
On Symbolic Approaches for Computing the Matrix
Permanent?

Supratik Chakraborty1, Aditya A. Shrotri2, and Moshe Y. Vardi2

1 Indian Institute of Technology Bombay, India supratik@cse.iitb.ac.in
2 Rice University, Houston, USA {Aditya.Aniruddh.Shrotri,vardi}@rice.edu

Abstract. Counting the number of perfect matchings in bipartite graphs, or equiv-
alently computing the permanent of 0-1 matrices, is an important combinatorial
problem that has been extensively studied by theoreticians and practitioners alike.
The permanent is #P-Complete; hence it is unlikely that a polynomial-time al-
gorithm exists for the problem. Researchers have therefore focused on finding
tractable subclasses of matrices for permanent computation. One such subclass
that has received much attention is that of sparse matrices i.e. matrices with few
entries set to 1, the rest being 0. For this subclass, improved theoretical upper
bounds and practically efficient algorithms have been developed. In this paper,
we ask whether it is possible to go beyond sparse matrices in our quest for devel-
oping scalable techniques for the permanent, and answer this question affirma-
tively. Our key insight is to represent permanent computation symbolically using
Algebraic Decision Diagrams (ADDs). ADD-based techniques naturally use dy-
namic programming, and hence avoid redundant computation through memoiza-
tion. This permits exploiting the hidden structure in a large class of matrices that
have so far remained beyond the reach of permanent computation techniques. The
availability of sophisticated libraries implementing ADDs also makes the task of
engineering practical solutions relatively straightforward. While a complete char-
acterization of matrices admitting a compact ADD representation remains open,
we provide strong experimental evidence of the effectiveness of our approach for
computing the permanent, not just for sparse matrices, but also for dense matrices
and for matrices with “similar” rows.

1 Introduction

Constrained counting lies at the heart of several important problems in diverse ar-
eas such as performing Bayesian inference [?], measuring resilience of electrical net-
works [?], counting Kekule structures in chemistry [?], computing the partition function
of monomer-dimer systems [?], and the like. Many of these problems reduce to counting
problems on graphs. For instance, learning probabilistic models from data reduces to
counting the number of topological sorts of directed acyclic graphs [?], while comput-
ing the partition function of a monomer-dimer system reduces to computing the number
of perfect matchings of an appropriately defined bipartite graph [?]. In this paper, we
focus on the last class of problems – that of counting perfect matchings in bipartite
graphs. It is well known that this problem is equivalent to computing the permanent
? Author names are ordered alphabetically by last name and does not indicate contribution

of the 0-1 bi-adjacency matrix of the bipartite graph. We refer to these two problems
interchangeably in the remainder of the paper.

Given an n × n matrix A with real-valued entries, the permanent of A is given by
perm(A) =

∑
σ∈Sn

∏n
i=1 ai,σ(i), where Sn denotes the symmetric group of all per-

mutations of 1, . . . n. This expression is almost identical to that for the determinant of
A; the only difference is that the determinant includes the sign of the permutation in the
inner product. Despite the striking resemblance of the two expressions, the complexities
of computing the permanent and determinant are vastly different. While the determinant
can be computed in time O(n2.4), Valiant [?] showed that computing the permanent of
a 0-1 matrix is #P-Complete, making a polynomial-time algorithm unlikely [?]. Further
evidence of the hardness of computing the permanent was provided by Cai, Pavan and
Sivakumar [?], who showed that the permanent is also hard to compute on average. Dell
et al. [?] showed that there can be no algorithm with sub-exponential time complexity,
assuming a weak version of the Exponential Time Hypothesis [?] holds.

The determinant has a nice geometric interpretation: it is the oriented volume of
the parallelepiped spanned by the rows of the matrix. The permanent, however, has no
simple geometric interpretation. Yet, it finds applications in a wide range of areas. In
chemistry, the permanent and the permanental polynomial of the adjacency matrices of
fullerenes [?] have attracted much attention over the years [?,?,?]. In constraint pro-
gramming, solutions to All-Different constraints can be expressed as perfect matchings
in a bipartite graph [?]. An estimate of the number of such solutions can be used as a
branching heuristic to guide search [?,?]. In physics, permanents can be used to measure
quantum entanglement [?] and to compute the partition functions of monomer-dimer
systems [?].

Since computing the permanent is hard in general, researchers have attempted to
find efficient solutions for either approximate versions of the problem, or for restricted
classes of inputs. In this paper, we restrict our attention to exact algorithms for com-
puting the permanent. The asymptotically fastest known exact algorithm for general
n × n matrices is Nijenhuis and Wilf’s version of Ryser’s algorithm [?,?], which runs
in time Θ(n · 2n) for all matrices of size n. For matrices with bounded treewidth or
clique-width [?,?], Courcelle, Makowsky and Rotics [?] showed that the permanent can
be computed in time linear in the size of the matrix, i.e., computing the permanent is
Fixed Parameter Tractable (FPT). A large body of work is devoted to developing fast
algorithms for sparse matrices, i.e. matrices with only a few entries set to non-zero val-
ues [?,?,?,?] in each row. Note that the problem remains #P-Complete even when the
input is restricted to matrices with exactly three 1’s per row and column [?].

