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Abstract. Finding gene regulatory pathways that explain outcomes of
wet-lab experiments is one of the holy grails of systems biology. SAT-
solving techniques have been used in the past to find few small explana-
tory pathways assuming either zero or a few known perturbations in the
experimental observations. Unfortunately, these approaches do not work
when (i) there is noise in the experimental data or domain knowledge, as
opposed to known perturbations, and (ii) the number of possible path-
ways generated by repeatedly invoking a SAT-solver is too large to be
analyzed by enumeration. In such settings, determining if an actor plays
a functionally significant role towards explaining experimental observa-
tions is very difficult using existing SAT-based techniques.
In this paper, we formalize the problem of functional significance check-
ing in gene-regulatory pathways in the presence of a bounded amount of
noise. We show that this problem is ∆P

2 -hard and hence cannot be effi-
ciently encoded into SAT (unless the polynomial hierarchy collapses). We
then propose an algorithm that uses a polynomial number of SAT-oracle
invocations to solve a practically useful version of this problem. Finally,
we present results on checking functional significance of suspect genes in
real microarray data obtained from cancer cell-line experiments, some of
which are corroborated by subsequent wet-lab knock-off experiments.

1 Introduction

A central problem in systems biology concerns finding gene regulatory pathways
that explain observed outcomes of wet-lab experiments. In a typical wet-lab ex-
periment, a pre-determined stimulus is given to specially prepared cells under
controlled conditions, and the expressions of various genes (i.e. concentrations
of corresponding gene products) measured at carefully timed instants. Practical
constraints (including cost, unknown time constants of biological processes etc.)
often limit the number of gene expression profiles that can be measured during
the course of an experiment. In addition, measured gene expression profiles al-
most inevitably have noise. As a consequence, it becomes difficult to infer if a
suspected gene plays a functionally significant role in the outcome of the experi-
ment. This motivates us to ask if we can computationally predict the functional
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significance of a gene even when a single noisy expression profile (in addition to
a reference profile) is available, by taking into account domain knowledge about
gene interactions from public-domain databases, and by bounding a quantitative
metric of the admissible noise.

The gene expression profile (often measured using microarray [5] or RNA-
sequencing [52]) is usually given as log fold changes relative to a reference profile
corresponding to a normal (or wild-type) cell, and serves as a proxy for the ac-
tivation level of a gene. An activated (resp. inhibited) gene in the experimental
cells usually yields higher (resp. lower) concentrations of the corresponding gene
product compared to a normal cell. The use of contextual gene interaction in-
formation from a public-domain database like KEGG [23] provides a reasonable
encoding of domain knowledge. “Noise” in our setting can be along two dimen-
sions: (a) some gene expression measurements can be erroneous, (b) interactions
between gene pairs in the context of the experiment under study may differ from
what is recorded in KEGG, giving rise to “noise” in gene interaction information.
Given these noisy inputs, we wish to identify if a suspect gene plays a function-
ally significant role in the outcome of the wet-lab experiment. Informally, this
happens if the presence of the gene makes it possible to “easily” explain the
measured gene expression profile consistently with domain knowledge, while its
absence makes it difficult to provide any such explanation. We quantify the “eas-
iness” via a quantitative metric, which we formalize as the number of relaxations
or changes that must be admitted in the input to obtain an explanation.
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D

F +

C E

Fig. 1: Example
gene interactions

An illustrative example: To better understand the com-
putational aspects of the problem, consider a hypothetical
wet-lab experiment in which cancer cells are treated with a
drug known to activate gene A. Suppose we wish to deter-
mine how this affects the activation of another gene F in
the cancerous cells. For simplicity, assume that only 7 genes
named A, B, C, D, E, F and G potentially play any role
in the outcome of the experiment. Let the gene expression
profile obtained at an appropriate time instant be as follows:
A,F,G over-expressed, B under-expressed, C,D,E did not
show any significant difference in expressions relative to that

