Kulal S, Shah S (2020) Boolean functional1224

synthesis: hardness and practical algorithms. Form Methods Syst Des DOI1225

https://doi.org/10.1007/s10703-020-00352-21226

6. Andersson G, Bjesse P, Cook B, Hanna Z (2002) A proof engine approach to1227

solving combinational design automation problems. In: Proceedings of the 39th1228

Annual Design Automation Conference, ACM, New York, NY, USA, DAC ’02,1229

pp 725–730, DOI 10.1145/513918.514101, URL http://doi.acm.org/10.1145/1230

513918.5141011231

7. Arora S, Barak B (2009) Computational Complexity: A Modern Approach,1232

1st edn. Cambridge University Press, USA1233

8. Balabanov V, Jiang JHR (2012) Unified QBF certification and its applications.1234

Form Methods Syst Des 41(1):45–65, DOI 10.1007/s10703-012-0152-6, URL1235

http://dx.doi.org/10.1007/s10703-012-0152-61236

9. Benedetti M (2005) sKizzo: A Suite to Evaluate and Certify QBFs. In: Proc.1237

of CADE, Springer-Verlag, pp 369–3761238

10. Beth E (1953) On Padoa’s method in the theory of definition.1239

Indagationes Mathematicae (Proceedings) 56:330–339, DOI https://doi.1240

org/10.1016/S1385-7258(53)50042-3, URL https://www.sciencedirect.com/1241

science/article/pii/S13857258535004231242

11. Biere A (1998) ABCD. http://fmv.jku.at/abcd/1243

12. Bockmayr A (1993) Logic Programming with Pseudo-Boolean Constraints,1244

MIT Press, Cambridge, MA, USA, pp 327–3501245

13. Boole G (1847) The Mathematical Analysis of Logic. Philosophical Library,1246

URL https://books.google.co.in/books?id=zv4YAQAAIAAJ1247

14. Brenguier R, Pérez GA, Raskin JF, Sankur O (2014) Abssynthe: abstract1248

synthesis from succinct safety specifications. In: Proceedings 3rd Workshop on1249

Synthesis (SYNT’14), Open Publishing Association, Electronic Proceedings in1250

Theoretical Computer Science, vol 157, pp 100–116, DOI 10.4204/EPTCS.157.1251

11, URL http://arxiv.org/abs/1407.5961v11252

15. Bryant RE (1986) Graph-based algorithms for boolean function manipu-1253

lation. IEEE Trans Comput 35(8):677–691, DOI 10.1109/TC.1986.1676819,1254

URL http://dx.doi.org/10.1109/TC.1986.16768191255

16. Buttner W, Simonis H (1987) Embedding boolean expressions into logic pro-1256

gramming. Journal of Symbolic Computation 4(2):191–2051257

30 S. Akshay, Supratik Chakraborty

17. Chakraborty S, Fried D, Tabajara LM, Vardi MY (2018) Functional synthesis1258

via input-output separation. In: 2018 Formal Methods in Computer Aided1259

Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, pp1260

1–91261

18. Chandrasekaran V, Srebro N, Harsha P (2008) Complexity of inference in1262

graphical models. In: UAI 2008, Proceedings of the 24th Conference in Uncer-1263

tainty in Artificial Intelligence, Helsinki, Finland, July 9-12, 2008, pp 70–781264

19. Dao TBH, Djelloul K (2006) Solving first-order constraints in the theory of1265

the evaluated trees. In: Proceedings of the Constraint Solving and Contraint1266

Logic Programming 11th Annual ERCIM International Conference on Recent1267

Advances in Constraints, Springer-Verlag, Berlin, Heidelberg, CSCLP’06, p1268

108–1231269

20. Darwiche A (2001) Decomposable negation normal form. J ACM 48(4):608–1270

6471271

21. Darwiche A (2001) On the tractable counting of theory models and its applica-1272

tion to truth maintenance and belief revision. Journal of Applied Non-Classical1273

Logics 11(1-2):11–341274

22. Darwiche A (2002) A compiler for deterministic, decomposable negation nor-1275

mal form. In: Proceedings of the Eighteenth National Conference on Artificial1276

Intelligence (AAAI), AAAI Press, Menlo Park, California, pp 627–6341277

23. Davis M, Matijasevic Y, Robinson J (1976) Hilbert’s tenth problem. diophan-1278

tine equations: positive aspects of a negative solution. In: Proceedings of sym-1279

