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Automatically reasoning about programs is of significant interest to the program
verification, compiler development and software testing communities. While prop-
erty checking for programs is undecidable in general, techniques for reasoning
about specific classes of properties have been developed and successfully applied
in practice. In this article, we discuss three automata based techniques for reason-
ing about programs that dynamically allocate and free memory from the heap.
Specifically, we discuss a regular model checking based approach, an approach
based on storeless semantics of programs and Hoare-style reasoning, and a counter
automaton based approach.

1.1. Introduction

Automata theory has been a key area of study in computer science, both for the the-

oretical significance of its results as well as for the remarkable success of automata

based techniques in diverse application areas. Interesting examples of such appli-

cations include pattern matching in text files, converting input strings to tokens

in lexical analyzers (used in compilers), formally verifying properties of programs,

solving Presburger arithmetic constraints, machine learning and pattern recogni-

tion, among others. In this article, we focus on one such class of applications, and

discuss how automata techniques can be used to formally reason about computer

programs that dynamically allocate and free memory from the heap.

Formally reasoning about programs has interested computer scientists since the

days of Alan Turing. Among the more difficult problems in this area is analysis

of programs that manipulate dynamic linked data structures. This article is an

overview of three important automata based techniques to address this problem.

It is not meant to be an exhaustive overview of all automata-based techniques for

reasoning about programs. Instead, we look at three different and interesting ap-

proaches, and explain them in some detail. To lend concreteness to the problem, we

wish to answer the following question: Given a sequential program that manipulates
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dynamic linked data structures by means of creation and deletion of memory cells

and updation of links between them, how do we prove assertions about the result-

ing structures in heap memory (e.g. linked lists, trees, etc.)? This problem, also

commonly called shape analysis, has been the subject of extensive research over

the last few decades. Simple as it may seem, answering the above question in its

complete generality is computationally impossible or undecidable. Nevertheless, its

practical significance in optimization and verification of programs has motivated

researchers to invest significant effort in studying special classes of programs and

properties. The resulting advances in program analysis techniques have borrowed

tools and techniques from different areas of computer science and mathematics.

In this article, we restrict our discussion to a subset of these techniques that are

based on automata theory. Specifically, we discuss the following three techniques for

shape analysis: (i) regular model checking, (ii) Hoare-style reasoning using a store-

less semantics, and (iii) a counter automaton based abstraction technique. These

techniques also provide insights into how more general cases of the problem might

be solved in future.

The remainder of this article is organized as follows. Section 1.2 presents nota-

tion, definitions and some key automata-theoretic results that are used subsequently.

Section 1.3 discusses a simple imperative programming language equipped with con-

structs to dynamically allocate and free memory, and to update selectors (fields)

of dynamically allocated memory locations. The example programs considered in

this article are written in this language. Section 1.4 provides an overview of the

challenges involved in reasoning about heap manipulating programs. Sections 1.5,

1.6 and 1.7 describe three automata based techniques for reasoning about programs

manipulating heaps. Specifically, we discuss finite word based regular model check-

ing in Section 1.5, and show how this can be used for shape analysis. Section 1.6

presents a regular language (automaton) based storeless semantics for our program-

ming language, and a logic for reasoning about programs using this semantics. We

show in this section how this logic can be used in Hoare-style reasoning about pro-

grams. A counter automaton based abstraction of programs manipulating singly

linked lists is discussed in Section 1.7. Finally, section 1.8 concludes the article.

1.2. Automata notation and preliminaries

Let Σ be a finite alphabet and let Σ∗ denote the set of all finite words on Σ.

Note that Σ∗ contains ε – the empty word of length 0. A language over Σ is a

(possibly empty) subset of Σ∗. A finite-state transition system over Σ is a 4−tuple

B = (Q,Σ, Q0, δ) where Q is a finite set of states (also called control locations),

Q0 ⊆ Q is the set of initial states, and δ ⊆ Q × Σ × Q is the transition relation.

If |Q0| = 1 and δ is a function from Q × Σ to Q, we say that B is a deterministic

finite-state transition system. Otherwise, we say that B is non-deterministic. A

finite-state automaton A over Σ is a finite-state transition system equipped with a
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set of designated final states. Thus, A = (Q,Σ, Q0, δ, F ), where B = (Q,Σ, Q0, δ)

is a finite-state transition system and F ⊆ Q is a set of final states. The notation

|A| is often used to refer to the number of states (i.e., |Q|) of automaton A.

The transition relation δ induces a relation δ̂ ⊆ Q×Σ∗×Q, defined inductively as

follows: (i) for every q ∈ Q, (q, ε, q) ∈ δ̂, and (ii) for every q1, q2, q3 ∈ Q, w ∈ Σ∗ and

a ∈ Σ, if (q1, w, q2) ∈ δ̂ and (q2, a, q3) ∈ δ, then (q1, w.a, q3) ∈ δ̂, where “.” denotes

string concatenation. A word w ∈ Σ∗ is said to be accepted by the automaton A

iff (q, w, q′) ∈ δ̂ for some q ∈ Q0 and q′ ∈ F . The set of all words accepted by A is

called the language of A, and is denoted L(A). A language that is accepted by a

finite-state automaton is said to be regular.

Given languages L1 and L2, we define the language concatenation operator as

L1·L2 = {w | ∃x ∈ L1, ∃y ∈ L2, w = x.y}. For a language L, the language Li is

defined as follows: L0 = {ε}, and Li = Li−1·L, for all i ≥ 1. The Kleene-closure

operator on languages is defined as L∗ = {w | ∃i ≥ 0, w ∈ Li}. We define the left

quotient of L2 with respect to L1 as L
−1
1 L2 = {w | w ∈ Σ∗and ∃v ∈ L1, v.w ∈ L2}.

If L1 = ∅, we define L−1
1 L2 = ∅ in all cases, including when L2 = ∅.

The following results from automata theory are well-known and their proofs can

be found in Hopcroft and Ullman’s book [1].

(1) If A1 and A2 are finite-state automata on an alphabet Σ, there exist effective

constructions of finite-state automata accepting each of L(A1)∪L(A2), L(A1)∩

L(A2), Σ
∗ \ L(A1), L(A1)·L(A2), L

∗(A1) and L(A1)
−1L(A2).

(2) For every non-deterministic finite-state automaton A1, there exists a determin-

istic finite-state automaton A2 such that L(A1) = L(A2) and |A2| ≤ 2|A1|.

(3) For every deterministic finite-state automaton A, there exists a minimal de-

terministic finite-state automaton Amin that is unique up to isomorphism and

has L(A) = L(Amin). Thus, any deterministic finite-state automaton accepting

L(A) must have at least as many states as |Amin|.

Let L be a language, and let RL be a binary relation on Σ∗ × Σ∗ defined as

follows: ∀x, y ∈ Σ∗, (x, y) ∈ RL iff ∀z ∈ Σ∗, x.z ∈ L ⇔ y.z ∈ L. The relation

RL is easily seen to be an equivalence relation. Therefore, RL partitions Σ∗ into a

set of equivalence classes. A famous theorem due to Myhill and Nerode (see [1] for

a nice exposition) states that a language L is regular iff the index of RL is finite.

Furthermore, there is no deterministic finite-state automaton that recognizes L and

has fewer states than the index of RL.

A finite state transducer over Σ is a 5−tuple τ = (Q,Σε ×Σε, Q0, δτ , F ), where

Σε = Σ∪{ε} and δτ ⊆ Q×Σε×Σε×Q. Similar to the case of finite state automata,

we define δ̂τ ⊆ Q × Σ∗ × Σ∗ × Q as follows: (i) for every q ∈ Q, (q, ε, ε, q) ∈ δ̂τ ,

and (ii) for every q1, q2, q3 ∈ Q, u, v ∈ Σ∗ and a, b ∈ Σε, if (q1, u, v, q2) ∈ δ̂τ and

(q2, a, b, q3) ∈ δτ , then (q1, u.a, v.b, q3) ∈ δ̂τ . The transducer τ defines a regular

binary relation Rτ = {(u, v) | u, v ∈ Σ∗ and ∃q ∈ Q0, ∃q
′ ∈ F, (q, u, v, q′) ∈ δ̂τ}.

For notational convenience, we will use τ for Rτ when there is no confusion. Given
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a language L ⊆ Σ∗ and a binary relation R ⊆ Σ∗ ×Σ∗, we define R(L) = {v | ∃u ∈

L, (u, v) ∈ R}. Given binary relations R1 andR2 on Σ∗, we useR1◦R2 to denote the

composed relation {(u, v) | u, v ∈ Σ∗ and ∃x ∈ Σ∗, ((u, x) ∈ R1 and (x, v) ∈ R2)}.

Let id ⊆ Σ∗×Σ∗ denote the identity relation on Σ∗. For every relation R ⊆ Σ∗×Σ∗,

we define R0 = id, and Ri+1 = R ◦Ri for all i ≥ 0.

With this background, we now turn our attention to reasoning about heap ma-

nipulating programs using automata based techniques.

1.3. A language for heap manipulating programs

Memory locations accessed by a program can be either statically allocated or dy-

namically allocated. Storage represented by statically declared program variables

are allocated on the stack when the program starts executing. If the program also

dynamically allocates memory, the corresponding storage comes from a logical pool

of free memory locations, called the heap. In order for a program to allocate, de-

allocate or access memory locations from the heap, special constructs are required in

the underlying programming language. We present below a simple imperative pro-

gramming language equipped with these constructs. Besides supporting allocation

and de-allocation of memory from the heap, our language also supports updating

and reading from selectors (or fields) of allocated memory locations. This makes

it possible to write interesting heap manipulating programs using our language. In

order to keep the discussion focused on heaps, we will henceforth be concerned only

with link structures between allocated memory locations. Therefore we restrict our

language to have a single abstract data type, namely pointer to a memory location.

All other data-valued selectors (or fields) of memory locations are assumed to be

abstracted away, leaving only pointer-valued selectors.

Dynamically allocated memory locations are also sometimes referred to as heap

objects in the literature. Similarly, selectors of such memory locations are some-

times referred to as fields of objects. In this article, we will consistently use the

terms memory locations and selectors to avoid confusion with objects and fields in

the sense of object-oriented programs. The syntax of our language is given in

Table 1.1. Syntax of our programming language

PVar ::= u | v | . . . (pointer-valued variables)
FName ::= n | f | . . . (pointer-valued selectors)

PExp ::= PVar | PVar->FName
BExp ::= PVar = PVar | Pvar = nil | not BExp | BExp or BExp | BExp and BExp

Stmt ::= AsgnStmt | CondStmt | LoopStmt | SeqCompStmt | AllocStmt | FreeStmt
AsgnStmt ::= PExp := PVar | PVar := PExp | PExp := nil

AllocStmt ::= PVar := new

FreeStmt ::= free(PVar)

CondStmt ::= if (BoolExp) then Stmt else Stmt

LoopStmt ::= while (BoolExp) do Stmt

SeqCompStmt ::= Stmt ; Stmt
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Table 1.1. Here, PExp represents a pointer expression obtained by concatenating at

most one selector to a pointer-valued variable. BExp represents Boolean expressions

on pointer variables, and are constructed using two basic predicates: the “=” pred-

icate for checking equality of two pointer variables, and the “= nil” predicate for

checking if a pointer variable has the nil value. AllocStmt represents a statement

for allocating a fresh memory location in the heap. A pointer to the freshly allo-

cated location is returned and assigned to a pointer variable. FreeStmt represents a

statement for de-allocating a previously allocated heap memory location pointed to

by a pointer variable. The remaining constructs are standard and we skip describing

their meanings.

We restrict the use of long sequences of selectors in our language. This does

not sacrifice generality since reference to a memory location through a sequence

of k selectors can be effected by introducing k − 1 fresh temporary variables, and

using a sequence of assignment statements, where each statement uses at most

one selector. Our syntax for assignment statements also disallows statements of

the form u->f := v->n. The effect of every such assignment can be achieved by

introducing a fresh temporary variable z and using a sequence of two assignments:

z := v->n; u->f := z instead. For simplicity of analysis, we will further assume

that assignment statements of the form u := u are not allowed. This does not

restrict the expressiveness of the language, since u := u may be skipped without

affecting the program semantics. Assignment statements of the form u := u->n

frequently arise in programs that iterate over dynamically created linked lists. We

allow such assignments in our language for convenience of programming. However,

we will see later that for purposes of analysis, it is simpler to replace every occurrence

of u := u->n by z := u->n; u := z where z is a fresh temporary variable.