An interesting question to ask is whether we can go beyond sparse matrices in our
quest for practically efficient algorithms for the permanent. For example, can we hope
for practically efficient algorithms for computing the permanent of dense matrices, i.e.,
matrices with almost all entries non-zero? Can we expect efficiency when the rows of
the matrix are “similar”, i.e. each row has only a few elements different from any other
row (sparse and dense matrices being special cases)? Existing results do not seem to
throw much light on these questions. For instance, while certain non-sparse matrices in-
deed have bounded clique-width, the aforementioned result of Courcelle et al [?,?] does
not yield practically efficient algorithms as the constants involved are enormous [?]. The

2

hardness of non-sparse instances is underscored by the fact that SAT-based model coun-
ters do not scale well on these, despite the fact that years of research and careful engi-
neering have enabled these tools to scale extremely well on a diverse array of problems.
We experimented with a variety of CNF-encodings of the permanent on state-of-the-art
counters like D4 [?]. Strikingly, no combination of tool and encoding was able to scale
to matrices even half the size of those solved by Ryser’s approach in the same time,
despite the fact that Ryser’s approach has exponential complexity even in the best case.

In this paper, we show that practically efficient algorithms for the permanent can
indeed be designed for large non-sparse matrices if the matrix is represented compactly
and manipulated efficiently using a special class of data structures. Specifically, we pro-
pose using Algebraic Decision Diagrams [?] (ADDs) to represent matrices, and design
a version of Ryser’s algorithm to work on this symbolic representation of matrices.
This effectively gives us a symbolic version of Ryser’s algorithm, as opposed to exist-
ing implementations that use an explicit representation of the matrix. ADDs have been
studied extensively in the context of formal verification, and sophisticated libraries are
available for compact representation of ADDs and efficient implementation of ADD op-
erations [?,?]. The literature also contains compelling evidence that reasoning based on
ADDs and variants scales to large instances of a diverse range of problems in practice,
cf. [?,?]. Our use of ADDs in Ryser’s algorithm leverages this progress for computing
the permanent. Significantly, there are several sub-classes of matrices that admit com-
pact representations using ADDs, and our algorithm works well for all these classes.
Our empirical study provides evidence for the first time that the frontier of practically
efficient permanent computation can be pushed well beyond the class of sparse matri-
ces, to the classes of dense matrices and, more generally, to matrices with “similar”
rows. Coupled with a technique known as early abstraction, ADDs are able to handle
sparse instances as well. In summary, the symbolic approach to permanent computation
shows promise for both sparse and dense classes of matrices, which are special cases of
a notion of row-similarity.

The rest of the paper is organized as follows: in Section 2 we introduce ADDs and
other concepts that we will use in this paper. We discuss related work in Section 3 and
present our algorithm and analyze it in Section 4. Our empirical study is presented in
Sections 5 and 6 and we conclude in Section 7.

2 Preliminaries

We denote by A = (aij) an n × n 0-1 matrix, which can also be interpreted as the
bi-adjacency matrix of a bipartite graphGA = (U ∪V,E) with an edge between vertex
i ∈ U and j ∈ V iff aij = 1. We will denote the ith row of A by ri. A perfect matching
in GA is a subsetM ⊆ E, such that for all v ∈ (U ∪ V), exactly one edge e ∈ M
is incident on v. We denote by perm(A) the permanent of A, and by #PM(GA), the
number of perfect matchings in G. A well known fact is that perm(A) = #PM(GA),
and we will use these concepts interchangeably when clear from context.

3

2.1 Algebraic Decision Diagrams

Let X be a set of Boolean-valued variables. An Algebraic Decision Diagram (ADD)
is a data structure used to compactly represent a function of the form f : 2X → R as
a Directed Acyclic Graph (DAG). ADDs were originally proposed as a generalization
of Binary Decision Diagrams (BDDs), which can only represent functions of the form
g : 2X → {0, 1}. Formally, an ADD is a 5-tuple (X,T, π,G) where X is a set of
Boolean variables, the finite set T ⊂ R is called the carrier set, π : X → N is the
diagram variable order, andG is a rooted directed acyclic graph satisfying the following
three properties:

1. Every terminal node of G is labeled with an element of T .
2. Every non-terminal node ofG is labeled with an element ofX and has two outgoing

edges labeled 0 and 1.
3. For every path in G, the labels of visited non-terminal nodes must occur in increas-

ing order under π.

We use lower case letters f, g, . . . to denote both functions from Booleans to reals as
well as the ADDs representing them. Many operations on such functions can be per-
formed in time polynomial in the size of their ADDs. We list some such operations that
will be used in our discussion.

– Product: The product of two ADDs representing functions f : 2X → R and g :
2Y → R is an ADD representing the function f · g : 2X∪Y → R, where f · g(τ) is
defined as f(τ ∩X) · g(τ ∩ Y) for every τ ∈ 2X∪Y ,

– Sum: Defined in a way similar to the product.
– If-Then-Else (ITE): This is a ternary operation that takes as inputs a BDD f and

two ADDs g and h. ITE(f, g, h) represents the function f · g + ¬f · h, and the
corresponding ADD is obtained by substituting g for the leaf ’1’ of f and h for the
leaf ’0’, and simplifying the resulting structure.