of a normal (non-cancerous) cell. From this, we infer that A, F and G are ac-
tivated and B is inhibited in the context of the experiment. Genes C,D and
E in the cancerous cells could either be in their respective ground states (as in
a normal cell), or could even be in mildly activated or mildly inhibited states
(mild enough so that they do not express their effect overwhelmingly in the gene
expression profile). Suppose we are also told that the domain knowledge about
mutual interaction of genes A through G are as in the graph shown in Fig. 1 (sans
the ± labelings). In this figure, a → denotes an activating interaction (A → E
implies that if A is active, so must E be) and a a denotes an inhibiting edge
(G a B implies that if G is active, B must be inactive). Since the ground state
(in a normal cell) of a gene may itself be activated/inhibited, we must be careful
in interpreting the→ and a edges. For example, the edge A→ E not only admits
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both A and E being activated, but also admits both being inhibited. To see why
this makes sense, note that if E has an inhibited ground state, then an inhibited
A cannot activate E through an A→ E edge. Similarly, G a B not only admits
G activated and B inhibited, but also vice versa, i.e. B has an activated ground
state, and G being inhibited, cannot inhibit B.

Given domain knowledge encoded in a graph like Fig. 1, we represent acti-
vation levels of genes in the experiment under study by ± labelings of nodes,
where activated genes are labeled “+” and inhibited genes are labeled “-”. Our
first goal is to determine if there exists a set of paths from A to F in Fig. 1, and
a ± labeling of nodes along these paths, such that the labeling is consistent with
both the observed gene expressions and the domain knowledge. Informally, such
a set of paths “explains” the experimental observations consistently with domain
knowledge. In this example, it is indeed possible to find such an explanation with
three paths from A to F , namely: A(+) → G(+) a B(-) a D(+) → F (+), A(+)
→ E(+) → D(+) → F (+) and A(+) → G(+)→ E(+) → D(+) → F (+) There
are several points to note here: (i) although E was not differentially expressed in
the observed profile, it is fine to assign label “+” to E in the explanation, since E
could indeed have been in a mildly activated state that didn’t result in a strong
gene expression profile, (ii) although E and B are included in the explanation,
the induced edge E → B is not included since the labelings of B,E are not
consistent with E → B, and (iii) the presence of a topological path from A to
F through B doesn’t necessarily imply that this path explains the experimental
observations consistently with domain knowledge. For example, although there
is a topological path A(+) → G(+) a B(-) → C(?) → F (+) in Fig. 1, there
is no way of assigning a label (“+” or “-”) to C that is consistent with the
interpretation of activating and inhibiting edges. Thus, finding explanations is
significantly harder than finding topological paths or induced sub-graphs.

We now ask: Does gene D play a functionally significant role in explaining
the observed expressions consistently with domain knowledge? While the precise
notion of functional significance will be discussed later, informally, we ask if
we can find a domain knowledge-consistent explanation of the observed gene
expressions even if node D is removed from Fig. 1. It is easy to see from Fig. 1
that the answer is in the negative. In contrast, if node E or C (or both) is (are)
removed from Fig. 1, the path A(+) → G(+) a B(-) a D(+) → F (+) continues
to explain the observed gene expressions. Therefore, if we assume that all gene
expression measurements are noise-free, D is functionally significant, while E
and C are not. However, if we admit that one gene expression measurement can
be noisy, then functional significance of D warrants re-examination. Indeed, with
D removed from Fig. 1, the paths A(+)→ E(+)→ B(+)→ C(+)→ F (+) and
A(+) → G(+) → E(+) → B(+) → C(+) → F (+) explain the observed gene
expressions with the (noisy) label of B changed from “-” to “+”. This shows that
functional significance of a gene can vary depending on the admissible noise.

Generalizing from the above discussion, our objective is to study computa-
tional techniques that (i) work with a single gene expression profile (in addition
to a reference profile), (ii) are tolerant to a bounded amount of noise in both
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gene expression measurements and in the encoding of domain knowledge as gene
interactions, and (iii) allow us to check whether a suspect gene (provided as
input) plays a functionally significant role in explaining observed gene expres-
sion levels. By bounded noise, we mean that the number of errors either in the
gene expression measurements or difference wrt KEGG must be at most a fixed
constant, which is typically small. Note that this does not mean we know the
errors, just that their number is limited. This is a reasonable assumption since
allowing an arbitrarily large amount of noise would invalidate the experiment
and any inferences made from it entirely.