Example 1.1. The following program written in the above language searches a

linked list pointed to by hd for the element pointed to by x. On finding this element,

the program allocates a new memory location and inserts it as a new element in

the list immediately after the one pointed to by x. The relative order of all other

elements in the list is left unchanged.

Table 1.2. A program manipulating a linked list

L1: t1 := hd; L6: t2->n := t3;

L2: while (not (t1 = nil)) do L7: x->n := t2;

L3: if (t1 = x) then L8: t1 := t1->n;

L4: t2 := new; L9: else t1 := t1->n

L5: t3 := x->n; L10: // end if-then-else, end while-do
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1.4. Challenges in reasoning about heap manipulating programs

Given a heap manipulating program such as the one in Example 1.1, there are

several interesting questions that one might ask. For example, can the program

de-reference a null pointer, leading to memory access error? Or, if hd points to

an (a)cyclic linked list prior to execution of the program, does it still point to an

(a)cyclic linked list after the program terminates? Alternatively, can executing the

program lead to memory locations allocated in the heap, but without any means

of accessing them by following selectors starting from program variables? The

generation of such “orphaned” memory locations, also called garbage, is commonly

referred to as memory leak . Yet other important problems concern finding pairs

of pointer expressions that refer to the same memory location at a given program

point during some or all executions of the program. This is also traditionally called

may- or must-alias analysis , respectively.

Unfortunately, reasoning about heap manipulating programs is difficult. A key

result due to Landi [2] and Ramalingam [3] shows that even a basic problem like

may-alias analysis admits undecidability for languages with if statements, while

loops, dynamic memory allocation and recursive data structures (like linked lists and

trees). Therefore any reasoning technique that can be used to identify may-aliases in

programs written in our language must admit undecidability. This effectively rules

out the existence of exact algorithms for most shape analysis problems. Research in

shape analysis has therefore focused on sound techniques that work well in practice

for useful classes of programs and properties, but are conservative in general.

A common problem that all shape analysis techniques must address is that

of representing the heap in a succinct yet sufficiently accurate way for answering

questions of interest. Since our language permits only pointer-valued selectors, the

heap may be viewed as a set of memory locations with a link structure arising from

values of selectors. A natural representation of this view of the heap is a labeled

directed graph. Given a program P , let Σp and Σf denote the set of variables and set

of selectors respectively in P . We define the heap graph as a labeled directed graph

GH = (V,E, vnil, λ, µ), where V denotes the set of memory locations allocated by the

program and always includes a special vertex vnil to denote the nil value of pointers,

E ⊆ (V \{vnil})×V denotes the link structure between memory locations, λ : E →

2Σf \ {∅} gives the labels of edges, and µ : Σp →֒ V defines the (possibly partial)

mapping from pointer variables to memory locations in the heap. Specifically, there

exists an edge (u, v) with label λ((u, v)) in graph GH iff for every f ∈ λ((u, v)),

selector f of memory location u points to memory location v, or to nil (if v = vnil).

Similarly, for every variable x ∈ Σp, µ(x) = v iff x points to memory location v, or

to nil (if v = vnil).

Since a program may allocate an unbounded number of memory locations, the

size of the heap graph may become unbounded in general. This makes it difficult

to use an explicit representation of the graph, and alternative finite representations
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must be used. Unfortunately, representing unbounded heap graphs finitely comes

at the cost of losing some information about the heap. The choice of representation

formalism is therefore important: the information represented must be sufficient

for reasoning about properties we wish to study, and yet unnecessary details must

be abstracted away. In order to model the effect of program statements, it is

further necessary to define the operational semantics of individual statements in

terms of the chosen representation formalism. Ideally, the representation formalism

should be such that the operational semantics is definable in terms of efficiently

implementable operations on the representation. A reasoning engine must then use

this operational semantics to answer questions pertaining to the state of the heap

resulting from execution of an entire program. Since the choice of formalism for

representing the heap affects the complexity of analysis, a careful balance must

be struck between expressiveness of the formalism and decidability or complexity

of reasoning with it. In the following three sections, we look at three important

automata based techniques for addressing the above issues.

1.5. Shape analysis using regular model checking

Model checking refers to a class of techniques for determining if a finite or infinite

state model of a system satisfies a property specified in a suitable logic [4]. The

state transition model is usually obtained by defining a notion of system state, and

by defining a transition relation between states to represent the small-step opera-

tional semantics of the system. In symbolic model checking [4], sets of states are

represented symbolically, rather than explicitly. Regular model checking, hence-

forth called RMC, is a special kind of symbolic model checking, in which words or

trees over a suitable alphabet are used to represent states. Symbolic model checking

using word based representation of states was first introduced by Kesten et al [5]

and Fribourg [6]. Subsequently, significant advances have been made in this area

(see [7] for an excellent survey). While RMC is today used to refer to a spectrum of

techniques that use finite/infinite words, trees or graphs to represent states, we will

focus on finite word based representation of states in the present discussion. Specif-

ically, the works of Jonsson, Nilsson, Abdulla, Bouajjani, Moro, Touilli, Habermehl,

Vojnar and others [7–14] form the basis of our discussion on RMC.

If individual states are represented as finite words, a set of states can be rep-

resented as a language of finite words. Moreover, if the set is regular, it can be

represented by a finite-state automaton. In the remainder of this section, we will

refer to a state and its word-representation interchangeably. Similarly, we will refer

to a set of states and its corresponding language representation interchangeably.

The small-step operational semantics of the system is a binary relation that relates

pairs of words representing the states before and after executing a statement. The

state transition relation can therefore be viewed as a word transducer. For several

classes of systems, including programs manipulating singly linked lists, the state
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transition relation can indeed be modeled as a finite state transducer. Given a reg-

ular set I of words representing the initial states, and a finite state transducer τ ,

automata theoretic constructions can be used to obtain finite state representations

of the sets (languages) Ri
τ (I), i ≥ 1, where Rτ is the binary relation defined by τ

and Ri
τ = Rτ ◦ (Rτ ◦ (· · · (Rτ ◦Rτ ) · · · ))︸ ︷︷ ︸

i

. For notational convenience, we will use

τ i(I) to denote Ri
τ (I), when there is no confusion. The limit language τ∗(I), de-

fined as
⋃

i≥0
τ i(I), represents the set of all states reachable from some state in I

in finitely many steps. Given a regular set Bad of undesired states, the problem of

determining if some state in Bad can be reached from I therefore reduces to check-

ing if the languages Bad and τ∗(I) have a non-empty intersection. Unfortunately,

computing τ∗(I) is difficult in general, and τ∗(I) may not be regular even when

both I and τ are regular. A common approach to circumvent this problem is to use

an upper approximation of τ∗(I) that is both regular and efficiently computable.

We briefly survey techniques for computing such upper approximations later in this

section.

1.5.1. Program states as words

To keep things simple, let us consider the class of programs that manipulate dy-

namically linked data structures, but where each memory location has a single

pointer-valued selector. The program in Example 1.1 belongs to this class. We

will treat creation of garbage as an error, and will flag the possibility of garbage

creation during our analysis. Hence, for the remainder of this discussion, we will

assume that no garbage is created. Under this assumption, the heap graph at any

snapshot of execution of a program (in our chosen class) consists of singly linked

lists, with possible sharing of elements and circularly linked structures. Figure 1.1

shows three examples of such heap graphs.

z A B C D

Ewx

F

y G

hd

M2 t1x,

(a) (b) (c)

hd

t1

x

M1

M2

Fig. 1.1. Shared lists

Adapting the terminology of Manevich et al [15], we say that a node v in the

heap graph is heap-shared if either (i) there are two or more distinct nodes with

edges to v, or (ii) v is pointed to by a program variable and there is a node with an
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edge to v. Furthermore, a node v is called an interruption if it is either heap-shared

or pointed to by a program variable. As an example, the heap graph depicted in

Figure 1.1a has two heap-shared nodes (B and D) and five interruptions (A, B, D,

E and G). It can be shown that for a program (in our class) with n variables, the

number of heap-shared nodes and interruptions in the heap graph is bounded above

by n and 2n, respectively [15]. The heap graph can therefore be represented as a set

of at most 2n uninterrupted list segments, where each uninterrupted list segment

has the following properties: (i) the first node is an interruption, (ii) either the last

node is a heap-shared node, or the selector of the last node is uninitialized or points

to nil, and (iii) no other node in the uninterrupted list segment is an interruption.

As an example, the heap graph in Figure 1.1a has five uninterrupted list segments:

A→ B, B → C → D, D → F → D, E → D and G→ nil.

The above observation motivates us to represent a heap graph as a set of unin-

terrupted list segments. To represent a list segment, we first assign a unique name

to every heap-shared node, and rank the set of all names (heap-shared node names

and program variable names). Note that names are assigned only to heap-shared

nodes and not to all nodes in the heap graph. Since the number of heap-shared

nodes is bounded by the number of program variables, a finite number of names suf-

fices for our purpose. Ranking names allows us to represent a set of names uniquely

as a rank-ordered sequence of names. An uninterrupted list segment with r nodes,

each having a single selector named n, can then be represented by listing the set of

names (program variable names and/or heap-shared node name) corresponding to

the first node in the list segment, followed by r copies of .n (selector name), followed

by M , ⊤, or ⊥, depending on whether the last node is heap-shared with name M ,

or the selector of the last element is uninitialized or points to nil, respectively. A

heap graph can then be represented as a word obtained by concatenating the repre-

sentation of each uninterrupted list segment, separated by a special symbol, say |.

For example, if the selector in the heap graph shown in Figure 1.1a is named n, then

this graph can be represented by the word z.nB |xB.n.nD |D.n.nD |w.nD | y.n⊥ ,

where we have assumed that names in lower case (e.g., x) are ranked before those in

upper case (e.g., B). Note that the order in which the list segments are enumerated

is arbitrary. Hence a heap graph may have multiple word representations. Since the

number of heap-shared nodes is bounded above by the number of program variables,

it is useful to have a statically determined pool of ranked names for heap-shared

nodes of a given program. Whenever a new heap-shared node is created (by the

action of a program statement), we can assign a name to it from the set of unused

names in this pool. Similarly, when a heap-shared node ceases to be heap-shared

(by the action of a program statement), we can add its name back to the pool of

unused names. While this allows us to work with a bounded number of names for

heap-shared nodes, it also points to the need for reclaiming names for reuse. We will

soon see details of how special modes of computation are used to reclaim unused

names for heap-shared nodes.
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In order to represent the state of a heap manipulating program, we need to

keep track of some additional information beyond representing the heap graph.

Given a program with k variables, let ΣM = {M0,M1,M2, . . .Mk} be a set of

k + 1 rank-ordered names for heap-shared nodes of the program, and let ΣL be

the set of program locations. We follow the approach of Bouajjani et al [12], and

represent the program state as a word w = |w1|w2|w3|w4|w5|, where w5 is a word

representation of the heap graph as described above, and | does not appear in any of

w1, w2, w3 or w4. Sub-word w1 contains the current program location (∈ ΣL) and a

flag indicating the current mode of computation. This flag takes values from the set

ΣC = {CN , C0, C1, C2, . . . Ck}, where k is the number of program variables. A value

of CN for the flag denotes normal mode of computation. A value of Ci (0 ≤ i ≤ k)

for the flag denotes a special mode of computation used to reclaim Mi as an unused

name for heap-shared nodes. Sub-word w2 contains a (possibly empty) rank-ordered

sequence of unused names for heap-shared nodes. Sub-words w3 and w4 contain

(possibly empty) rank-ordered sequences of variable names that are uninitialized

and set to nil, respectively. Using this convention, every program state can be

represented as a finite word over the alphabet Σ = ΣC∪ΣL∪ΣM ∪Σp∪{⊤,⊥, |, .n},

where Σp is the set of all program variables, and all selectors have the name n. We

also restrict every heap-shared node in a program state to have exactly one name

from the set ΣM .