– Additive Quantification: The existential quantification operation for Boolean-valued
functions can be extended to real-valued functions by replacing disjunction with
addition as follows. The additive quantification of f : 2X → R is denoted as
∃x.f : 2X\{x} → R and for τ ∈ 2X\{x}, we have ∃x.f(τ) = f(τ) + f(τ ∪ {x}).

ADDs share many properties with BDDs. For example, there is a unique minimal ADD
for a given variable order π, called the canonical ADD, and minimization can be per-
formed in polynomial time. Similar to BDDs, the variable order can significantly affect
the size of the ADD. Hence heuristics for finding good variable orders for BDDs carry
over to ADDs as well. ADDs typically have lower recombination efficiency, i.e. number
of shared nodes, vis-a-vis BDDs. Nevertheless, sharing or recombination of isomorphic
sub-graphs in an ADD is known to provide significant practical advantages in repre-
senting matrices, vis-a-vis other competing data structures. The reader is referred to [?]
for a nice introduction to ADDs and their applications.

2.2 Ryser’s Formula

The permanent of A can be calculated by the principle of inclusion-exclusion using
Ryser’s formula: perm(A) = (−1)n

∑
S⊆[n](−1)|S|

∏n
i=1

∑
j∈S aij . Algorithms im-

plementing Ryser’s formula on an explicit representation of an arbitrary matrix A (not

4

necessarily sparse) must consider all 2n subsets of [n]. As a consequence, such al-
gorithms have at least exponential complexity. Our experiments show that even the
best known existing algorithm implementing Ryser’s formula for arbitrary matrices [?],
which iterates over the subsets of [n] in Gray-code sequence, consistently times out after
1800 seconds on a state-of-the-art computing platform when computing the permanent
of n× n matrices, with n ≥ 35.

3 Related Work

Valiant showed that computing the permanent is #P -complete [?]. Subsequently, re-
searchers have considered restricted sub-classes of inputs in the quest for efficient algo-
rithms for computing the permanent, both from theoretical and practical points of view.
We highlight some of the important milestones achieved in this direction.

A seminal result is the Fisher-Temperly-Kastelyn algorithm [?,?], which computes
the number of perfect matchings in planar graphs in PTIME. This result was subse-
quently extended to many other graph classes (c.f. [?]). Following the work of Cour-
celle et al., a number of different width parameters have been proposed, culminating
in the definition of ps-width [?], which is considered to be the most general notion of
width [?]. Nevertheless, as with clique-width, it is not clear whether it lends itself to
practically efficient algorithms. Bax and Franklin [?] gave a Las Vegas algorithm with
better expected time complexity than Ryser’s approach, but requiring O(2n/2) space.

For matrices with at most C · n zeros, Servedio and Wan [?] presented a (2− ε)n-
time and O(n) space algorithm where ε depends on C. Izumi and Wadayama [?] gave
an algorithm that runs in timeO∗(2(1−1/(∆ log∆))n), where∆ is the average degree of a
vertex. On the practical side, in a series of papers, Liang, Bai and their co-authors [?,?,?]
developed algorithms optimized for computing the permanent of the adjacency matrices
of fullerenes, which are 3-regular graphs.

In recent years, practical techniques for propositional model counting (#SAT) have
come of age. State-of-the-art exact model counters like DSharp [?] and D4 [?] also
incorporate techniques from knowledge compilation. A straightforward reduction of
the permanent to #SAT uses a Boolean variable xij for each 1 in row i and column
j of the input matrix A, and imposes Exact-One constraints on the variables in each
row and column. This gives the formula Fperm(A) =

∧
i∈[n]ExactOne({xij : aij =

1}) ∧
∧
j∈[n]ExactOne({xij : aij = 1}). Each solution to Fperm(A) is a perfect

matching in the underlying graph, and so the number of solutions is exactly the perma-
nent of the matrix. A number of different encodings can be used for translating Exact-
One constraints to Conjunctive Normal Form (see Section 5.1). We perform extensive
comparisons of our tool with D4 and DSharp with six such encodings.

4 Representing Ryser’s Formula Symbolically

As noted in Sec. 2, an explicit implementation of Ryser’s formula iterates over all 2n

subsets of columns and its complexity is in Θ(n · 2n). Therefore, any such implemen-
tation takes exponential time even in the best case. A natural question to ask is whether

5

we can do better through a careful selection of subsets over which to iterate. This prin-
ciple was used for the case of sparse matrices by Servedio and Wan [?]. Their idea was
to avoid those subsets for which the row-sum represented by the innermost summation
in Ryser’s formula, is zero for at least one row, since those terms do not contribute to the
outer sum in Ryser’s formula. Unfortunately, this approach does not help for non-sparse
matrices, as very few subsets of columns (if any) will yield a zero row-sum.