In this paper, we formalize the problem described above, show that it is ∆P
2 -

hard and in ΠP
2 as well as present an algorithm to solve a useful variant of the

problem. We are not aware of any earlier proof of hardness of even the simplest
problem of finding explanations in the absence of noise. We fill this gap and
go much beyond to prove the ∆P

2 -hardness of functional significance checking
with bounded weighted noise. This shows that functional significance checking
cannot be reduced to propositional SAT-solving (unless the polynomial hierarchy
collapses). Our treatment of noise is also more robust than that used in earlier
work. Specifically, we allow different genes and gene interactions to contribute
in a weighted manner to the overall noise metric. Additionally, we don’t need
the user to specify the exact set of gene expressions or gene interactions that
may be noisy. Instead, we allow all combinations of noisy gene expressions and
gene interactions subject to the weighted noise metric staying within specified
bounds. This permits exploring a much larger space of possible explanations
than that in earlier work (viz. [10]). Finally, our algorithm detects functional
significance of a gene without actually enumerating the potentially explosively
many explanations of the observed gene expressions while admitting bounded
noise. This makes it possible to analyze much larger systems of gene interactions.

The entire work reported in this paper was done by a team of three com-
puter scientists and two molecular biologists. As such, the biological relevance
of modeling artifacts and predictions were discussed and validated at each step.
However, this paper is focused more on the computational aspects.

Related Work Biological phenomena have been modeled in various ways, viz.
using Petri-nets, ODEs, sets of rules, Boolean networks, etc (see [20, 51]). A
popular way of representing biological networks, especially gene regulatory net-
works, is influence graphs [42], which are (partially) edge-labeled graphs, used
to model incomplete data. The Sign Consistency Model (SCM) of [41] enhances
this with a (partial) labeling of nodes such that the whole labeled graph is con-
sistent with a set of constraints [19]. In [18], a SAT-solver and MAX-SAT solver
are used to check for consistency, somewhat similar to our work. Answer set pro-
gramming (ASP) is yet another technique for obtaining models to a set of logical
constraints used in AI [43], for searching models of NP-hard problems [30] and
to detect inconsistencies, repair and prediction in biological networks [11, 12].
The works in [33,46] model different notions of sign consistency and use an ILP
solver to obtain a minimal set of nodes whose sign needs to be changed to be
consistent. Such variants can also be encoded in our approach.
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Several tools have been built over the years to analyze biological pathway
networks [4, 8, 15, 16, 44, 50]. Of these [15, 16] apply statistical methods to cor-
relate the network topology and gene expression data, which allows them to
also identify some functional associations, assuming the availability of sufficient
gene interaction data. The approaches in [6, 9, 31, 38, 53] try to find enriched
pathways based only on gene information, whereas [2, 7, 29, 32, 48, 54] use both
gene-expression and topology information for selecting candidate enriched path-
ways. In spite of the apparent difficulty, some tools such as [13,21,35,45,49] have
tried to exploit the full annotation on the interactions, while recently [24,27,28]
have stringently analyzed relations between genes. In [14], SMT-solvers have
been used to analyze robustness under mutations of gene regulatory networks.

While encoding the problem of finding an explanation from known pathways
and expression data as a SAT problem has similarities with other work in litera-
ture [10,40], such an encoding often gives no explanation subgraphs or too many
of them as solutions to the SAT problem. Crucially it doesn’t solve functional
significance checking when expression data and knowledge about pathways are
noisy, unless we examine every explanation subgraph for all noisy inputs – an im-
practical task. The primary differentiator of our work vis-a-vis these earlier work
is in the way we model noise and implicitly consider all possible noisy inputs
subject to the weighted noise being bounded, while still requiring a polynomial
number of SAT invocations.

Finally, identifying important actors in a network has been studied in mul-
tiple contexts, including the web, social media networks, gene regulatory and
protein-protein interaction networks. Various graph theoretic metrics have been
used to detect crosstalk and identify hubs and bottlenecks in large biological
networks [37, 55]. Our work can be used in tandem with these techniques by
first obtaining potential candidates using graph theoretic techniques, and then
checking their functional significance using our approach.