As an example, suppose Figure 1.1b represents the heap graph when the

program in Example 1.1 is at location L9 during the second iteration of the

while loop, and suppose variables t2 and t3 are uninitialized. Since there

are 5 program variables, ΣM = {M0,M1,M2,M3,M4,M5}. The state of

the program at this point of execution can be represented by the word α =

|CN L9 |M0M3M4M5 | t2 t3 | |hd.nM1 | t1M1.nM2 |xM2.n.n⊥ |. The sub-word

t2 t3 of α encodes the fact that both t2 and t3 are uninitialized. Moreover, since

there are no variables with the nil value, we have an empty list between a pair

of consecutive separators (i.e., | |) after t2 t3. Similarly, if Figure 1.1c represents

the heap graph when the program is at location L10 in the second iteration of

the while loop, the corresponding program state can be represented by the word

α′ = |CN L10 |M0M1M3M4M5 | t2 t3 | |hd.n.nM2 |x t1M2.n.n⊥|. Note that M1

has been reclaimed as an unused name for heap-shared nodes in α′, since the node

named M1 in Figure 1.1b is no longer heap-shared in Figure 1.1c.

1.5.2. Operational semantics as word transducers

Having seen how program states can be represented as finite words, we now dis-

cuss how operational semantics of program statements can be represented as non-

deterministic finite state word transducers. Given a program in our language, we

assume without loss of generality that each program location is associated with at

most one primitive statement, i.e., AsgnStmt, AllocStmt or FreeStmt as described

in Table 1.1. Each compound statement, i.e. CondStmt, LoopStmt or SeqCompStmt
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as described in Table 1.1, is assumed to be split across multiple program locations to

ensure that no program location is associated with more than one primitive state-

ment. Specifically, for conditional statements, we assume that the first program

location is associated with the partial statement “if (BoolExp) then”, while for

loop statements, the first program location is assumed to be associated with the

partial statement “while (BoolExp) do”. Example 1.1 illustrates how a program

with multiple compound statements can be written in this manner. Given a pro-

gram such that no program location is associated with more than one primitive

statement, we construct a separate transducer for the statement (or part of it)

at each program location. We also construct transducers for reclaiming names of

heap-shared nodes without changing the actual heap graph, program location or

values of variables. Finally, these individual transducers are non-deterministically

combined to give an overall word transducer for the entire program. For notational

convenience, we will henceforth refer to both the statement and part of a statement

at a given program location as the statement at that location.

Given a word w = |w1|w2|w3|w4|w5| representing the current program state, it

follows from the discussion in Section 1.5.1 that (i) the sub-word |w1|w2|w3|w4| is

bounded in length, and (ii) w5 encodes a bounded number of uninterrupted list seg-

ments. Furthermore, each list segment encoded in w5 has a bounded set of names

for its first element, and either a name or ⊤ or ⊥ as its last element. Therefore,

the only source of unboundedness in w is the length of sequences of .n’s in the

list segments represented in w5. Hence, we will assume that each transducer reads

|w1|w2|w3|w4| and remembers the information in this bounded prefix in its finite

memory before reading and processing w5. Similarly, we will assume that when

reading a list segment in w5, each transducer reads the (bounded) set of names

representing the first element of the segment, and remembers this in its finite mem-

ory before reading the sequence of .n’s. Every transducer is also assumed to have

two special ”sink” states, denoted qmem and qerr, with self looping transitions on

all symbols of the alphabet. Of these, qmem is an accepting state, while qerr is a

non-accepting state. A transducer transitions to qmem on reading an input word

if it detects creation of garbage, or de-referencing of an uninitialized or nil-valued

pointer. Such a transition is also accompanied by insertion of a special sequence

of symbols, say ⊤⊤⊤, in the word representation of the next state. Note that the

sequence ⊤⊤⊤ never appears in a word representation of a valid program state.

Subsequently, whenever a transducer sees this special sequence in the word repre-

sentation of the current state, it transitions to qmem and retains the ⊤⊤⊤ sequence

in the word representation of the next state. This ensures that the ⊤⊤⊤ sequence,

one generated, survives repeated applications of the transducer, and manifests itself

in the word representation of the final set of reached states. A transducer transi-

tions to qerr if it reads an unexpected input. In addition, it transitions to qerr if it

made an assumption (or guess) about an input word, but subsequently, on reading

more of the input word, the assumption was found to be incorrect.
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The ability to make a non-deterministic guess and verify it subsequently is par-

ticularly useful in our context. To see why this is so, suppose the current program

statement is t3 := x->n (statement at location L5 in Example 1.1) and the current

program state is w = |w1|w2|w3|w4|w5|. The transducer must read w and generate

the word representation of the next program state, say w′ = |w′
1|w

′
2|w

′
3|w

′
4|w

′
5|. Re-

call that w′
3 and w′

4 are required to be rank-ordered sequences of program variables

names that are uninitialized and set to nil, respectively, in the next program state.

In order to determine w′
3 and w

′
4, the transducer must determine if program variable

t3 is set to an uninitialized value or to nil after execution of t3 := x->n. This

requires knowledge of whether x->n is uninitialized or nil in the current program

state. This information is encoded in sub-word w5 that represents the uninterrupted

list segments in the current program state. Therefore, the transducer must read w5

before it can generate either w′
3 or w′

4. In addition, the transducer also needs to

read w5 in order to generate w′
5. This is because the uninterrupted list segments

in the next program state (encoded by w′
5) are the same as those in the current

program state (encoded by w5), modulo changes effected by the current program

statement. Since w′
5 appears to the right of w′

3 and w′
4 in w′, it can be generated

only after w′
3 and w′

4 have been generated. However, as seen above, generating

w′
3 and w′

4 requires reading the whole of w5 in general. Therefore, the transducer

must remember w5 as it reads w. Unfortunately, the uninterrupted list segments

encoded in w5 are unbounded in general, and a finite state transducer cannot re-

member unbounded information . One way to circumvent this problem is to have

the transducer non-deterministically guess whether x->n is uninitialized or nil in

w5, generate w
′
3 and w′

4 accordingly, remember this guess in its finite memory, and

proceed to reading w5 and generating w′
5. As w5 is read, if the transducer detects

that its guess was incorrect, it must abort the transduction. This is achieved by

transitioning to qerr.

Transducers for program statements: We now describe how transducers for

statements at different program locations are constructed. Using the same notation

as before, let w = |w1|w2|w3|w4|w5| be the input word read by the transducer and

w′ = |w′
1|w

′
2|w

′
3|w

′
4|w

′
5| be the output word generated by it. We will see how each

of the five components of w′ are generated. Let us begin with w′
1. The transducer

for the statement at location Li expects its input to begin with |CNLi|, i.e. w1

should be CNLi. On seeing any input with a different prefix, the transducer simply

transitions to qerr. Otherwise, the transducer non-deterministically chooses to enter

mode Cj (0 ≤ j ≤ k) for reclaiming heap-shared node name Mj , or remain in mode

CN . In the former case, the transducer changes CN to Cj and copies the rest of the

input word w unchanged to its output. In the latter case, the transducer retains CN

as the first letter of w′
1. It then determines the next program location that would

result after executing the statement at location Li. For several statements (e.g., all

statements except those at L2 and L3 in Example 1.1), the next program location
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can be statically determined, and the transducer replaces Li with the corresponding

next program location in w′
1. For other statements (e.g. those at L2 and L3 in

Example 1.1), the next program location has one of two possible values, depending

on the truth value of a Boolean expression in the current state. The truth value of

the Boolean expression can, of course, be determined from the word representation

of the current state, but only after a sufficiently large part of the input word has

been read. The transducer therefore non-deterministically replaces Li by one of

the two possible next program locations in w′
1, and remembers the corresponding

guessed truth value for the Boolean expression in its finite memory. Subsequently,

if this guess is found to be incorrect, the transducer transitions to qerr.

Having generated w′
1, the transducer must next determine the set of unused

names for heap-shared nodes in the next state, in order to generate w′
2. Recalling

the constructs in our language (see Table 1.1) and the fact that each program

location is associated with at most one primitive statement, it is easy to see that the

number of heap-shared nodes in the heap graph can potentially increase only if the

primitive statement associated with the current program location is an assignment

of the form PVar->FName := PVar or PVar := PVar->FName. The execution of

any other statement either keeps the number of heap-shared nodes unchanged or

reduces it by one. For all these other statements, the transducer keeps the set

of unused names for heap-shared nodes unchanged in the next state. Note that

this may temporarily give rise to a situation wherein the number of heap-shared

nodes has reduced by one, but the set of unused names for heap-shared nodes has

not changed. Fortunately, this situation is easily remedied in the construction of

the overall transducer, since the transducer for individual program statements is

non-deterministically combined with transducers for reclaiming heap-shared node

names in the overall transducer. Thus, if heap-shared node name Ml was rendered

unused by execution of the statement at location Li, the overall transducer can

non-deterministically choose to transition to mode Cl (for reclaiming unused heap-

shared node name Ml) after the transducer corresponding to program location Li

has completed its action. We will discuss further about transducers for reclaiming

unused heap-shared node names later in this section.

If the statement at the current program location is of the form PVar->FName :=

PVar or PVar := PVar->FName, its execution gives rise to a (not necessarily new)

heap-shared node unless the right hand side of the assignment evaluates to nil or

is uninitialized. The statements at locations L5, L6, L7 and L8 in Example 1.1 are

examples of such statements. In such cases, the transducer first guesses whether

the right hand side of the assignment is nil or uninitialized, and remembers this

guess in its finite memory. Accordingly, there are two cases to consider.

• If the right hand side is guessed to be nil or uninitialized, the number of heap-

shared nodes cannot increase (but can potentially reduce by 1) as a result of

executing the current statement. In this case, the transducer keeps the set of

unused names for heap-shared nodes unchanged in the next state. The case
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where the number of heap-shared nodes actually reduces by 1 but the set of

unused names is unchanged is eventually taken care of by non-deterministically

combining the current transducer with transducers for reclaiming unused names,

as discussed above.

• If the right hand side is guessed to be neither nil nor uninitialized, execution

of the current statement gives rise to a (not necessarily new) heap-shared node,

say nd, in the heap graph. The transducer can now make one of two non-

deterministic choices.

– If there is at least one name in ΣM that is outside the set of unused

names in the current state (i.e., not in w2), the transducer can guess

that nd was already heap-shared earlier and was named Ml, where Ml

is non-deterministically chosen from outside the set of unused names. The

transducer then remembers Ml as the guessed name for the heap-shared

node resulting from execution of the current statement. It also keeps the

set of unused names for heap-shared nodes unchanged in the next state.

– If the set of unused names in the current state, i.e. w2, is non-empty, the

transducer can guess that nd is a newly generated heap-shared node. The

transducer then removes the first name, say Ml, from w2, and remembers

this as the name for the heap-shared node resulting from execution of the

current statement. The set of unused names in the next state is obtained

by removing Ml from the corresponding set in the current state.

Once the set of unused names for heap-shared nodes in the next state is de-

termined, it is straightforward to generate w′
2. In all cases, as more of the input

word w is read, if any guess made by the transducer is found to be incorrect, the

transducer transitions to qerr.

In order to generate w′
3 and w′

4, the transducer must determine the sets of pro-

gram variables that are uninitialized and set to nil, respectively, in the next program

state. These sets are potentially changed when the current statement is of the form

PVar := PExp, PVar := nil, PVar := new or free(PVar). In all other cases, w′
3

and w′
4 are the same as w3 and w4, respectively. If the current statement is of the

form PVar := PVar, PVar := nil or PVar := new, the corresponding updations

to the sets of uninitialized and nil-valued program variables are straightforward,

and w′
3 and w′

4 can be determined after reading w3 and w4. For de-allocation

statements of the form free(u), the sub-word w′
4 (encoding the set of nil-valued

variables) is the same as w4. However, to determine w′
3, we need to guess the set

of variables that point to the same memory location as u, and are thereby rendered

uninitialized by free(u). The generation of w′
3 in this case is explained later when

we discuss generation of w′
5. Finally, if the current statement is of the form PVar :=

PVar->FName, sub-word w5 of the input may need to be read and remembered, in

general, before w′
3 and w′

4 can be generated. As discussed earlier, this leads to the

problem of storing unbounded information in a finite state transducer. To circum-
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vent this problem, the transducer makes a non-deterministic guess about whether

the right hand side of the assignment evaluates to an uninitialized value, nil or

the address of an allocated memory location. It then remembers this guess in its

finite memory and generates w′
3 and w′

4 accordingly. By the time the entire input

word w has been read, the transducer can determine whether any of its guesses was

incorrect. If so, the transducer transitions to qerr.