It is interesting to ask if we can exploit similarity of rows (instead of sparsity) to
our advantage. Consider the ideal case of an n × n matrix with identical rows, where
each row has k (≤ n) 1s. For any given subset of columns, the row-sum is clearly the
same for all rows, and hence the product of all row-sums is simply the nth power of
the row-sum of one row. Furthermore, there are only k + 1 distinct values (0 through
k) of the row-sum, depending on which subset of columns is selected. The number of
r-sized column subsets that yield row-sum j is clearly

(
k
j

)
·
(
n−k
r−j
)
, for 0 ≤ j ≤ k

and j ≤ r ≤ n − k + j. Thus, we can directly compute the permanent of the matrix
via Ryser’s formula as perm(A) = (−1)n

∑k
j=0

∑n−k+j
r=j (−1)r

(
k
j

)
·
(
n−k
r−j
)
· jn. This

equation has a more compact representation than the explicit implementation of Ryser’s
formula, since the outer summation is over (k+1).(n−k+1) terms instead of 2n terms.

Drawing motivation from the above example, we propose using memoization to
simplify the permanent computation of matrices with similar rows. Specifically, if we
compute and store the row-sums for a subset S1 ⊂ [n] of columns, then we can poten-
tially reuse this information when computing the row-sums for subsets S2 ⊃ S1. We
expect storage requirements to be low when the rows are similar, as the partial sums
over identical parts of the rows will have a compact representation, as shown above.

While we can attempt to hand-craft a concrete algorithm using this idea, it turns
out that ADDs fit the bill perfectly. We introduce Boolean variables xj for each column
1 ≤ j ≤ n in the matrix. We can represent the summand (−1)|S|

∏n
i=1

∑
j∈S aij in

Ryser’s formula as a function fRyser : 2X → R where for a subset of columns τ ∈ 2X ,
we have fRyser(τ) = (−1)|τ |

∏n
i=1

∑
j∈τ aij . The outer sum in Ryser’s formula is then

simply the Additive Quantification of fRyser over all variables inX . The permanent can
thus be denoted by the following equation:

perm(A) = (−1)n . ∃x1, x2, . . . xn.(fRyser) (1)

(a) (b) (c)

Fig. 1: (a) fRS , (b) fRSP and (c) fRyser for a 4× 4 matrix of all 1s

6

We can construct an ADD for fRyser incrementally as follows:

– Step 1: For each row ri in the matrix, construct the Row-Sum ADD friRS such
that friRS(τ) =

∑
j:aij=1 1τ (xj), where 1τ (xj) is the indicator function taking the

value 1 if xj ∈ τ , and zero otherwise. This ADD can be constructed by using the
sum operation on the variables xj corresponding to the 1 entries in row ri.

– Step 2: Construct the Row-Sum-Product ADD fRSP =
∏n
i=1 f

ri
RS by applying the

product operation on all the Row-Sum ADDs
– Step 3: Construct the Parity ADD fPAR = ITE(

⊕n
j=1 xj ,−1,+1), where

⊕
represents exclusive-or. This ADD represents the (−1)|S| term in Ryser’s formula.

– Step 4: Construct fRyser = fRSP .fPAR using the product operation.

Finally, we can additively quantify out all variables in fRyser and multiply the result
by (−1)n to get the permanent, as given by Equation 1.

The size of the ADD fRSP will be the smallest when the ADDs friRS are exactly the
same for all rows ri, i.e. when all rows of the matrix are identical. In this case, the ADDs
friRS and fRSP will be isomorphic; the values at the leaves of fRSP will simply be the
nth power of the values at the corresponding leaves of friRS . An example illustrating
this for a 4× 4 matrix of all 1s is shown in Fig. 1. Each level of the ADDs in this figure
corresponds to a variable (shown on the left) for a column of the matrix. A solid edge
represents the ’true’ branch while a dotted edge represents the ’false’ branch. Observe
that sharing of isomorphic subgraphs allows each of these ADDs to have 10 internal
nodes and 5 leaves, as opposed to 15 internal nodes and 16 leaves that would be needed
for a complete binary tree based representation.

The ADD representation is thus expected to be compact when the rows are “simi-
lar”. Dense matrices can be thought of as a special case: starting with a matrix of all 1s
(which clearly has all rows identical), we change a few 1s to 0s. The same idea can be
applied to sparse matrices as well: starting with a matrix of all 0s (once again, identical
rows), we change a few 0s to 1s. The case of very sparse matrices is not interesting, how-
ever, as the permanent (or equivalently, count of perfect matchings in the corresponding
bipartite graph) is small and can be computed by naive enumeration. Interestingly, our
experiments show that as we reduce the sparsity of the input matrix, constructing fRSP
and fRyser in a monolithic fashion as discussed above fails to scale, since the sizes of
ADDs increase very sharply. Therefore we need additional machinery.