2 Problem formulation

While we have used KEGG [23] to encode domain knowledge of gene interactions
in our experiments, our abstract problem formulation is not KEGG specific. To
keep the exposition simple, we assume that there are only two types of edges –
activating (A) and inhibiting (I). The domain knowledge of gene interactions is
given as an edge labeled graph Gdom = (V,E, µ), where V is the set of genes,
E ⊆ V×V is the set of interactions (directed edges) between genes, and µ : E −→
Le is a labeling of edges with Le = {A, I}. The interpretation of activating and
inhibiting edges is as follows: For an edge e = (u, v), if µ(e) = A, then gene v
must be activated whenever u is active. In addition, as discussed in Section 1, an
activating edge (u, v) is consistent with both u and v being in inhibited states.
Similarly, if µ(e) = I, v must be inhibited whenever u is active. In addition, an
inhibiting edge (u, v) is consistent with u being inhibited and v being active.

In order to represent the gene expression profile, we decorate each node v in
the graph Gdom with a label λ(v) from the set Lv = {+,−, ?}. Here, + denotes an
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over-expressed (and by implication, active) gene, − denotes an under-expressed
(and by implication, inhibited) gene, and ? denotes a gene that is not significantly
differentially expressed with respect to the expression level of a normal cell. For
clarity of exposition, we use ∗ to denote either + or −, but not both.

The domain knowledge and gene expression profile can be represented to-
gether as a node- and edge-labeled graph G = (V,E, λ, µ), where λ : V → Lv
and µ : E → {A, I}. We also assume that we are given three nodes s, t, i ∈ V
as follows: s represents a stimulus gene, the effect of whose activation we wish
to study, t represents a target gene that is eventually activated (possibly after a
long chain of interactions) due to activation of s, and i represents a suspect gene
whose functional significance in the activation of t by s is the subject of our inves-
tigation. For simplicity, we fix λ(s) = λ(t) = +; other combinations of λ(s) and
λ(t) are easily handled. To formally define the notion of functional significance,
we first define an explanation subgraph. Informally, this is a subgraph of G that
contains s-t paths along with a labeling of nodes that “explains” the observed
gene expression profile while being consistent with the domain knowledge.

Definition 1 (Explanation subgraph). Let G = (V,E, λ, µ) be as defined
above, and let s and t be nodes in V s.t. λ(s) = λ(t) = +. An explanation
subgraph of (G, s, t) is a node- and edge-labeled graph G′ = (V ′, E′, λ′, µ′) s.t.,

1. Subgraph containing s, t: We require V ′ ⊆ V , E′ ⊆ E ∩ (V ′ × V ′), µ′ is
the restriction of µ to E′, and s, t ∈ V ′.

2. Labels consistent with observed expressions: λ′(v) ∈ {+,−} for all
v ∈ V ′, and λ′(v) = λ(v) if λ(v) 6= ?.

3. No floating nodes: Every v ∈ V ′ is reachable from s in G′.
4. Activity condition: Every s-t path of length > 1 in G′ passes through some

node v 6∈ {s, t} with λ(v) = +, and every such node v in G′ appears on some
s-t path in G′. Effectively, for a pathway to credibly explain how s eventually
activates t, it must be supported by at least one other active node along the
pathway. Also, every node in G′ that was originally active must contribute
towards explaining how s activates t along some path in G′.

5. Compatible labeling: For every edge e = (u, v) in E′, if µ′(e) = A, then
λ′(u) = λ′(v), and if µ′(e) = I, then λ′(u) 6= λ′(v). Moreover, every node
other than s in G′ must have at least one incoming compatible edge.

For the example in Fig. 1, the path A(+) → E(+) → D(+) → F (+) doesn’t
constitute an explanation subgraph because the activity condition is violated.
However, A(+) → G(+) a B(-) a D(+) → F (+) is an explanation subgraph.

2.1 Graph relaxation: modeling errors and noise

A startling finding of our initial experiments with real micro-array data and
KEGG pathways was that often no explanation subgraphs could be found at
all. Delving deeper, we realized that there were two primary reasons for this:
(a) the pathway information in KEGG didn’t relate to the context in which the
experiments were performed (i.e., some edge attributes were incorrectly labeled),
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and (b) there was noise in the micro-array data (i.e., node attributes were in-
correctly labeled). Thus we need to search for explanation subgraphs not on the
original graphs, but graphs obtained by changing some (unknown) edges and
nodes. To formalize this, we introduce the notion of relaxations. Specifically, we
associate an integer relaxation weight to each node and edge, and allow node
and edge labels to be changed when finding an explanation subgraph. The total
node noise (resp. edge noise) introduced to obtain an explanation subgraph is
simply the sum of relaxation weights of all nodes (resp. edges) whose labels had
to be ignored or changed to obtain the explanation subgraph. We bound the
admissible noise by specifying an upper bound (n, e) of node and edge noise
respectively. For notational convenience, we refer to (n, e) as relaxation bounds
in the subsequent discussion. Thus, these bounds provide a quantitative metric
to deal with noise (caused by errors or inconsistencies in KEGG and microarray
data), as mentioned in the introduction. Our definition of noise is driven by spe-
cific biological experiments and hypotheses as explained in Section 5. However,
our techniques and encoding can also model other related notions considered in
the literature, such as creation of new edges.