Generating sub-word w′
5 requires determining how the uninterrupted list seg-

ments in the current program state (encoded in w5) are modified by the current

program statement. It is not hard to see that only primitive statements, i.e. assign-

ment, memory allocation and de-allocation statements (AsgnStmt, AllocStmt and

FreeStmt in Table 1.1), at the current program location can modify the encoding

of the heap graph. For all other statements, the encoding of the heap graph in the

next program state is the same as that in the current state; in other words, w′
5 is the

same as w5. Let us now look at what happens when each of AsgnStmt, AllocStmt

and FreeStmt is executed.

Suppose the current statement is of the form PVar := PVar, as exemplified by

t1 := hd at location L1 in Example 1.1. In this case, w′
5 is obtained by removing t1

from the head of any uninterrupted list segment in which it appears in w5, and by

inserting t1 in the head of any uninterrupted list segment in which hd appears in w5.

Next, consider an assignment of the form PVar := PVar->FName or PVar->FName

:= PVar, as exemplified by x->n := t1 and t1 := t1->n at locations L7 and L8,

respectively, in Example 1.1. Suppose the transducer has guessed that the right

hand side of the assignment is neither nil nor uninitialized. Let Ml be the guessed

name (either already present or an unused name) for the heap-shared node that

results from executing the current statement. Let us also assume that all guesses

made by the transducer thus far are correct. In the case of x->n := t1, sub-word

w′
5 is obtained by insertingMl in the head of the uninterrupted list segment in which

t1 appears in w5, and by removing Ml from the head of any other list segment in

w5. In addition, the uninterrupted list segment starting from x is made to have

only one element with its selector pointing to Ml in w
′
5. Similarly, in the case of t1

:= t1->n, we remove t1 from the head of any uninterrupted list segment in which

it appears in w5, and putting both t1 and Ml at the head of the uninterrupted list

segment in w′
5 that starts from the second element of the list originally pointed to

by t1 in w5. If the current statement is of the form PVar := nil, sub-word w′
5 is

obtained by simply removing the variable name corresponding to PVar from the head

of any uninterrupted list segment in which it appears in w5. If, however, the current

statement is of the form PVar->FName := nil, say u->n := nil, the uninterrupted

list segment starting from u is made to have a sequence of only one .n selector

pointing to ⊥ in w′
5. For statements of the form PVar := new, as exemplified

by t2 := new at location L4 in Example 1.1, t2 is removed from the head of any

uninterrupted list segment in which it appears in w5, and a separate uninterrupted

list segment, t2.n⊤, is appended at the end of sub-word w′
5. For statements of the
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form free(u), the transducer first guesses all program variable names and heap-

shared node name that appear together with u at the head of an uninterrupted list

segment in w5, and remembers this set in its finite memory. All program variable

names in this set are removed from the head of the uninterrupted list segment in

w5, and added to the list of uninitialized variables, i.e. w′
3. All heap-shared node

names in the above set are also removed from the head of the uninterrupted list

segment in w5, and all list segments that end with any such heap-shared node name

are made to end with ⊤. As before, if the transducer subsequently detects that its

guess was incorrect, it transitions to qerr.

In all cases, if the word representing the current state indicates that an assign-

ment or de-allocation statement de-references a nil-valued or uninitialized pointer,

the transducer transitions to the control state qmem. In addition, whenever the

word representation of the heap graph is changed, if we are left with a list segment

without any program variable name or heap-shared node name as the first element

of the segment, we can infer that garbage has been created. In such cases too, the

transducer transitions to control state qmem.

Transducers for reclaiming heap-shared node names: A transducer for re-

claiming the heap-shared node name Mi (0 ≤ i ≤ k) expects sub-word w1 of its

input to start with Ci. Otherwise, the transducer transitions to qerr. Such a trans-

ducer always leaves the program location, and sets of uninitialized and nil-valued

variable names unchanged in the output word. If Mi is already in the set of unused

names for heap-shared nodes, i.e. in w2, the transducer simply changes Ci to CN

in sub-word w′
1 and leaves the rest of its input unchanged. If Mi is not in w2,

the transducer assumes that Mi is an unused heap-shared node name and can be

reclaimed. This effectively amounts to making one of the following assumptions:

(i) Mi does not appear as the head of any uninterrupted list segment in sub-word

w5, or (ii) Mi appears as the sole name at the head of an uninterrupted list seg-

ment in w5, and there is exactly one uninterrupted list segment in w5 that has the

name of its last node as Mi. The transducer non-deterministically chooses one of

these cases and remembers its choice in its finite memory. In the first case, the

transducer adds Mi to the set of unused names of heap-shared nodes in the next

state, i.e. to sub-word w′
2, changes the flag Ci to CN in w′

1, and proceeds to re-

place all occurrences of Mi at the end of uninterrupted list segments in w5 with

⊤. However, if it encounters an uninterrupted list segment in w5 that has Mi at

its head, the guess made by the transducer was incorrect, and hence it transitions

to qerr. In the second case, let L1 be the uninterrupted list segment starting with

the sole name Mi in w5, and let L2 be the uninterrupted list segment ending with

Mi in w5. The transducer moves one element from the start of L1 to the end of

L2 in w′
5, thereby shortening the list L1 pointed to by Mi, and lengthening the list

L2 ending with Mi. It also non-deterministically guesses whether the list pointed

to by Mi in w
′
5 has shrunk to length zero, and if so, it adds Mi to the list of un-
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used names of heap-shared nodes in w′
2, and replaces Ci by CN in w′

1. Note that

in this case, one application of the transducer may not succeed in reclaiming the

name Mi. However, repeated applications of the above transducer indeed reclaims

Mi if assumption (ii) mentioned above holds. Of course, if the transducer detects

that any of its assumptions/guesses is incorrect, it transitions to control state qerr.

Additionally, if the list L1 ends in Mi, we have a garbage cycle and the transducer

transitions to control state qmem.

1.5.3. Computing transitive closures of regular transducers

Given a heap manipulating program P , let τ represent the overall finite state trans-

ducer obtained by non-deterministically combining all the finite state transducers

discussed above, i.e. one for the statement (or part of it) at each program location,

and one for reclaiming each heap-shared node name in ΣM . By abuse of notation,

we will use τ to also represent the binary relation, Rτ , on words induced by τ , when

there is no confusion. Let AI be a finite state automaton representing a regular set

of initial states, say I, of P . The language τ i(I) (i ≥ 0) represents the set of states

reachable from some state in I in i steps, and τ∗(I) =
⋃∞

i=0
τ i(I) represents the set

of all states reachable from I. We discuss below approaches to compute τ∗(I) or

over-approximations of it.

It is easy to use a product construction to obtain an automaton representing the

set τ(I) . Suppose AI = (QI ,Σε,∆I , Q0,I , FI) and τ = (Qτ ,Σε ×Σε,∆τ , Q0,τ , Fτ ).

To construct an automaton recognizing τ(I), we first construct a product automaton

Ap = (Qp,Σε × Σε,∆p, Q0,p, Fp) as follows.

• Qp = QI ×Qτ

• For every q1, q
′
1 ∈ QI , q2, q

′
2 ∈ Qτ and σ1, σ2 ∈ Σε, ((q1, q2), (σ1, σ2), (q

′
1, q

′
2)) ∈

∆p iff (q1, σ1, q
′
1) ∈ ∆I , (q2, (σ1, σ2), q

′
2) ∈ ∆τ .

• Q0,p = Q0,I ×Q0,τ

• Fp = FI × Fτ

A non-deterministic finite state automaton recognizing τ(I) is obtained by ignoring

the first component of pairs of symbols labeling edges of Ap.

To obtain an automaton recognizing τ2(I) = τ(τ(I)), we can use the same

product construction, where an automaton recognizing τ(I) is first obtained as

described above. Alternatively, we can precompute an automaton that induces

the binary relation τ2 = τ ◦ τ , and then determine τ2(I). A non-deterministic

finite state automaton that induces τ2 can be obtained from the automaton that

induces τ through a simple product construction. We construct τ2 = (Qτ2 ,Σε ×

Σε,∆τ2 , Q0,τ2 , Fτ2), where

• Qτ2 = Qτ ×Qτ

• For every q1, q2, q
′
1, q

′
2 ∈ Qτ , σ1, σ2 ∈ Σε, ((q1, q2), (σ1, σ2), (q

′
1, q

′
2)) ∈ ∆τ2 iff

∃σ3 ∈ Σε. (q1, (σ1, σ3), q
′
1) ∈ ∆τ and (q2, (σ3, σ2), q

′
2) ∈ ∆τ .
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• Q0,τ2 = Q0,τ ×Q0,τ

• Fτ2 = Fτ × Fτ

The above technique can be easily generalized to obtain a non-deterministic finite

state automaton inducing τ i for any given i > 0. Once a finite state automaton

representation of τ i is obtained, we can obtain a finite state automaton for τ i(I),

where I is a regular set of words, through the product construction illustrated

above. However, this does not immediately tell us how to compute a finite state

automaton representation of τ∗ =
⋃∞

i=0
T i or of τ∗(I). If τ is a regular transduction

relation, the above constructions show that τ i and τ i(I) is also regular for every

i ≥ 0. However, τ∗ and τ∗(I) may indeed be non-regular, since regular languages

are not closed under infinite union. Even if τ∗ or τ∗(I) was regular, a finite state

automaton representation of it may not be effectively computable from finite state

automata representations of τ and I. A central problem in regular model checking

(RMC) concerns computing a regular upper approximation of τ∗ or τ∗(I), for a

given regular transduction relation τ and a regular initial set I.

Given finite state automata representing I, τ and a regular set of error states

denoted Bad, the safety checking problem requires us to determine if τ∗(I)∩Bad =

∅. This can be effectively answered if a finite state automaton representation of

τ∗(I) can be obtained. Depending on τ and I, computing a representation of

τ∗(I) may be significantly simpler than computing a representation of τ∗ directly.

Several earlier works, e.g. those due to Dams et al [16], Jonsson et al [8], Touili [13],

Bouajjani et al [11] and Boigelot et al [17], have tried to exploit this observation

and compute a representation of τ∗(I) directly. A variety of other techniques have

also been developed to compute finite state automata representations of τ∗ or τ∗(I).

We outline a few of these below.

Quotienting techniques: In this class of techniques, the product construction

outlined above is used to compute finite state automata representations of τ i for

increasing values of i. A suitable equivalence relation ≃ on the states of these

automata is then defined based on the history of their creation during the prod-

uct construction, and the quotient automaton constructed for each i. By defining

the equivalence relation appropriately, it is possible to establish equivalence be-

tween states of the quotient automata for increasing values of i. Thus, states of

different quotient automata can be merged into states of one automaton that over-

approximates τ i for all i. For arbitrary equivalence relations, the language accepted

by the resulting automaton is a superset of the language by τ+. However, it is pos-

sible to classify equivalence relations such that certain classes of relations preserve

transitive closure under quotienting. In other words, the language accepted by

(τ/ ≃)+ coincides with that accepted by τ+. The reader is referred to the works

of Abdulla et al [9, 10] for details of these special relations. The use of such equiv-

alence relations, whenever possible, provides a promising way of computing τ∗(I)

accurately for special classes of systems.