First, we rewrite Equation 1 in terms of the intermediate ADDs as:

perm(A) = (−1)n . ∃x1, x2, . . . xn.(fPAR ·
n∏
i=1

friRS) (2)

We then employ the principle of early abstraction to compute fRyser incrementally.
Note that early abstraction has been used successfully in the past in the context of SAT
solving [?], and recently for weighted model counting using ADDs (currently under
submission by others) in a technique called ADDMC [?]. The formal statement of the
principle of early abstraction is given in the following theorem.

Theorem 1. [?] Let X and Y be sets of variables and f : 2X → R, g : 2Y → R. For
all x ∈ X \ Y , we have ∃x(f · g) = (∃x(f)) · g

7

Algorithm 1 RysersADD(A, π, η)

1: m← maxx∈X η(x);
2: for i = m,m− 1, . . . , 1 do
3: κi ← {fr

RS : r is a row in A and clusterRank(r, η) = i};
4: fRyser ← fPAR; . fPAR and each fr

RS are constructed using the diagram variable order π
5: for i = 1, 2, . . . ,m do
6: if κi 6= ∅ then
7: for g ∈ κi do
8: fRyser ← fRyser · g;
9: for x ∈ V ars(fRyser) do

10: if x 6∈ (V ars(κi+1) ∪ . . . ∪ V ars(κm)) then
11: fRyser ← ∃x(fRyser)

12: return (−1)n × fRyser(∅)

Since the product operator is associative and additive quantification is commutative,
we can rearrange the terms of Equation 2 in order to apply early abstraction. This idea
is implemented in Algorithm RysersADD, which is motivated by the weighted model
counting algorithm in [?].

Algorithm RysersADD takes as input a 0-1 matrix A, a diagram variable order π
and a cluster rank-order η. η is an ordering of variables which is used to heuristically
partition rows of A into clusters using a function clusterRank, where all rows in a clus-
ter get the same rank. Intuitively, rows that are almost identical are placed in the same
cluster, while those that differ significantly are placed in different clusters. Furthermore,
the clusters are ordered such that there are non-zero columns in cluster i that are ab-
sent in the set of non-zero columns in clusters with rank > i. As we will soon see, this
facilitates keeping the sizes of ADDs under control by applying early abstraction.

Algorithm RysersADD proceeds by first partitioning the Row-Sum ADDs of the
rows A into clusters according to their cluster rank in line 3. Each Row-Sum ADD is
constructed according to the diagram variable order π. The ADD fRyser is constructed
incrementally, starting with the Parity ADD in line 4, and multiplying the Row-Sum
ADDs in each cluster κi in the loop at line 7. However, unlike the monolithic approach,
early abstraction is carried out within the loop at line 9. Finally, when the execution
reaches line 12, all variables representing columns of the input matrix have been ab-
stracted out. Therefore, fRyser is an ADD with a single leaf node that contains the
(possibly negative) value of the permanent. Following Equation 2, the algorithm returns
the product of (−1)n and fRsyer(∅).

The choice of the function clusterRank and the cluster rank-order η significantly af-
fect the performance of the algorithm. A number of heuristics for determining clusterRank
and η have been proposed in literature, such as Bucket Elimination [?], and Bouquet’s
Method [?] for cluster ranking, and MCS [?], LexP [?] and LexM [?] for variable order-
ing. Further details and a rigorous comparison of these heuristics are presented in [?].
Note that if we assign the same cluster rank to all rows of the input matrix, Algorithm
RysersADD reduces to one that constructs all ADDs monolithically, and does not ben-
efit from early abstraction.

8

4.1 Implementation Details

We implemented Algorithm 1 using the library Sylvan [?] since unlike CUDD [?], Syl-
van supports arbitrary precision arithmetic – an essential feature to avoid overflows
when the permanent has a large value. Sylvan supports parallelization of ADD opera-
tions in a multi-core environment. In order to leverage this capability, we created a par-
allel version of RysersADD that differs from the sequential version only in that it uses
the parallel implementation of ADD operations natively provided by Sylvan. Note that
this doesn’t require any change to Algorithm RysersADD, except in the call to Sylvan
functions. While other non-ADD-based approaches to computing the permanent can be
parallelized as well, we emphasize that it is a non-trivial task in general, unlike using
Sylvan. We refer to our sequential and parallel implementations for permanent compu-
tation as RysersADD and RysersADD-P respectively, in the remainder of the discussion.
We implemented our algorithm in C++, compiled under GCC v6.4 with the O3 flag. We
measured the wall-times for both algorithms. Sylvan also supports arbitrary precision
floating point computation, which makes it easy to extend RysersADD for computing
permanent of real-valued matrices. However, we leave a detailed investigation of this
for future work.

5 Experimental Methodology

The objective of our empirical study was to evaluate RysersADD and RysersADD-P
on randomly generated instances (as done in [?]) and publicly available structured in-
stances (as done in [?,?]) of 0-1 matrices.