posia in pure mathematics, vol 28, pp 323–3781280

24. De Micheli G (1994) Synthesis and Optimization of Digital Circuits, 1st edn.1281

McGraw-Hill Science/Engineering/Math, USA1282

25. Finkbeiner B (2016) Synthesis of reactive systems. In: Esparza J, Grumberg1283

O, Sickert S (eds) Dependable Software Systems Engineering, NATO Science1284

for Peace and Security Series - D: Information and Communication Security,1285

vol 45, IOS Press, pp 72–98, DOI 10.3233/978-1-61499-627-9-72, URL https:1286

//doi.org/10.3233/978-1-61499-627-9-721287

26. Fried D, Tabajara LM, Vardi MY (2016) BDD-based boolean functional syn-1288

thesis. In: Computer Aided Verification - 28th International Conference, CAV1289

2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pp 402–1290

4211291

27. Fu Z, Malik S (2007) Extracting logic circuit structure from conjunctive normal1292

form descriptions. In: 20th International Conference on VLSI Design (VLSI1293

Design 2007), Sixth International Conference on Embedded Systems (ICES1294

2007), 6-10 January 2007, Bangalore, India, IEEE Computer Society, pp 37–1295

421296

28. Ganian R, Szeider S (2017) New width parameters for model counting. In:1297

Theory and Applications of Satisfiability Testing – SAT 2017, Springer Inter-1298

national Publishing, pp 38–521299

29. Golia P, Roy S, Meel KS (2020) Manthan: A data-driven approach for boolean1300

function synthesis. In: Proceedings of International Conference on Computer-1301

Aided Verification (CAV)1302

30. Group BLV (2008) ABC: A system for sequential synthesis and verification1303

31. Hopcroft JE, Motwani R, Ullman JD (2006) Introduction to Automata The-1304

ory, Languages, and Computation (3rd Edition). Addison-Wesley Longman1305

Publishing Co., Inc., USA1306

Synthesizing Skolem functions: A view from theory and practice 31

32. Huth M, Ryan M (2004) Logic in Computer Science: Modelling and Reasoning1307

about Systems. Cambridge University Press, USA1308

33. Ignatiev A, Morgado A, Planes J, Marques-Silva J (2013) Maximal falsifiabil-1309

ity. In: Logic for Programming, Artificial Intelligence, and Reasoning, Springer1310

Berlin Heidelberg, Berlin, Heidelberg, pp 439–4561311

34. Impagliazzo R, Paturi R (2001) On the complexity of k-SAT. J Comput Syst1312

Sci 62(2):367–3751313

35. Jacobs S, Bloem R, Brenguier R, Könighofer R, Pérez GA, Raskin J, Ryzhyk1314

L, Sankur O, Seidl M, Tentrup L, Walker A (2015) The second reactive syn-1315

thesis competition (SYNTCOMP 2015). In: Proceedings Fourth Workshop on1316

Synthesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015., pp 27–571317

36. Jiang JHR (2009) Quantifier elimination via functional composition. In: Proc.1318

of CAV, Springer, pp 383–3971319

37. Jiang JR, Lin H, Hung W (2009) Interpolating functions from large boolean1320

relations. In: 2009 International Conference on Computer-Aided Design, IC-1321

CAD 2009, San Jose, CA, USA, November 2-5, 2009, pp 779–7841322

38. John A, Shah S, Chakraborty S, Trivedi A, Akshay S (2015) Skolem functions1323

for factored formulas. In: FMCAD, pp 73–801324

39. Jussila T, Biere A, Sinz C, Kröning D, Wintersteiger C (2007) A First Step1325

Towards a Unified Proof Checker for QBF. In: Proc. of SAT, LNCS, vol 4501,1326

Springer, pp 201–2141327

40. Kuehlmann A, Paruthi V, Krohm F, Ganai MK (2002) Robust boolean rea-1328

soning for equivalence checking and functional property verification. IEEE1329

Trans on CAD of Integrated Circuits and Systems 21(12):1377–1394, URL1330

http://dblp.uni-trier.de/db/journals/tcad/tcad21.html#KuehlmannPKG021331

41. Kukula JH, Shiple TR (2000) Building circuits from relations. In: Computer1332

Aided Verification, 12th International Conference, CAV 2000, Chicago, IL,1333

USA, July 15-19, 2000, Proceedings, pp 113–1231334

42. Kuncak V, Mayer M, Piskac R, Suter P (2010) Complete functional synthesis.1335

SIGPLAN Not 45(6):316–3291336

43. Lagniez JM, Marquis P (2017) An improved decision-DNNF compiler. In: Pro-1337

ceedings of the 24th International Joint Conference on Artificial Intelligence1338