Abstraction-refinement based techniques: Techniques in this approach can
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be classified as being either representation-oriented or configuration-oriented. In

representation-oriented abstractions, an equivalence relation ≃r of finite index is

defined on the set of states of an automaton representation. However, unlike in

quotienting techniques, there is no a priori requirement of preservation of transitive

closure under quotienting. Therefore, we start with τ (or τ(I)) and compute τ2

(or τ2(I) respectively) as discussed above. The states of the automaton represen-

tation of τ2 (or τ2(I)) are then quotiented with ≃r. The language accepted by

the resulting automaton is, in general, a superset of that accepted by τ2 (or τ2(I)

respectively). The quotiented automaton is then composed with τ to compute an

over-approximation of τ3 (or τ3(I) respectively). The states of the resulting au-

tomaton are further quotiented with ≃r, and the process is repeated until a fixed

point is reached. Since ≃r is an equivalence relation of finite index, convergence of

the sequence of automata is guaranteed after a finite number of steps.

In configuration-oriented abstractions, the words (configurations) in the lan-

guages τ(I), τ2(I), etc. are abstracted by quotienting them with respect to

an equivalence relation ≃c of finite index defined on their syntactic structure.

Configuration-oriented abstractions are useful for word based state representations

in which syntactically different parts of a word represent information of varying im-

portance. For example, in our word based representation of program states, i.e. in

w = |w1|w2|w3|w4|w5|, sub-words w1, w2, w3 and w4 encode important information

pertaining to current program location, nil-valued and uninitialized variables, num-

ber of heap-shared nodes, etc. Furthermore, these sub-words are bounded and hence

represent finite information. Therefore, it may not be desirable to abstract these

sub-words in w. On the other hand, long sequences of .n’s in the representation of

uninterrupted list segments in w5 are good candidates for abstraction. Bouajjani

et al have proposed and successfully used other interesting configuration-oriented

abstractions, like 0− k counter abstractions and closure abstractions, for reasoning

about heap manipulating programs [18].

Once we have a regular over-approximation of τ∗ or τ∗(I), we can use it to

conservatively check if τ∗(I) ∩ Bad = ∅. However, since we are working with an

over-approximation of τ∗(I), safety checking may give false alarms. It is therefore

necessary to construct a counterexample from an abstract sequence of states from

a state in I to a state in Bad, and check if the counterexample is spurious. If

the counterexample is not spurious, we have answered the safety checking question

negatively. Otherwise, the counterexample can be used to refine the equivalence

relation ≃r or ≃c such that the same counterexample is not generated again by the

analysis starting from the refined relation. The reader is referred to [11, 18] for

details of refinement techniques for both representation-oriented and configuration-

oriented abstractions in RMC.

Extrapolation or widening techniques: In this approach, we compute finite

state automata representations of τ i(I) for successive values of i, and detect a reg-

ular pattern in the sequence. The pattern is then extrapolated or widened to guess
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the limit ρ of
⋃m

i=0
τ i(I) as m approaches ∞. Convergence of the limit can be

checked by determining if I ∪ τ(ρ) ⊆ ρ. If the check passes, we have computed

an over-approximation of τ∗(I). Otherwise, the guessed limit must be modified

to include more states (configurations), and a new regular pattern detected. The

reader is referred to the works of Touili [13], Bouajjani et al [11] and Boigelot

et al [17] for details of various extrapolation techniques. As a particularly ap-

pealing example of this technique, Touili [13] showed that if I can be represented

as the concatenation of k regular expressions ρ1.ρ2. · · · ρk, and if τ(ρ1.ρ2 · · · ρk) =⋃k−1

i=1
(ρ1 · · · ρi.Λi.ρi+1 · · · ρk), where the Λi are regular expressions, then τ∗(I) is

given by ρ1.Λ
∗
1.ρ2.Λ

∗
2 · · ·Λ

∗
k−1.ρk.

Regular language inferencing techniques: This approach uses learning tech-

niques, originally developed for inferring regular languages from positive and nega-

tive sample sets, to approximate τ∗(I). The work of Habermehl et al [14] considers

length-preserving transducers, and uses increasingly large complete training sets to

infer an automaton representation of τ∗(I). The increasingly large training sets are

obtained by gradually increasing the maximum size i of words in the initial set of

states, and by computing the set of all states (words) of size up to i reachable from

these initial states. Habermehl et al use a variant of the Trakhtenbrot-Barzdin al-

gorithm [19] for inferring regular languages for this purpose. Once an approximate

automaton for τ∗(I) has been inferred in this manner, a convergence check similar

to the one used for extrapolation techniques can be used to determine if an over-

approximation of τ∗(I) has indeed been reached. It has been shown [14] that if τ∗(I)

is regular, safety checking can always be correctly answered using this technique.

Even otherwise, good regular upper approximations of τ∗(I) can be computed.

Let UpperApprox(τ∗(I)) denote a regular upper approximation of τ∗(I) ob-

tained using one of the above techniques. We can use UpperApprox(τ∗(I)) to

answer interesting questions about the program being analyzed. For example, sup-

pose we wish to determine if execution of the program from an initial state in the

regular set I can create garbage, or cause an uninitialized/nil-valued pointer to

be de-referenced. This can be done by searching for the special sequence ⊤⊤⊤

in the set of words approximating τ∗(I). Thus, if BadMem = Σ∗·{⊤⊤⊤}·Σ∗,

then UpperApprox(τ∗(I)) ∩ BadMem = ∅ guarantees that no garbage is cre-

ated, and no uninitialized or nil-valued pointer is de-referenced. However, if

UpperApprox(τ∗(I)) ∩ BadMem 6= ∅, we must construct an (abstract) counterex-

ample leading from a state in I to a state in BadMem and check for its spuriousness.

If the counterexample is not spurious, we have a concrete way to generate garbage

or to de-reference an uninitialized or nil-valued pointer starting from a state in I.

Otherwise, we must refine or tighten UpperApprox(τ∗(I)) and repeat the analysis.

Consider the program in Example 1.1. By carefully constructing the trans-

ducer τ as

discussed earlier, and by applying a simple configuration-oriented abstraction tech-

nique, we can show that if I = {|CN L1 |M0M1M2M3M4M5 | t1 t2 t3 | |hd.n
+⊥ | }
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∪ {|CN L1 |M1M2M3M4M5 | t1 t2 t3 | |hd.n
+.M0 |xM0.n

+⊥ | }, then BadMem ∩

UpperApprox(τ∗(I)) = ∅. Thus, regardless of whether the list pointed to by hd

contains an element pointed to by x, there are no memory access errors or creation

of garbage.

The above discussion assumed that every memory location had a single pointer-

valued selector. This was crucial to representing the heap graph as a bounded set

of uninterrupted list segments. Recent work by Bouajjani et al [20] has removed

this restriction. Specifically, programs manipulating complex data structures with

several pointer-valued selectors and finite-domain non-pointer valued selectors have

been analyzed in their work. Regular languages of words no longer suffice to rep-

resent the heap graph in such cases. The program state is therefore encoded as a

tree backbone annotated with routing expressions [20] to represent arbitrary link

structures. The operational semantics of program statements are modeled as tree

transducers . Techniques from abstract regular tree model checking are then used to

check memory consistency properties and shape invariants. The reader is referred

to [20] for a detailed exposition on this topic.

A primary drawback of RMC based approaches for reasoning about heap ma-

nipulating programs is the rather indirect way of representing heap graphs and

program states as words or extended trees. This, in turn, contributes to the com-

plexity of the transducers. Recently, Abdulla et al [21] have proposed an alternative

technique for symbolic backward reachability analysis of heaps using upward closed

sets of heap graphs with respect to a well-quasi ordering on graphs, and using an

abstract program semantics that is monotone with respect to this ordering. Their

method allows heap graphs to be directly represented as graphs, and the operational

semantics is represented directly as relations on graphs. The work presented in [21]

considers programs manipulating singly linked lists (like the class of programs we

considered), although the general idea can be extended to programs manipulating

more complex data structures as well. A detailed exposition on this technique is

beyond the scope of the present article. The interested reader is referred to [21] for

details.

1.6. An automata based semantics and Hoare-style reasoning

We now present a completely different approach for reasoning about heap manipu-

lating programs. Specifically, we discuss an automata based heap semantics for our

programming language, and present a logic for Hoare-style deductive reasoning us-

ing this semantics. We show how this technique can be used to check heap related

properties of programs, using the program in Example 1.1 as an example. Un-

like RMC, the approach outlined in this section has a deductive (theorem-proving)

flavour.

There are two predominant paradigms for defining heap semantics of program-

ming languages. In store based semantics used by Yorsh et al [22], Podelski et
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al [23], Reps et al [24], Bouajjani et al [25], Reynolds [26], Calcagno et al [27],

Distefano et al [28] and others, the heap is identified as a collection of symbolic

memory locations. A program store is defined as a mapping from the set of pointer

variables and selectors of memory locations to other memory locations. Various

formalisms are then used for representing and reasoning about this mapping in a

finite way. These include, among others, representation of program stores as logical

structures for specialized logics [22, 26] or over formulae that use specially defined

heap predicates [23, 24, 28], graph based representations [25], etc. In the alterna-

tive storeless semantics, originally proposed by Jonkers [29] and subsequently used

by Deutsch [30], Bozga [31, 32], Hoare and Jifeng [33] and others, every memory

location is identified with the set of paths that lead to the corresponding node in

the heap graph. A path in the heap graph is represented by the sequence of edge

labels appearing along the path. Thus the heap is identified as a collection of sets

of sequences of edge labels, and not as a collection of symbolic memory locations.

Different formalisms have been proposed in the literature for representing sets of

edge label sequences in a finite way. Regular languages (or finite state automata),

and formulae in suitably defined logics have been commonly used for this purpose.

Since the focus of this article is on automata based techniques, we discuss below

an automata based storeless heap semantics for our programming language. As an

aside, we note that reasoning techniques for heap manipulating programs cannot

always be partitioned based on whether they use storeless or store based semantics.

For example, the work of Rinetzky et al [34] uses a novel mix of store based and

storeless semantics in the framework of TVLA [24] to reason about the effect of

procedure calls on data structures in the heap.

1.6.1. A storeless semantics

Given a program, let Σp and Σf denote sets of pointer variables and selectors

respectively, as discussed earlier. Let GH = (V,E, vnil, λ, µ) be the heap graph at

a snapshot of execution of the program. We define an access path from a variable

x ∈ Σp to a node v (possibly vnil) in V as a string x.σ, where σ is a sequence of

selector names appearing as edge labels along a path from µ(x) to v, if such a path

exists in GH . If no such path exists in GH , the access path from x to v is undefined.

Let Σ denote Σp ∪ Σf , and ℘(S) denote the powerset of a set S. Adapting the

definition of Bozga et al [31], we define a storeless structure Υ as a pair (Snil,Γ),

where Snil ⊆ Σp·Σ
∗
f and Γ ⊆ ℘(Σp·Σ

∗
f ). Furthermore, Γ is either the empty set or

a finite set of languages {S1, S2, . . . Sn} satisfying the following conditions for all

i, j ∈ {1, . . . n}.

• C1 : Si 6= ∅.

• C2 : i 6= j ⇒ Si ∩ Sj = ∅. In addition, Si ∩ Snil = ∅.

• C3 : ∀σ ∈ Si (∀τ, θ ∈ Σ+ (σ = τ · θ ⇒ ∃k ((1 ≤ k ≤ n) ∧ (τ ∈ Sk) ∧ (Sk·{θ} ⊆

Si)))). A similar property holds for all σ ∈ Snil as well.



August 19, 2010 18:17 World Scientific Review Volume - 9.75in x 6.5in chakraborty-final

Reasoning about Heap Manipulating Programs using Automata Techniques 23

Unlike languages in Γ, there is no non-emptiness requirement on Snil. A storeless

structure Υ = (Snil,Γ) with Γ = {S1, . . . Sn} represents n distinct memory locations

in the heap and also the nil value. Recall that in a heap graph, the nil value is

represented by a special node vnil with no outgoing edges. Language Si ∈ Γ may be

viewed as the set of access paths in GH to the ith node (distinct from vnil). Similarly,

Snil may be viewed as the set of access paths to vnil. Condition C1 requires all nodes

other than vnil represented in Υ to have at least one access path. Consequently,

garbage cannot be represented using this formalism, and we will ignore garbage in

the current discussion. Condition C2 encodes the requirement that every access

path must lead to at most one node. Condition C3 states that every prefix τ of an

access path σ must itself be an access path to a node represented in Γ. This is also

called the prefix closure property. Condition C3 further encodes the requirement

that if multiple access paths reach a node represented by Sk, extending each of these

access paths with the same suffix θ must lead us to the same node (represented by

Si or Snil in condition C3). This is also called right regularity.