Formally, for a subgraph G′ of G, a node in G is said to be relaxed in G′ if
one of the following hold: (i) it is labeled + in G, but is absent in G′, i.e. a node
active in G is excluded from G′, (ii) it is labeled + (resp. −) in G, and is present
but labeled − (resp. +) in G′. If a node is inhibited in G but excluded from G′,
we do not treat it as relaxed. Similarly, edge e = (u, v) in G is relaxed in G′ if
u, v ∈ V ′, e ∈ E′ and either µ(e) = I and µ′(e) = A or µ(e) = A and µ′(e) = I.

Definition 2 (Relaxed explanation). Given G = (V,E, λ, µ), source s, tar-
get t, a relaxation weight R : V ∪ E → N and (n, e) ∈ N2, we call H an (n, e)-
relaxed explanation of (G, s, t) under R if (a) there exists a subgraph G′ of G ob-
tained by relaxing nodes and/or edges, (b)

∑
{v∈V |v relaxed in G′}R(v) ≤ n, (c)∑

{e∈E|e relaxed in G′}R(e) ≤ e (d) H is an explanation subgraph of (G′, s, t).

2.2 Pareto optimality and functional significance

As mentioned earlier, often there are no explanation subgraphs with 0 node and
edge relaxations. Interestingly, our experiments indicate that there is a large
multiplicity (literally 1000s) of explanation subgraphs if we allow small node
and/or edge relaxations. In this context, solutions obtained with very large val-
ues of node and/or edge relaxations may not be meaningful. Relaxing too many
nodes allows activation status of many nodes to differ from the observed gene
expression profile. Similarly, relaxing too many edges amounts to making sig-
nificant modifications to a curated database of regulatory pathways. None of
these are desirable. Indeed, if we allow all nodes or all edges to be relaxed, we
can always find an explanation subgraph that may hardly relate to the wet-lab
experiment under investigation. Hence it makes sense to ask for minimal node
and edge relaxations that yield at least one explanation subgraph. Not surpris-
ingly, increasing node relaxations reduces the requirement of edge relaxations,
and vice versa. Therefore, we have a multi-objective optimization problem and
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obtain a set of minimal or Pareto-optimal (n, e) values. Further, since large node
and edge relaxations are undesirable, we want explanations where node and edge
relaxations are within given bounds. This motivates us to define a window of re-
laxation W as a pair of intervals, 〈[nl, nu], [el, eu]〉, for node and edge relaxations
respectively. We say that (n, e) ∈W iff n ∈ [nl, nu] and e ∈ [el, eu].

Consider the partial order v on N × N defined by (n′, e′) v (n, e) iff n′ ≤ n
and e′ ≤ e. We say (n, e) dominates (n′, e′) if (n′, e′) v (n, e), and that (n, e)
strictly dominates (n′, e′) if (n′, e′) v (n, e) but (n′, e′) 6= (n, e). Given an input
instance (G, s, t,W,R), where G, s, t, are as before, R is a relaxation weight
function and W a relaxation window, let Sol(G, s, t,W,R) denote the set of
(n, e) ∈W such that there exists an (n, e)-relaxed explanation of (G, s, t) under
R. If (n, e) ∈ Sol(G, s, t,W,R) but both (n − 1, e) and (n, e − 1) are not in
Sol(G, s, t,W,R), we say (n, e) is on the solution curve of (G, s, t,W,R). The set
of points on the solution curve forms a Pareto-optimal curve; any point in W
that dominates a point on the curve is in Sol(G, s, t,W,R) and any point in W
that is strictly dominated by a point on the curve is not in Sol(G, s, t,W,R).

We now make two reasonable, yet important, assumptions.