5.1 Algorithm Suite

As noted in Section 3, a number of different algorithms have been reported in the lit-
erature for computing the permanent of sparse matrices. Given resource constraints, it
is infeasible to include all of these in our experimental comparisons. This is further
complicated by the fact that many of these algorithms appear not to have been imple-
mented (eg: [?,?]), or the code has not been made publicly accessible (eg: [?,?]). A
fair comparison would require careful consideration of several parameters like usage of
libraries, language of implementation, suitability of hardware etc. We had to arrive at
an informed choice of algorithms, which we list below along with our rationale:

– RysersADD and RysersADD-P: For the dense and similar rows cases, we use the
monolithic approach as it is sufficient to demonstrate the scalability of our ADD-
based approach. For sparse instances, we employ Bouquet’s Method (List) [?] clus-
tering heuristic along with MCS cluster rank-order [?] and we keep the diagram
variable order the same as the indices of columns in the input matrix (see [?] for
details about the heuristics). We arrived at these choices through preliminary ex-
periments. We leave a detailed comparison of all combinations for future work.

– Explicit Ryser’s Algorithm: We implemented Nijenhuis and Wilf’s version [?] of
Ryser’s formula using Algorithm H from [?] for generating the Gray code se-
quence. Our implementation, running on a state-of-the-art computing platform (see

9

Section 5.2), is able to compute the permanent of all matrices with n ≤ 25 in un-
der 5 seconds. For n = 30, the time shoots up to approximately 460 seconds and
for n ≥ 34, the time taken exceeds 1800 seconds (time out for our experiments).
Since the performance of explicit Ryser’s algorithm depends only on the size of the
matrix, and is unaffected by its structure, sparsity or row-similarity, this represents
a complete characterization of the performance of the explicit Ryser’s algorithm.
Hence, we do not include it in our plots.

– Propositional Model Counters: Model counters that employ techniques from SAT-
solving as well as knowledge compilation, have been shown to scale extremely well
on large CNF formulas from diverse domains. Years of careful engineering have re-
sulted in counters that can often outperform domain-specific approaches. We used
two state-of-the-art exact model counters, viz. D4 [?] and DSharp [?], for our exper-
iments. We experimented with 6 different encodings for At-Most-One constraints:
(1) Pairwise [?], (2) Bitwise [?], (3) Sequential Counter [?], (4) Ladder [?,?], (5)
Modulo Totalizer [?] and (6) Iterative Totalizer [?]. We also experimented with an
ADDMC, an ADD-based module counter [?]. However, ADDMC failed to scale
beyond matrices of size 25; ergo we do not include it in our study.

We were unable to include the parallel #SAT counter countAtom [?] in our experiments,
owing to difficulties in setting it up on our compute set-up. However, we could run
countAtom on a slightly different set-up with 8 cores instead of 12, and 16GB memory
instead of 48 on a few sampled dense and similar-row matrix instances. Our experiments
showed that countAtom timed out on all these cases. We leave a more thorough and
scientific comparison with countAtom for future work.

5.2 Experimental Setup

Each experiment (sequential or parallel) had exclusive access to a Westemere node
with 12 processor cores running at 2.83 GHz with 48 GB of RAM. We capped memory
usage at 42 GB for all tools. We implemented explicit Ryser’s algorithm in C++, com-
piled with GCC v6.4 with O3 flag. The RysersADD and RysersADD-P algorithms were
implemented as in Section 4.1. RysersADD-P had access to all 12 cores for parallel
computation. We used the python library PySAT [?] for encoding matrices into CNF.
We set the timeout to 1800 seconds for all our experiments. For purposes of reporting,
we treat a memory out as equivalent to a time out.

Table 1: Parameters used for generating random matrices
Experiment Matrix Size

n Cf , where Cf · n matrix entries flipped Starting Matrix
Row Density ρ #Instances Total

Benchmarks
Dense 30, 40, 50, 60, 70 1, 1.1, 1.2, 1.3, 1.4 1 20 500
Sparse 30, 40, 50, 60, 70 3.9, 4.3, 4.7, 5.1, 5.5 0 20 500
Similar 40, 50, 60, 70, 80 1, 1.1, 1.2, 1.3, 1.4 0.7, 0.8, 0.9 15 1125

5.3 Benchmarks

The parameters used for generating random instances are summarized in Table 1. We
do not include matrices with n < 30 since the explicit Ryser’s algorithm suffices (and

10

often performs the best) for such matrices. The upper bound for n was chosen such
that the algorithms in our suite either timed out or came close to timing out. For each
combination of parameters, random matrix instances were sampled as follows:

1. We started with an n×nmatrix, where the first row had ρ ·n 1s at randomly chosen
column positions, and all other rows were copies of the first row.

2. Cf · n randomly chosen entries in the starting matrix are flipped i.e. 0 flipped to 1
and vice versa.

For the dense case, we start with a matrix of all 1s while for the sparse case, we start
with a matrix of all 0s, and used intermediate row density values for the similar-rows
case. We chose higher values for Cf in the sparse case because for low values, the
bipartite graph corresponding to the generated matrix had very few perfect matchings
(if any), and these could be simply counted by enumeration. We generated a total of
2125 benchmarks covering a broad range of parameters. For all generated instances,
we ensured that there was at least one perfect matching, since the case with zero per-
fect matchings can be easily solved in polynomial time by algorithms like Hopcroft-
Karp [?]. In order to avoid spending inordinately large time on failed experiments, if
an algorithm timed out on all generated random instances of a particular size, we also
report a time out for that algorithm on all larger instances of that class of matrices. We
also double-check this by conducting experiments with the same algorithm on a few
randomly chosen larger instances.