(IJCAI), pp 667–6731339

44. Löwenheim L (1910) Über die Auflösung von Gleichungen in Logischen Gebi-1340

etkalkul. Math Ann 68:169–2071341

45. Macii E, Odasso G, Poncino M (2006) Comparing different boolean unification1342

algorithms. In: Proc. of 32nd Asilomar Conference on Signals, Systems and1343

Computers, pp 17–291344

46. Madsen M, van de Pol J (2020) Polymorphic types and effects with boolean1345

unification. Proceedings of the ACM on Programming Languages 4(OOPSLA)1346

47. Marijn Heule MS, Biere A (2014) Efficient Extraction of Skolem Functions1347

from QRAT Proofs. In: Formal Methods in Computer-Aided Design, FMCAD1348

2014, Lausanne, Switzerland, October 21-24, 2014, pp 107–1141349

48. Martin U, Nipkow T (1989) Boolean unification - the story so far. J Symb1350

Comput 7(3-4):275–293, DOI 10.1016/S0747-7171(89)80013-6, URL http://1351

dx.doi.org/10.1016/S0747-7171(89)80013-61352

49. Muise C, McIlraith SA, Beck JC, Hsu E (2012) DSHARP: Fast d-DNNF Com-1353

pilation with sharpSAT. In: Canadian Conference on Artificial Intelligence1354

32 S. Akshay, Supratik Chakraborty

50. Niemetz A, Preiner M, Lonsing F, Seidl M, Biere A (2012) Resolution-based1355

certificate extraction for QBF - (tool presentation). In: Theory and Appli-1356

cations of Satisfiability Testing - SAT 2012 - 15th International Conference,1357

Trento, Italy, June 17-20, 2012. Proceedings, pp 430–4351358

51. Oztok U, Darwiche A (2015) A top-down compiler for sentential decision dia-1359

grams. In: Proceedings of the 24th International Joint Conference on Artificial1360

Intelligence (IJCAI), pp 3141–31481361

52. Rabe MN (2019) Incremental determinization for quantifier elimination and1362

functional synthesis. In: Computer Aided Verification - 31st International Con-1363

ference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,1364

Part II, pp 84–941365

53. Rabe MN, Seshia SA (2016) Incremental determinization. In: Theory and Ap-1366

plications of Satisfiability Testing - SAT 2016 - 19th International Conference,1367

Bordeaux, France, July 5-8, 2016, Proceedings, pp 375–392, DOI 10.1007/978-1368

3-319-40970-2 23, URL https://doi.org/10.1007/978-3-319-40970-2_231369

54. Rabe MN, Tentrup L, Rasmussen C, Seshia SA (2018) Understanding and ex-1370

tending incremental determinization for 2QBF. In: Computer Aided Verifica-1371

tion - 30th International Conference, CAV 2018, Held as Part of the Federated1372

Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part1373

II, pp 256–2741374

55. Rivest R (1987) Learning decision lists. Machine Learning 2(3):229–2461375

56. Shah P, Bansal A, Akshay S, Chakraborty S (2021) A normal form character-1376

ization for efficient boolean skolem function synthesis. CoRR abs/2104.14098,1377

URL https://arxiv.org/abs/2104.14098, 2104.140981378

57. Shukla A, Bierre A, Siedl M, Pulina L (2019) A survey on applications of1379

quantified boolean formula. In: Proceedings of the Thirty-First International1380

Conference on Tools with Artificial Intelligence (ICTAI), pp 78–841381

58. Silva JPM, Lynce I, Malik S (2021) Conflict-driven clause learning sat solvers.1382

In: Biere A, Heule M, van Maaren H, Walsch T (eds) Handbook of Satisfia-1383

bility, IOS Press, chap 4, pp 131–1531384

59. Simonis H, Dincbas M (1987) Using an extended Prolog for digital circuit1385

design. In: IEEE International Workshop on AI Applications to CAD Systems1386

for Electronics, Springer International Publishing, pp 165–1881387

60. Slivovsky F (2020) Interpolation-based semantic gate extraction and its ap-1388

plications to QBF preprocessing. In: Computer Aided Verification - 32nd In-1389

ternational Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020,1390

Proceedings, Part I, Springer, Lecture Notes in Computer Science, vol 12224,1391

pp 508–5281392

61. Solar-Lezama A, Rabbah RM, Bod́ık R, Ebcioglu K (2005) Programming1393

by sketching for bit-streaming programs. In: Proceedings of the ACM SIG-1394

PLAN 2005 Conference on Programming Language Design and Implementa-1395

tion, Chicago, IL, USA, June 12-15, 2005, pp 281–2941396

62. Somenzi F (1999) Binary decision diagrams. In: Calculational System Design,1397

vol. 173 of NATO Science Series F, IOS Press, pp 303–3661398

63. Somenzi F (2008) CUDD: CU decision diagram package release 2.5.0. http:1399

//vlsi.colorado.edu/~fabio/CUDD/1400

64. Srivastava S, Gulwani S, Foster JS (2013) Template-based program verification1401

and program synthesis. STTT 15(5-6):497–5181402

Synthesizing Skolem functions: A view from theory and practice 33

65. Tabajara LM, Vardi MY (2017) Factored boolean functional synthesis. In: 20171403

Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria,1404

October 2-6, 2017, pp 124–1311405

66. Trivedi A (2003) Techniques in symbolic model checking. Master’s thesis, In-1406

dian Institute of Technology Bombay, Mumbai, India1407

67. Tseitin GS (1968) On the complexity of derivation in propositional calculus.1408

Structures in Constructive Mathematics and Mathematical Logic, Part II,1409

Seminars in Mathematics pp 115–1251410