A1: The “golden truth” pathway for the wet-lab experiment under study, hence-
forth called true explanation subgraph, is present, modulo relaxations and
inter-pathway crosstalk, in the input graph G = (V,E, λ, µ).

A2: The true explanation subgraph corresponds to a Pareto-optimal point (n?, e?)
in the relaxation window W of interest for the given relaxation weight func-
tion R. It is reasonable to expect (n?, e?) to be a Pareto-optimal point, as
otherwise, we’d have an alternative explanation of the microarray data with
fewer relaxations than that required for the true explanation subgraph to
provide a plausible explanation.

Definition 3. Under assumptions A1 and A2, a node v is said to be function-
ally significant in (G, s, t,W,R) if its removal from G leaves no (n?, e?)-relaxed
explanation subgraph. In other words, Sol(G \ {v}, s, t, 〈[n?, n?], [e?, e?]〉, R) = ∅.

Unfortunately, Defn 3 does not yield a practical algorithm for checking functional
significance of a node, due to two reasons. First, we do not know the values of n?

and e? for a given experiment. Second, our studies show that there are literally
thousands of explanation subgraphs at each Pareto-optimal point in the window
of relaxation of interest. So, even if we knew (n?, e?), it would be practically
impossible to examine all (n?, e?)-relaxed explanation subgraphs and identify a
common node. Thus, we must find a way to decide the functional significance of
a node without knowing (n?, e?) exactly, and without generating all explanation
subgraphs corresponding to Pareto-optimal pairs. The following lemma provides
a sufficient condition to surmount the above hurdles.

Lemma 1. Suppose Sol(G, s, t,W,R) 6= ∅ and either Sol(G\{i}, s, t,W,R) = ∅
or for every (n, e) ∈ Sol(G\{i}, s, t,W,R), there exists (n′, e′) ∈ Sol(G, s, t,W,R)
such that (n, e) strictly dominates (n′, e′). Then i is functionally significant in
(G, s, t,W,R) under assumptions A1 and A2.
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3 Complexity results

Theorem 1. Checking the existence of an explanation subgraph, even without
relaxations, is NP-complete.

Proof. It is easy to see that the problem is in NP, since we can guess the
explanation subgraph, and check it in polynomial time. To prove NP-hardness,
we reduce 3-SAT to our problem. Let ϕ be an instance of 3-SAT in CNF, with
` variables x1, . . . , x` and m clauses.

naiai

nbibi

+ ndi+di

Fig. 2: gadget
Ai

For each variable xi, we first construct a gadget Ai of 6
nodes depicted in Figure 2, three for variable xi (which we call
ai, bi, di) and three for ¬xi (which we denote nai, nbi, ndi). We
add activating edges from source s to ai and nai for all i. Also
add 4 activating edges from ai to bi, bi to di, nai to nbi and
nbi to di and 4 inhibiting edges from ai to nbi, nai to bi, bi
to ndi and nbi to ndi. Finally, we add node label + for di and
ndi and activating edges from both to target t. This gadget Ai
ensures that xi and its negation are not active at the same time.

s
+

++++ + + + +

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

Clause 1 Clause 2 Clause 3

+ + +

t +

Fig. 3: Construction for reduction from 3-SAT

For each clause c,
we construct gadget
Bc with 4 nodes: one
for each of the 3 lit-
erals that occurs in
the clause, denoted
lci (i.e., lci = xi or
¬xi) and an addi-
tional node lcc. Now
if lci = xi, (resp =
¬xi) then we add an
edge from bi in gad-
get Ai to it, else we
add an edge from nbi.
Further we add edges

from each literal in a clause c to the additional node lcc. Each of these additional
nodes lcc are labeled +, which is used to ensure that each clause does evaluate to
true in a valid explanation. Each clause of the original instance is replicated by
edges from a variable or its negation as appropriate, which finally converge at lcc
emulating the disjunctions within each clause. Finally from each lcc node we add
an edge to the target node t. Recall that the target is also labeled +.