The SuiteSparse Matrix Collection [?] is a well known repository of structured
sparse matrices that arise from practical applications. We found 26 graphs in this suite
with vertex count between 30 and 100, of which 18 had at least one perfect matching.
Note that these graphs are not necessarily bipartite; however, their adjacency matri-
ces can be used as benchmarks for computing the permanent. A similar approach was
employed in [?] as well.

Fullerenes are carbon molecules whose adjacency matrices have been used exten-
sively by Liang et al. [?,?,?] for comparing tools for the permanent. We were able to
find the adjacency matrices of C60 and C100, and have used these in our experiments.

6 Results

We first study the variation of running time of RysersADD with the size of ADDs in-
volved. Then we compare the running times of various algorithms on sparse, dense and
similar-row matrices, as well as on instances from SuiteSparse Matrix Collection and
on adjacency matrices of fullerenes C60 and C100. The total computational effort of our
experiments exceeds 2500 hours of wall clock time on dedicated compute nodes.

6.1 ADD size vs time taken by RysersADD

In order to validate the hypothesis that the size of the ADD representation is a crucial
determining factor of the performance of RysersADD, we present 3 scatter-plots (Fig.
2) for a subset of 100 instances, of each of the dense, sparse and similar-rows cases. In
each case, the 100 instances cover the entire range of Cf and n used in Table 1, and

11

105 106 107 108

Size (#nodes)

100

101

102

103

T
im

e
 (

s
e
c
)

Dense Matrices

105 106 107 108

Size (#nodes)

100

101

102

103

T
im

e
 (

s
e
c
)

Similar Rows Matrices

106 107 108

Size (#nodes)

100

101

102

103

T
im

e
 (

s
e
c
)

Sparse Matrices

Fig. 2: Comparison of ADD Size vs. Time taken for a subset of random benchmarks

we plot times only for instances that didn’t time out. The plots show that there is very
strong correlation between the number of nodes in the ADDs and the time taken for
computing the permanent, supporting our hypothesis.

30 40 50 60 70

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Dense Matrices (Cf = 1)

RysersADD

RysersADD-P

30 40 50 60 70

Matrix Size

100

101

102

103
T
im

e
 (

s
e
c
o
n
d
s
)

Dense Matrices (Cf = 1.1)

RysersADD

RysersADD-P

30 40 50 60 70

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Dense Matrices (Cf = 1.2)

RysersADD

RysersADD-P

30 40 50 60 70

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Dense Matrices (Cf = 1.3)

RysersADD

RysersADD-P

Fig. 3: Performance on Dense Matrices. D4, DSharp (not shown) timeout on all in-
stances

6.2 Performance on dense matrices

We plot the median running time of RysersADD and RysersADD-P against the matrix
size n for dense matrices with Cf ∈ {1, 1.1, 1.2, 1.3} in Fig. 3. We only show the
running times of RysersADD and RysersADD-P, since D4 and DSharp were unable to
solve any instance of size 30 for all 6 encodings. We observe that the running time of
both the ADD-based algorithms increases with Cf . This trend continues for Cf = 1.4,
which we omit for lack of space. RysersADD-P is noticeably faster than RysersADD,
indicating that the native parallelism provided by Sylvan is indeed effective.

12

30 40 50 60 70

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Sparse Matrices (Cf = 3.9)

RysersADD

RysersADD-P

D4 w/ Enc 1

DSharp w/ Enc 1

30 40 50 60 70

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Sparse Matrices (Cf = 4.3)

RysersADD

RysersADD-P

D4 w/ Enc 1

DSharp w/ Enc 1

30 40 50 60 70

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Sparse Matrices (Cf = 4.7)

RysersADD

RysersADD-P

D4 w/ Enc 1

DSharp w/ Enc 1

30 40 50 60 70

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Sparse Matrices (Cf = 5.1)

RysersADD

RysersADD-P

D4 w/ Enc 1

DSharp w/ Enc 1

Fig. 4: Performance on Sparse Matrices

6.3 Performance on sparse matrices

Fig. 4 depicts the median running times of the algorithms for sparse matrices with
Cf ∈ {3.9, 4.3, 4.7, 5.1}. We plot the running time of the ADD-based approaches with
early abstraction (see Sec. 5.1). Monolithic variants (not shown) time out on all in-
stances with n ≥ 40. For D4 and DSharp, we plot the running times only for Pairwise
encoding of At-Most-One constraints, since our preliminary experiments showed that
it substantially outperformed other encodings. We see that D4 is the fastest when spar-
sity is high i.e. for Cf ≤ 4.3, but for Cf ≥ 4.7 the ADD-based methods are the best
performers. DSharp is outperformed by the remaining 3 algorithms in general.