Consider a storeless structure Υ = (Snil,Γ), in which Γ = {S1 . . . Sn} repre-

sents a set of n nodes {v1 . . . vn} in the heap graph GH . The structure Υ can

be represented by an n + 3 state deterministic finite-state transition system BΥ.

A natural (but not necessarily the only) way to obtain BΥ is by considering the

sub-graph of GH consisting of nodes {vnil, v1, . . . vn}. Specifically, we define a tran-

sition system BΥ = (Q,Σ, qinit, δ), where Σ = Σp ∪ Σf as defined earlier, and

Q = {qinit, qnil, qerr, q1, . . . qn}, with qinit, qnil and qerr as distinguished control states.

For notational convenience, we will refer to vnil, Snil and qnil as v0, S0 and q0 re-

spectively in the following construction. The transition relation of BΥ is defined as

follows: for every i, j in 0 through n, we let (qi, f, qj) ∈ δ iff the nodes vi and vj in

GH = (V,E, vnil, λ, µ) are such that (vi, vj) ∈ E and f ∈ λ((vi, vj)). Furthermore,

for every i in 0 through n and x ∈ Σp, we let (qinit, x, qi) ∈ δ iff there exists vi
(represented by Si in Γ) such that µ(x) = vi. Finally, for all states q (including

qerr) and for all f ∈ Σp ∪ Σf , we let (q, f, qerr) ∈ δ iff the above construction does

not create any outgoing edge from q labeled f . Right regularity and prefix closure

of Υ ensure that for all i in 0 through n, the automaton obtained by letting qi be

the sole accepting state in BΥ accepts language Si. The automaton Aerr obtained

by letting qerr be the sole accepting state accepts all sequences that are not valid

access paths to nodes represented by Υ.

We now present operational semantics of statements in our programming lan-

guage with respect to the above storeless representation of the heap. For notational

convenience, we will use the following convention:

• The representations of the heap before and after executing a statement are

Υ = (Snil,Γ) and Υ′ = (S′
nil,Γ

′), respectively.

• If θ denotes a PExp, then Θ denotes the singleton regular language consisting

of the access path corresponding to θ. For example, if θ is u or u->n, then Θ is

{u} or {u.n}, respectively. We will also use u to denote {u} and u · n to denote
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{u.n}.

• For L,M ⊆ Σ+, L⊖M denotes L \ (M ·Σ∗), i.e. the set of words in L that do

not have any prefix in M .

• For L,X,⊆ Σ+, M ⊆ Σ∗ and n ∈ Σf , χ
L,n,M (X) denotes the function λX. X ∪

(L·n·((M−1L)·n)∗·(M−1X)). If L,M and X represent sets of access paths to

nodes vL, vM and vX respectively in the heap graph, then χL,n,M (X) is the

augmented set of access paths to vX after making the n-selector of vL point to

vM [31]. Note that if M = ∅, then χL,n,M (X) = X for all X.

• If θ denotes a PExp and S = {S1, S2, . . . Sr} denotes a set of mutually disjoint

languages, then FindSet(Θ,S) is defined to be Si ∈ S ifΘ∩Si 6= ∅. IfΘ∩Si = ∅

for all Si ∈ S, then FindSet(Θ,S) is defined to be ∅.

With this convention, the storeless operational semantics of primitive statements

in our language, i.e., assignment, memory allocation and memory de-allocation

statements, is given in Table 1.3. To keep the discussion simple, we have assumed

that statements of the form u := u or u := u->n are not present in programs that

we wish to analyze. While this may sound restrictive, every program containing

such statements can be translated to a semantically equivalent program without

any such statement, as described in Section 1.3.

Table 1.3. Storeless operational semantics of primitive statements

Notation: θ denotes a PExp, u and v are program variables, n is a selector name

Statement S′
nil

Γ′ Conditions

θ := nil (Snil ⊖Θ) ∪ {Θ} {Si ⊖Θ |Si ∈ Γ} \ {∅} if θ is u->n,
∃X ∈ Γ, u ∈ X

u := θ S′′
nil

∪ u · (Θ−1S′′
nil

), {S′′
j ∪ u · (Θ−1S′′

j ) | S
′′
j ∈ Γ′′}, if θ is v->n,

where S′′
nil

= Snil ⊖ u where Γ′′ = {Si ⊖ u |Si ∈ Γ} \ {∅} ∃X ∈ Γ, v ∈ X

u->n := v χu,n,Y (Snil ⊖ (u · n)) {χu,n,Y (S′′
j ) | S

′′
j ∈ Γ′′}, where Y = FindSet(v, {Snil} ∪ Γ)

Γ′′ = {Si ⊖ (u · n) |Si ∈ Γ} \ {∅} ∃X ∈ Γ, u ∈ X

u := new Snil ⊖ u ({Si ⊖ u |Si ∈ Γ} ∪ {u}) \ {∅}

free(u) Snil ⊖X {Si ⊖X |Si ∈ Γ} \ {∅} ∃X ∈ Γ, u ∈ X

The last column in Table 1.3 lists necessary and sufficient conditions for the

storeless operational semantics to be defined. If these conditions are violated, we

say that the operational semantics is undefined. Whenever an assignment is made

to u (or u->n), the membership in Snil or Si ∈ Γ of all access paths that have u (or

u.n respectively) as prefix is invalidated. Therefore, these paths must be removed

from all languages in Υ before augmenting the languages with new paths formed as

a consequence of the assignment. Similarly, when memory is de-allocated, all paths
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with a prefix that was an access path to the de-allocated node must be removed from

all languages. A formal proof of correctness of the operational semantics involves

establishing the following facts for every primitive statement Stmt.

(1) If Υ = (Snil,Γ) is a storeless structure (i.e., satisfies all conditions in the defi-

nition of storeless structures), then so is Υ′ = (S
′

nil,Γ
′).

(2) Let vi 6= vnil be a node represented by Υ.

(a) If vi is neither de-allocated nor rendered garbage by executing Stmt, there

exists a language in Γ′ that contains all and only access paths to vi after

executing Stmt.

(b) If executing Stmt de-allocates vi and if π was an access path to vi prior to

executing Stmt, there is no access path with prefix π in any language in Υ′.

(3) S
′

nil contains all and only access paths to vnil after executing Stmt.

(4) If executing Stmt allocates a node v′i, there exists a language in Γ′ that contains

all and only access paths to v′i after executing Stmt.

We leave the details of the proof as an exercise for the reader.

It is clear from the expressions for S′
nil and Γ′ in Table 1.3 that if we are given

finite state automata representations of Snil and Si ∈ Γ for i ∈ {1, . . . n}, then

finite-state automata representations of S
′

nil and also of every language in Γ′ can

be obtained by automata theoretic constructions. Specifically, given a determin-

istic finite-state transition system BΥ representing Υ, it is possible to construct a

deterministic finite-state transition system B′
Υ representing Υ′.

1.6.2. A logic for Hoare-style reasoning

In order to reason about programs using the storeless semantics described above, we

choose to use Hoare-style reasoning. The literature contains a rich collection of logics

for Hoare-style reasoning using both storeless and store based representations of the

heap. Notable among them are separation logic and its variants [26, 28, 35–37], logic

of bunched implications [38], logic of reachable patterns (LRP) [22], several transi-

tive closure logics [39], pointer assertion logic (PAL) [40] based on graph types [41],

weak alias logic (wAL) [32], Lr [42] and other assertion logics based on monadic

second order logic [43]. While separation logic and its variants have arguably re-

ceived the most attention in recent times, this development has primarily revolved

around store based semantics. Since our focus is on automata based storeless se-

mantics, we present below a simplified version of Bozga et al’s weak alias logic or

wAL [32]. We call this Simplified Alias Logic or SAL. Both wAL and SAL use store-

less representations of the heap as structures for evaluating formulae. SAL however

has fewer syntactic constructs than wAL. Implication checking in both logics is

undecidable [32]. Nevertheless, decidable fragments with restricted expressiveness

can be identified, and practically useful sound (but incomplete) inference systems

can be defined. Other logics proposed for storeless representations of the heap are



August 19, 2010 18:17 World Scientific Review Volume - 9.75in x 6.5in chakraborty-final

26 S. Chakraborty

PAL [40], Lr [42] and an assertion logic due to Jensen et al [43]. Unlike SAL, im-

plication checking in these logics is decidable. While this represents a significant

difference and can be very useful for analyzing certain classes of programs, these

logics are less expressive than SAL. Our choice of SAL for the current discussion is

motivated by the need to express complex heap properties in a logic that is closed

under the weakest pre-condition operator. Implication checking is addressed sepa-

rately either by restricting the logic or by using sound (but incomplete) inference

systems.

The logic SAL: The syntax and semantics of SAL (adapted from Bozga et al’s

wAL [32]) are given in Tables 1.4a and b. Constants in this logic, shown in bold-

Table 1.4. Syntax and semantics of Simplified Alias Logic
(a) Syntax of SAL

(Variables & constants) VC ::= Xi, i ∈ N | cnil | u, for all u ∈ Σp

(Selector name sequences) F ::= f | F.f | (F + F) | F∗, for all f ∈ Σf

(Terms) T ::= VC | T · F | T · (T−1 T) | T ∪ T | T ∩ T | T ⊖ T
(Formulae) ϕ ::= T = T | ϕ ∧ ϕ | ¬ϕ | ∃Xi ϕ

(b) Semantics of SAL

Notation:

V (ϕ): Free variables in ϕ, Υ = (Snil,Γ): A storeless structure, ν : V (ϕ) → {Snil} ∪ Γ

[[Xi]]ν = ν(Xi), i ∈ N

[[cnil]]ν = Snil

[[u]]ν = {u}, u ∈ Σp

[[F.f ]]ν = [[F ]]ν ·{f}, f ∈ Σf

[[(F1 + F2)]]ν = [[F1]]ν ∪ [[F2]]ν

[[F ∗]]ν = ([[F ]]ν)∗

[[T.F ]]ν = [[T ]]ν ·[[F ]]ν
[[T1.(T

−1

2
T3)]]ν = [[T1]]ν ·([[T2]]

−1
ν [[T3]]ν)

[[T1 ∪ T2]]ν = [[T1]]ν ∪ [[T2]]ν
[[T1 ∩ T2]]ν = [[T1]]ν ∩ [[T2]]ν
[[T1 ⊖ T2]]ν = [[T1]]ν \ ([[T2]]ν ·Σ∗),

ν |= T1 = T2 iff [[T1]]ν = [[T2]]ν
ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2

ν |= ¬ϕ iff ν 6|= ϕ
ν |= ∃Xi ϕ iff ∃S ∈ {Snil} ∪ Γ, ν |= ϕ[S/Xi]

We say that Υ |= ϕ iff there exists ν : V (ϕ) → {Snil} ∪ Γ such that ν |= ϕ

face, are either cnil (denoting the language Snil) or singleton languages consisting

of access paths corresponding to pointer variables in the program. Variables are

denoted by Xi where i is a natural number. Each variable takes values from the set

of regular languages in a storeless structure. Note that this differs from Bozga et

al’s wAL, where free variables can be assigned arbitrary languages in Σ+ that are

neither restricted to be regular, nor required to coincide with one of the languages

in the storeless structure over which the formula is evaluated. Terms are formed by

applying regular expression operators to variables, constants and sub-terms. Terms

denote (possibly empty) subsets of Σp·Σ
∗
f . Formulae are constructed by apply-

ing first-order operators to sub-formulae, where an atomic formula checks language
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equivalence of two terms (T1 = T2). We will use the usual shorthand notations

∀Xi ϕ and ϕ1 ∨ ϕ2 for ¬ (∃Xi ¬ϕ) and ¬ (¬ϕ1 ∧ ¬ϕ2) respectively, whenever nec-

essary. Given a storeless structure Υ = (Snil,Γ) and an assignment ν that assigns

a language from {Snil} ∪ Γ to each free variable of ϕ, we use [[T ]]ν to denote the

regular language obtained by replacing every occurrence of every free variable X in

term T with ν(X). We say that Υ is a model of ϕ and ν is a satisfying assignment

for ϕ in Υ iff ν |= ϕ, as defined in Table 1.4b. If ν |= ϕ, we will also say that the

assignment ν renders ϕ true.