We claim that an explanation subgraph from s to t exists iff the formula is
satisfiable. In one direction, if there is an explanation from s to t, the additional
node lcc at clause c for every clause must be active and each variable is assigned
a unique value. Further, to make this active, by the compatibility condition,
one of the literals in that clause gadget must be active. In turn to make that
literal active, node corresponding to the literal should be active and this gives the
satisfying assignment. Conversely, if the formula is satisfiable, then the satisfying
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assignment defines an explanation subgraph. This completes the proof of NP-
hardness. An example is the formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ x4 ∨ ¬x1) ∧
(x2 ∨¬x3 ∨ x4), whose graph is shown in Fig 3 with a source s and target t. ut

Depending on whether the relaxation window W is fixed or part of the input
to a decision procedure, we obtain the following results.

Theorem 2. For every (n, e) ∈ N2, for every relaxation weight function R,

1. Checking for an (n, e)-relaxed explanation subgraph under R is NP-complete.
2. Checking functional significance of a node in (G, s, t,W,R), where W =
〈[0, n], [0, e]〉 is co-NP complete.

Proof. Part 1. follows from proof of Theorem 1 with a simple modification: we
replicate the gadget for each variable and clause n+ e+ 1 times, so that even if
n nodes and e edges are relaxed, finding an explanation subgraph would require
setting each variable in way that all clauses are satisfied. For Part 2., we modify
the construction in Theorem 1 by adding a special node ni , where i is the node
whose significance we wish to check. We add an edge from the source s to ni and
from ni to each node lcc for each clause c and to nodes di and ndi for each xi. In
the resulting graph G′, there is a path from s to ni to each of lcc (for each clause
c), di, ndi and then to t. Thus, with no relaxations, we can find an explanation.
However, if ni is removed, then there is an explanation with no relaxations iff
ϕ is satisfiable. In other words the solution curve shifts, i.e., i is functionally
significant in G iff ϕ is unsatisfiable.

Theorem 3. If the relaxation window is part of the input, functional signifi-
cance checking is ∆P

2 -hard and is contained in ΠP
2 .

Proof. For the hardness, we show a reduction from the following ∆P
2 -complete

problem [25]: Given a satisfiable CNF formula ϕ and a linear ordering of x1 ≺
. . . xn in ϕ, does the lexicographically largest satisfying assignment of ϕ have
its least significant bit x1 = 1? To reduce this to functional significance check-
ing, consider the construction in the proof of NP-hardness above, but with the
following modification. The gadget in Fig. 2 is modified so that nodes ai, nai
are removed and so are all edges coming in and out of them. We add an in-
hibiting edge from the source s to each nbi, and an inhibiting edge from each
nbi to the corresponding node bi. Let G be the resulting graph. Let R be the
relaxation weight function that assigns weight 2i−1 to the inhibiting edge from
s to nbi and 2n to all other edges. R also assigns weight 2n to all nodes. We ask
if b1 is functionally significant in (G, s, t,W,R), where W = 〈[0, 0], [0, 2n − 1]〉.
The size of (G, s, t,W,R) is polynomial in |ϕ|. Also, the choice of W disallows
relaxation of any node and any edge other than those from s to some nbi. The
lexicographically largest satisfying assignment of ϕ corresponds to an explana-
tion graph with the smallest edge relaxation noise. If this explanation includes
b1, then removing b1 from G disallows this explanation. This proves ∆P

2 hardness
of functional significance checking.

Containment in ΠP
2 is easy to see. We encode the problem as: for all (n′, e′)-

relaxed solutions without the actor, there is an (n, e)-solution with the actor,
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where (n′, e′) strictly dominates (n, e) and both are within relaxation bounds.
Since n, e, n′, e′ are integers within given relaxation bounds, the quantifier free
part has a polynomial sized propositional encoding.

The problem of counting explanation subgraphs corresponds to #SAT, which
is widely believed to be beyond the polynomial hierarchy (by Toda’s theo-
rem [47]). Thus, unless long-standing complexity-theory conjectures are falsified,
checking functional significance (in ΠP

2 ) is easier than counting explanations.

4 SAT encoding and Pareto-curve generation

Given a problem instance (G, s, t,W,R), and a path length bound ∆, we first ex-

tract a sub-graph Ĝ = (V̂ , Ê, λ̂, µ̂) of G that contains every simple path of length
≤ ∆ from s to t in G. This can be done easily using a forward and backward
bounded search. Once V̂ is defined, Ê, λ̂ and µ̂ are obtained by restricting E, λ
and µ respectively to V̂ and Ê. In practice, ∆ is chosen based on domain expert
inputs, such that all potentially important s-t paths are included. Henceforth,
whenever we refer a labeled graph G, we mean the pruned graph Ĝ for a value
of ∆ that is assumed to be constant.