6.4 Performance on similar-row matrices

Fig. 5 shows plots of the median running time on similar-row matrices with Cf =
{1, 1.1, 1.2, 1.3}. We only present the case when ρ = 0.8, since the plots are similar
when ρ ∈ {0.7, 0.9}. As in the case of dense matrices, D4 and DSharp were unable
to solve any instance of size 40, and hence we only show plots for RysersADD and
RysersADD-P. The performance of both tools is markedly better than in the case of
dense matrices, and they scale to matrices of size 80 within the 1800 second timeout.

6.5 Performance on SuiteSparse Matrix Collection

We report the performance of algorithms RysersADD, RysersADD-P, D4 and DSharp
on 13 representative graphs from the SuiteSparse Matrix Collection in Fig. 6. Except for
the first 4 instances, which can be solved in under 5 seconds by all algorithms, we find

13

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1)

RysersADD

RysersADD-P

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1.1)

RysersADD

RysersADD-P

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1.2)

RysersADD

RysersADD-P

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1.3)

RysersADD

RysersADD-P

Fig. 5: Performance on similar-rows matrices. D4, DSharp (not shown) timeout on all
instances.

that D4 is the fastest in general, while the ADD-based algorithms outperform DSharp.
Notably, on the instance ”can 61”, both D4 and DSharp time out while RysersADD and
RysersADD-P solve it comfortably within the alloted time. We note that the instance
”can 61” has roughly 9n 1s, while D4 is the best performer on instances where the
count of 1s in the matrix lies between 4n and 6n.

6.6 Performance on fullerene adjacency matrices

We compared the performance of the algorithms on the adjacency matrices of the
fullerenes C60 and C100. All the algorithms timed out on C100. The results for C60

are shown in Table 2. The columns under D4 and DSharp correspond to 6 different

b
c
s
p
w

r0
1

c
a
n
_
6

2

b
c
s
p
w

r0
2

d
w

t_
7

2

ib
m

3
2

d
w

t_
6

6

w
il
l5

7

G
D

9
5

_
c

d
w

t_
5

9

c
u
rt

is
5

4

c
a
n
_
6

1

a
s
h
8

5

c
a
n
_
7

3

Benchmarks

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

SuiteSparse Matrix Collection

RysersADD

RysersADD-P

D4 w/ Enc 1

DSharp w/ Enc 1

Fig. 6

14

Table 2: Running Times on the fullerene C60. EA: Early Abstraction Mono: Monolithic
Tool D4 DSharp RysersADD RysersADD-P

Encoding /
Mode 1 2 3 4 5 6 1 2 3 4 5 6 EA Mono EA Mono

Time (sec) 94.8 150.5 150.6 136 158 156 TimeOut 96.4 TimeOut 57.1 TimeOut

encodings of At-Most-One constraints (see Sec. 5.1). It can be seen that RysersADD-P
performs the best on this class of matrices, followed by D4. The utility of early abstrac-
tion is clearly evident, as the monolithic approach times out in both cases.

Discussion: Our experiments show the effectiveness of the symbolic approach on dense
and similar-rows matrices, where neither D4 nor DSharp are able to solve even a single
instance. Even for sparse matrices, we see that decreasing sparsity has lesser effect on
the performance of ADD-based approaches as compared to D4. This trend is confirmed
by ”can 61” in the SuiteSparse Matrix Collection as well, where despite the density
of 1s being 9n, RysersADD and RysersADD-P finish well within timeout, unlike D4.
In the case of fullerenes, we note that the algorithm in [?] solved C60 in 355 seconds
while the one in [?] took 5 seconds, which are in the vicinity of the times reported in
Table 2. While this is not an apples-to-apples comparison owing to differences in the
computing platform, it indicates that the performance of general-purpose algorithms
like RysersADD and D4 can be comparable to that of application-specific algorithms.

7 Conclusion

In this work we introduced a symbolic algorithm called RysersADD for permanent com-
putation based on augmenting Ryser’s formula with Algebraic Decision Diagrams. We
demonstrated, through rigorous experimental evaluation, the scalability of RysersADD
on both dense and similar-rows matrices, where existing approaches fail. Coupled with
the technique of early abstraction [?], RysersADD performs reasonably well even on
sparse matrices as compared to dedicated approaches. In fact, it may be possible to op-
timize the algorithm even further, by evaluating other heuristics used in [?]. We leave
this for future work. Our work also re-emphasizes the versatility of ADDs and opens
the door for their application to other combinatorial problems.

It is an interesting open problem to obtain a complete characterization of the class
of matrices for which ADD representation of Ryser’s formula is succinct. Our experi-
mental results for dense matrices hint at the possibility of improved theoretical bounds
similar to those obtained in earlier work on sparse matrices. Developing an algorithm
for general matrices that is exponentially faster than Ryser’s approach remains a long-
standing open problem [?], and obtaining better bounds for non-sparse matrices would
be an important first step in this direction.

Acknowledgements

Work supported in part by NSF grant IIS-1527668, NSF Expeditions in Computing
project ”ExCAPE: Expeditions in Computer Augmented Program Engineering”, and
by NUS ODPRT Grant, R-252-000-685-133.

15

	On Symbolic Approaches for Computing the Matrix Permanent