It can be seen that SAL is expressive enough to describe complex properties of

heaps, including some properties of recursive data structures. We list below a few

examples to demonstrate the expressiveness of the logic. In each example, we first

describe a heap property in English, and then present a shorthand along with a

detailed formula in SAL that evaluates to true for a storeless structure iff the heap

represented by the structure has the given property.

(1) Term T represents a non-empty set of access paths to a node (possibly vnil) in

the heap graph: nempty(T ) ≡ ¬(T = (T ⊖T )). We will use empty(T ) to denote

¬nempty(T ).

(2) X has an access path without any prefix in u·f∗: nprefix (X,u·f∗) ≡ nempty(X∩

(Σp·Σ
∗
f ⊖ u·f∗)).

(3) X can be reached from Y using a sequence of f selectors: rch(X,Y, f) ≡

nempty(X ∩ Y.f∗). Note that rch(X,X, f) is true for all non-empty X by defi-

nition.

(4) X can be reached from Y using exactly one f selector: edge(X,Y, f) ≡

nempty(X ∩ Y.f).

(5) X and Y lie on a cycle in the heap graph formed using only f selectors:

cyc(X,Y, f) ≡ ¬(X = Y )∧ rch(X,Y, f)∧ rch(Y,X, f).

(6) X lies on a lasso or panhandle formed using only f selectors: lasso(X, f) ≡

∃Y (rch(Y,X, f) ∧ ¬rch(X,Y, f) ∧ ∃Z (¬(Z = Y ) ∧ cyc(Y,Z, f))).

(7) X is the root of a tree formed using f selectors: tree(X, f) ≡

∀Y ∀Z∀V ((rch(Y,X, f) ∧ rch(Z,X, f) ∧ edge(V, Y, f) ∧ edge(V,Z, f)) ⇒ (Y = Z)).

Since terms in SAL are formed by applying regular expression operators, SAL for-

mulae cannot be used to express non-regular properties of the heap, such as those

involving unbounded counting. For example, we cannot express “X is the root of a

balanced binary tree formed using f selectors” in SAL.

Example 1.2. As an illustration of how SAL can be used to specify properties of

programs, let P be the program in Example 1.1 and let ϕ ≡ rch(cnil,hd, f). The

Hoare triple {ϕ} P {ϕ} asserts that if program P is started in a state in which hd

points to a nil-terminated acyclic list, and if P terminates, then hd always points

to a nil-terminated acyclic list after termination of P as well.

Weakest pre-condition calculus: In order to prove the validity of Hoare
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triples like the one in Example 1.2, we must express the operational semantics

of statements using Hoare triples with SAL as the base logic. This involves com-

puting weakest pre-conditions [44] of formulae in SAL with respect to primitive

statements (i.e., assignment, memory allocation and de-allocation statements) in

our language. Let wp(Stmt, ϕ) denote the weakest pre-condition of ϕ with re-

spect to primitive statement Stmt. It follows from the definition of wp that

wp(Stmt, ϕ1 ∧ ϕ2) = wp(Stmt, ϕ1) ∧ wp(Stmt, ϕ2). Since the transition relation

defined by primitive statements in our language is total (i.e. every state leads to

at least one next state after executing a statement) and deterministic (i.e. every

state leads to at most one next state after executing a statement), it can be further

shown that wp(Stmt,¬ϕ) = ¬wp(Stmt, ϕ) and wp(Stmt, ∃X ϕ) = ∃X wp(Stmt, ϕ).

Consequently, the weakest pre-condition of an arbitrary SAL formula ϕ with re-

spect to a primitive statement can be computed by induction on the structure of ϕ,

and we only need to define weakest pre-conditions of atomic formulae of the form

(T1 = T2).

Let V (ϕ) denote the set of free variables of a formula ϕ. For brevity of notation,

we will use V for V (ϕ) when ϕ is clear from the context. For every Ω ⊆ V , let 〈ϕ〉Ω
denote the conjunction ϕ∧

∧
X∈V \Ω(X = cnil) ∧

∧
Y ∈Ω

(¬(Y = cnil) ∧ nempty(Y )).

Since every satisfying assignment of ϕ in every model Υ (= (Snil,Γ)) sets a (possibly

empty) subset of the free variables of ϕ to Snil and the remaining free variables to

languages in Γ, it follows that ϕ ⇔
∨

Ω⊆V 〈ϕ〉Ω. Similarly, for every Ω2 ⊆ Ω1 ⊆ V

and for every pointer expression θ representing a valid access path, let 〈ϕ〉Ω1,Ω2,Θ

denote the conjunction ϕ ∧
∧

X∈V \Ω1
(X = cnil) ∧

∧
Y ∈Ω1\Ω2

(¬(Y = cnil) ∧ (Y =

Θ)) ∧
∧

Z∈Ω2
(¬(Z = cnil) ∧ ¬(Z = Θ) ∧ nempty(Z)). By reasoning similar to that

above, it can also be shown that empty(Θ ∩ cnil) ⇒ (ϕ⇔
∨

Ω2⊆Ω1⊆V 〈ϕ〉Ω1,Ω2,Θ).

Let α be a primitive statement in a program written in our language, and let Υ =

(Snil,Γ) be a storeless structure representing the program state before execution of

α. Furthermore, let ϕ be a SAL formula such that Υ |= ϕ. By definition, there exists

an assignment of free variables, say ν : V (ϕ) → {Snil} ∪ Γ, such that ν |= ϕ. For

X ∈ V (ϕ), suppose ν(X) = Si 6= Snil. Then X represents the set of access paths

to a node, say ndi, distinct from vnil, in the heap graph prior to execution of α.

Suppose ndi is neither de-allocated nor rendered garbage by executing statement

α from the program state Υ. One can then ask: Can the set of access paths to

ndi in the heap graph resulting after execution of α be expressed in terms of X?

The operational semantics given in Table 1.3 tells us that this can indeed be done.

We will use X̃α to denote the term representing the (potentially new) set of access

paths to ndi after execution of α, where X represented the set of access paths to ndi
before execution of α. Similarly, we will use c̃nil

α
to denote the term representing

the set of access paths to vnil after execution of α, where cnil represented the set

of access paths to vnil prior to execution of α. As an example, if α denotes the

statement θ := nil, the first row of Table 1.3 tells us that c̃nil
α
= (cnil ⊖Θ)∪{Θ}

and X̃α = X ⊖Θ for variable X 6= cnil. For notational clarity, we will henceforth
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use X̃ instead of X̃α when α is clear from the context. Given a SAL formula ϕ

and a subset Ω of V (ϕ), we will use ϕ[Ω 7→ cnil] and ϕ[Ω 7→ Θ] to denote the

formulae obtained from ϕ by substituting every variable X in Ω with cnil and Θ

respectively. Similarly, we will use ϕ[Ω 7→ Ω̃] to denote the formula obtained by

substituting every variable X in Ω with X̃ and by substituting every occurrence of

cnil with c̃nil. Extending the notation, if Ω1 and Ω2 are subsets of V (ϕ), we will

use ϕ[Ω1 7→ cnil][Ω2 7→ Ω̃2] to denote (ϕ[Ω1 7→ cnil])[Ω2 7→ Ω̃2]. The interpretation

of ϕ[Ω1 7→ cnil][Ω2 7→ Θ][Ω3 7→ Ω̃3] is similar.

The intuition behind the computation of wp(α,ϕ) can now be explained as

follows. As before, let Υ = (Snil,Γ) be a storeless structure representing the program

state before execution of α. Let Υ′ = (S′
nil,Γ

′) be the corresponding storeless

structure after execution of α. Suppose Υ′ |= ϕ and ν′ : V (ϕ) → {S′
nil} ∪ Γ′ is a

satisfying assignment for ϕ in Υ′. Let Ω ⊆ V (ϕ) be the subset of free variables

that are assigned languages in Γ′ (and not S′
nil) by ν′, i.e. ν′(X) ∈ Γ′ for all

X ∈ Ω and ν′(Y ) = S′
nil for all Y ∈ V \ Ω. It follows that Υ′ |= ϕ̂, where ϕ̂ ≡

ϕ[V \Ω 7→ cnil]. This is because the assignment ν̂ : Ω → Γ′, given by ν̂(X) = ν(X)

for every X ∈ Ω, causes ϕ̂ to evaluate to the same truth value that ϕ evaluates

to under the assignment ν′, i.e. true. If the execution of α does not allocate any

new memory location, every node in the heap graph after execution of α was also

present in the heap graph before execution of α. From Table 1.3, we also know how

the representations of the sets of access paths to these nodes and to vnil in Υ change

to their corresponding representations in Υ′, as a result of executing α. It therefore

follows that Υ |= ϕ̂[Ω 7→ Ω̃]. The corresponding satisfying assignment ν : Ω 7→ Γ

is such that ν(X) = Si ∈ Γ iff ν′(X) = S′
i ∈ Γ′, where Si and S′

i represent sets

of access paths to the same node in the heap graph before and after executing α

respectively. Now suppose the formula ϕ is such that for all models Υ′ = (S′
nil,Γ

′),

every satisfying assignment ν′ of ϕ in Υ′ sets all free variables in a subset Ω of

V (ϕ) to languages in Γ′ and all other free variables to S′
nil. We will call such

formulae model-constraining with respect to Ω. It is easy to see that if ϕ is model-

constraining with respect to Ω, then wp(α,ϕ) is essentially given by ϕ̂[Ω 7→ Ω̃]. In

reality, wp(α,ϕ) ≡ ζ ∧ ϕ̂[Ω 7→ Ω̃], where ζ is a SAL formula that asserts conditions

to ensure that the execution of α doesn’t lead to a memory error. In other words, ζ

encodes the conditions listed in Table 1.3 for the operational semantics of primitive

statements to be defined. Unfortunately, a general SAL formula ϕ may not be

model-constraining with respect to any Ω ⊆ V (ϕ). In order to circumvent this

problem, we express ϕ in the equivalent form
∨

Ω⊆V 〈ϕ〉Ω. Note that for every Ω,

the formula 〈ϕ〉Ω is model-constraining with respect to Ω. Since the wp operator

distributes over negation and conjunction (and hence, over disjunction) of formulae

with respect to primitive statements in our language, it is now easy to see that

wp(α,ϕ) ≡ ζ ∧
∨

Ω⊆V

(
〈ϕ〉Ω[V \ Ω 7→ cnil][Ω 7→ Ω̃]

)
.

The above discussion assumed that the statement α does not allocate a new

memory location. However, the same intuition can be generalized even when α
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Table 1.5. Weakest pre-conditions and Hoare inference rules for SAL

(a) Computing weakest pre-conditions for atomic formulae

Notation: ϕ ≡ (T1 = T2), V = set of free variables of ϕ
ψu ≡ ∃X (nempty(X ∩ u) ∧ empty(X ∩ cnil))

Statement (α) wp(α, ϕ)

θ := nil ζ ∧
∨

Ω⊆V

(
〈ϕ〉Ω[V \ Ω 7→ cnil][Ω 7→ Ω̃]

)
, where

ζ ≡ ψu if θ is u->n, and True otherwise.

u := θ ζ ∧
∨

Ω⊆V

(
〈ϕ〉Ω[V \ Ω 7→ cnil][Ω 7→ Ω̃]

)
, where

ζ ≡ ψv if θ is v->n, and True otherwise.

u->n := v ζ ∧
∨

Ω⊆V

(
〈ϕ〉Ω[V \ Ω 7→ cnil][Ω 7→ Ω̃]

)
, where ζ ≡ ψu

u := new
∨

Ω2⊆Ω1⊆V

(
〈ϕ〉Ω1,Ω2,u[V \ Ω1 7→ cnil][Ω1 \ Ω2 7→ u][Ω2 7→ Ω̃2]

)

free(u) ζ ∧
∨

Ω⊆V

(
〈ϕ〉Ω[V \ Ω 7→ cnil][Ω 7→ Ω̃]

)
, where ζ ≡ ψu

(b) Hoare inference rules

Notation: [B]: SAL formula corresponding to Boolean expression B in programming language
[u = v] ≡ ∃X (nempty(X ∩ u) ∧ nempty(X ∩ v))
[IsNil(u)] ≡ nempty(cnil ∩ u)

[B1 or B2] ≡ [B1] ∨ [B2]
[not B] ≡ ¬[B]

Inference rules:

{wp(Stmt,ϕ)} Stmt {ϕ}
Stmt ∈ AsgnStmt, AllocStmt or FreeStmt

{ϕ1} Stmt1 {ϕ2} {ϕ2} Stmt2 {ϕ3}
{ϕ1} Stmt1;Stmt2 {ϕ3}

Sequential composition

{ϕ1} Stmt {ϕ2} ϕ3⇒ϕ1 ϕ2⇒ϕ4

{ϕ3} Stmt {ϕ4}
Strengthening pre-condition

Weakening post-condition

{ϕ1∧[B]} Stmt1 {ϕ2} {ϕ1∧¬[B]} Stmt2 {ϕ2}
{ϕ1} if (B) then Stmt1 else Stmt2 {ϕ2}

Conditional branch

ϕ1⇒ϕL {ϕL∧[B]} Stmt {ϕL} ϕL∧¬[B]⇒ϕ2

{ϕ1} while (B) do Stmt {ϕ2}
Looping construct

is a memory allocating primitive statement like u := new. The only difference

in this case is that we need to express a SAL formula ϕ as
∨

Ω2⊆Ω1⊆V 〈ϕ〉Ω1,Ω2,u.

Since empty(u ∩ cnil) necessarily holds after execution of u := new, the formula∨
Ω2⊆Ω1⊆V 〈ϕ〉Ω1,Ω2,u is equivalent to ϕ in all program states after execution of u :=

new. Table 1.5a lists wp(α,ϕ) for various primitive statements α in our language

and for ϕ ≡ (T1 = T2). As discussed earlier, this suffices for computing wp(α,ϕ) for

all SAL formulae ϕ. Table 1.5b gives Hoare inference rules for looping, sequential
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composition and conditional branching constructs in our programming language.

This completes the set of Hoare inference rules for our simple language, with SAL

as the base logic.

Decidability issues: In order to prove heap-related properties of programs in our

language using Hoare-style reasoning, we must formulate the property as a Hoare

triple using SAL as the base logic, and then derive the triple by repeated applications

of inference rules in Table 1.5b. Since Hoare logic is relatively complete, if the

property holds for the program, there exists a way to derive the triple by repeated

applications of inference rules, provided we have an algorithm to check implications

in SAL. Implication checking is needed in the rule for weakening pre-conditions

and strengthening post-conditions, and also in the rule for looping constructs in

Table 1.5b. Given formulas ϕ and ψ in SAL, ϕ ⇒ ψ iff ϕ ∧ ¬ψ is unsatisfiable. In

other words, for every storeless structure Υ = (Snil,Γ) and for every assignment

ν : V (ϕ) ∪ V (ψ) → {Snil} ∪ Γ, we have ν 6|= (ϕ ∧ ¬ψ). Clearly, it suffices to have a

satisfiability checker for SAL in order to check implications between SAL formulae

that arise in our Hoare-style proofs. Unfortunately, satisfiability checking in SAL is

undecidable. The proof of undecidability follows a similar line of reasoning as used

by Bozga et al [32] to show the undecidability of wAL.

Various alternative strategies can, however, be adopted to check satisfiability

of subclasses of formulae in practice. A simple strategy that is often used is to

work with a set of sound (but not complete) inference rules in an undecidable logic.

Thus, if a formula can be shown to be (un)satisfiable using these rules, the formula

is indeed (un)satisfiable. However, there is no guarantee that the satisfiability

question for all formulae in the logic can be answered using the set of chosen rules.

By carefully choosing the set of rules, it is often possible to use an undecidable

logic like SAL quite effectively for proving useful properties of several interesting

programs. Example 1.3 below shows an example of such rule schema for SAL. A

second strategy is to use a decidable fragment of the logic. An example of this is

the logic pAL (propositional Alias Logic) [32], a strict subclass of Bozga et al’s wAL,

but for which implication checking is in NP. A decidable fragment similar to pAL

can also be defined for SAL, although the ability to express properties of heaps is

reduced (e.g., properties like rch(X,Y, f) are not expressible in pAL). Finally, we can

define a notion of bounded semantics, in which we only consider storeless structures

with at most k languages other than Snil, for a fixed (possibly large) k, to check for

satisfiability. Since every storeless structure with k languages can be represented by

a deterministic finite-state transition system with k + 3 states, and since there are

finitely many distinct transition systems with k+3 states, it follows that satisfiability

checking in SAL with bounded semantics is decidable. Note, however, that if a SAL

formula ϕ is found to be unsatisfiable using k−bounded semantics, it does not mean

that the formula is unsatisfiable. Therefore, if a property is proved by applying

Hoare inference rules and by using k-bounded semantics for SAL, then the program

satisfies the property as long as the heap contains k or fewer distinct non-garbage
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memory locations. If, however, the heap grows to contain more than k distinct

non-garbage memory locations, a property proved using k-bounded semantics is

not guaranteed to hold.

Example 1.3. The Hoare triple in Example 1.2 can be proved using the rules

in Table 1.5b, along with the inference rule schema for SAL in Table 1.6. The

loop invariant used at location L2 of the program in Example 1.1 is ϕL2 ≡

((t1 = cnil) ∧ rch(cnil,hd, n)) ∨ (¬(t1 = cnil) ∧ (rch(t1,hd, n) ∧ rch(cnil, t1, n))).

Table 1.6. Sound inference rule schema for SAL

nempty(X ∩Y ·F1) nempty(Z ∩X·F2)
nempty(Z ∩Y ·F1·F2)

X: variable or constant, Y , Z: terms

F1, F2: regular expressions on selector names

nempty(X)
nempty(X ∩X·F ∗)

X: term, F : regular expression on selector names

1.7. A counter automaton based technique

We have seen above two different automata based techniques for reasoning about

heap manipulating programs: regular model checking, and Hoare-style reasoning

using a logic called SAL that uses automata based storeless representations of the

heap as logical structures. In this section, we describe a third technique based on

counter automata.

As in Section 1.5, we restrict our attention to a class of heap manipulating pro-

grams in which each memory location has a single pointer-valued selector. We have

seen earlier that if we ignore garbage, the heap graph of such a program with n vari-

ables consists of at most 2n uninterrupted list segments. This motivates abstracting

such a heap graph by mapping each (unbounded) sequence of selector names in an

uninterrupted list segment to an abstract sequence of some fixed size. Unfortu-

nately, such an abstraction does not permit remembering the exact count of nodes

that actually existed in the list segment in the original heap graph. An interesting

solution to this problem is to associate a counter with every such sequence in the

heap graph, and to use the counter to store the count of nodes in the sequence.

Bouajjani et al [25] have used this idea to define a counter automaton abstraction

of the state transition behaviour of heap manipulating programs. More recently,

Abdulla et al have proposed a technique using graph minors that achieves a similar

abstraction [21].

Let X = {x1, . . . xn} be a set of counter variables, and let Φ be the set of

Presburger logic formulae with free variables in {xi, x
′
i | xi ∈ X}. A counter

automaton with the set X of counter variables is a tuple Ac = (Q,X,∆), where Q

is a finite set of control states, and ∆ ⊆ Q×Φ×Q represents the transition relation.

A configuration of the counter automaton is a tuple (q, β), where β : X → N



August 19, 2010 18:17 World Scientific Review Volume - 9.75in x 6.5in chakraborty-final

Reasoning about Heap Manipulating Programs using Automata Techniques 33

assigns a natural number to each counter variable. The automaton is said to have a

transition from (q, β) to (q′, β′) iff (q, ϕ, q′) ∈ ∆ for some Presburger formula ϕ ∈ Φ

and the following conditions hold: (i) β′(xi) = β(xi) for every x′i that is not free

in ϕ, and (ii) ϕ evaluates to true on substituting β(xi) for all free variables xi and

β′(xi) for all free variables x′i of ϕ. A run of Ac is a sequence of configurations

(q0, β0), (q1, β1), . . . such that Ac has a transition from (qi, βi) to (qi+1, βi+1) for

every i ≥ 0.

In order to construct a counter automaton abstraction of the state transition

behaviour of a heap manipulating program, we first build a structural abstraction

of the heap graph. This is done by first defining an abstract structure and then

establishing a mapping from nodes in the heap graph to nodes in the abstract

structure, such that certain technical conditions are met [25]. These conditions

ensure that two distinct nodes in the heap graph are mapped to the same node

in the abstract structure only if they are not interruptions (see Section 1.5.1 for a

definition of “interruptions”) and belong to the same uninterrupted list segment.

Intuitively, two nodes in the heap graph are mapped to the same node in the abstract

structure if they are “internal” to the same uninterrupted list segment. For the

class of programs under consideration, this abstraction is similar to the canonical

abstraction of Reps et al [24], in which two nodes “internal” to the same list segment

are abstracted into the same summary node. We also associate a counter variable

with each node in the abstract structure to keep track of the actual count of nodes in

the heap graph that have been mapped to it. Furthermore, the abstract structure is

constructed in such a way that for every sequence of two abstract nodes connected

by an edge, one of the nodes is necessarily pointed to by a program variable, or

has an in-degree exceeding 1. Given this condition, it can be shown [25] that the

number of different abstract structures representing uninterrupted list segments in

the heap graph of a program with a finite number of variables is always finite.

A counter automaton abstraction of the state transition graph of a heap ma-

nipulating program is obtained by letting the control states of the automaton be

(program location, structural abstraction of heap graph) pairs. Thus, each control

state is an abstraction of the program state. Counters associated with nodes in

the structural abstraction become counters associated with the control state. Tran-

sitions of the counter automaton are guarded by Presburger logic formulae that

encode the operational semantics of various primitive program statements. Bouaj-

jani et al have shown [25] how such Presburger logic formulae can be calculated for

assignment, memory allocation and memory de-allocation statements. A transition

of the counter automaton corresponds to the execution of a program statement. In

general, this can lead to both a change in the counter values as well as change in the

shape represented by the abstract structure. The change in counter values allows

us to track the lengths of different uninterrupted list segments precisely. Note that

a counter automaton abstraction effectively maps a set of memory locations in the

heap to a node in the abstract structure. The identity of a memory location is
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therefore the name of the node in the abstract structure to which it is mapped,

and not the set of access paths to this node. In this sense, a counter automaton

abstraction uses a store based semantics.

For data-insensitive programs manipulating the heap, it can be shown that a

counter automaton abstraction is bisimilar to the state transition graph of the

original program. Hence this abstraction preserves all temporal properties of data-

insensitive programs. It has been shown by Bouajjani et al that the counter automa-

ton abstraction also has additional properties that can be used to answer questions

about the original program. Although the location reachability problem is unde-

cidable in general for counter automata, these additional properties can be used to

prove properties of special classes of programs. The reader is referred to [25] for a

detailed exposition on this topic.

1.8. Conclusion

Analysis and formal verification of computer programs is a challenging task, espe-

cially for programs that manipulate unbounded structures in the heap. Automata

theory provides a rich set of tools and techniques for reasoning about unbounded

objects like words, trees, graphs etc. It is therefore not surprising that automata

based techniques have attracted the attention of researchers in program analysis

and verification. In this article, we surveyed three interesting techniques based on

automata and logic for reasoning about programs manipulating the heap. This

article is intended to provide an introductory perspective on the use of automata

theoretic techniques for analyzing heap manipulating programs. The serious reader

is strongly encouraged to refer to the bibliography for further readings.
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