The problem of deciding whether an (n, e)-relaxed explanation subgraph ex-
ists was shown to be NP-complete in Section 3. A SAT encoding of the problem
is rather straightforward. Given a labeled graph G = (V,E, λ, µ), nodes s, t ∈ V ,
a relaxation weight function R, and a relaxation window W = 〈[0, n], [0, e]〉,
we construct a propositional formula ϕG,s,t,W,R that is satisfiable iff there is an
(n, e)-relaxed explanation subgraph of (G, s, t) under R. The formula ϕG,s,t,W,R
has seven sub-formulas: (i) ϕconn encoding topological connectivity between
nodes in the explanation subgraph (this uses the fact that all paths are of length
≤ ∆), (ii) ϕdata encoding the labeling of nodes obtained from microarray data,
(iii) ϕact encoding the activity condition in Defn 1, (iv) ϕcomp encoding the
compatibility condition in Defn 1, (v) ϕrel encoding that total node relaxation
is ≤ n and total edge relaxation is ≤ e, and (vii) ϕimp encoding that every node
is reachable from s by a path of length at most ∆. These sub-formulas use a
set of variables as described below. For each v ∈ V , we use 3 boolean variables,
pv, av and rv, that encode whether v is present, active and relaxed respectively,
in the explanation subgraph. Similarly, for each edge e ∈ E, we use 3 boolean
variables, pe, re and fe that encode whether e is present, relaxed and contributes
to the activity condition in Defn 1 respectively, in the explanation subgraph. Fi-
nally, for each v ∈ V , we use log∆+ 1 propositional variables dv,0, . . . dv,log∆ to
encode a measure of “distance” from source s to v in the explanation subgraph.

Once ϕG,s,t,W,R is obtained, a SAT solver (Z3 [34] in our case) can be
used to obtain an (n, e)-relaxed explanation subgraph. We exploit the obser-
vation that satisfiability of ϕG,s,t,W,R implies satisfiability of ϕG,s,t,W ′,R where
W ′ = 〈[0, n′], [0, e′]〉 and (n, e) v (n′, e′). Therefore, given any set of (n, e) pairs
linearly ordered w.r.t. v, we can use binary search to determine the smallest (un-
der v) pair (n, e) for which ϕG,s,t,W,R is satisfiable. This suggests the following
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simple algorithm for constructing the Pareto-optimal curve. We first use binary
search along the (nl, el) to (nu, eu) diagonal of the window W = 〈[nl, nu], [el, eu]〉
to find the smallest (under v) pair (nd, ed) for which ϕG,s,t,Wd,R is satisfi-
able, where Wd = 〈[nl, nd], [el, ed]〉. Note that (nd, ed) may not be a Pareto-
optimal point. We then use binary search on (n, e) pairs in 〈[nd, el], [nd, ed]〉
and 〈[nl, ed], [nd, ed]〉 to find the projections of (nd, ed) on the Pareto-optimal
curve. Once a Pareto-optimal point (np, ep) is obtained, the problem can be
recursively decomposed into those of generating Pareto-optimal curves in the
relaxation windows 〈[np, nu], [el, ep]〉 and 〈[nl, np], [ep, eu]〉. This requires a total
of O(k log2 k) invocations of a SAT solver, where k = max(n, e), and gives us
the Pareto curves, from which we can determine functional significance.

Note that our methodology is not contingent on a specific choice of relax-
ation, but implicitly considers all relaxations within given bounds. However, our
tool also has the functionality of printing a set of relaxations used to obtain
explanation subgraphs, if the user so desires.

5 Experimental results and a case-study

We began by constructing a database of existing pathways, by merging the
163 pathways from the KEGG database [22, 23], giving a master network of
2498 nodes and 10497 edges. In discussion with molecular biologists, we then
fixed the gene expression data from a specific microarray experiment, with the
following features: (i) the source, target and the differentially expressed nodes
were not merged with any other id, (ii) if a gene occurred more than once in
the expression data, we took the average of the fold-change for more than one
occurrence of a gene, (iii) after considering realistic lengths of regulatory chains
in the biological context, the path bound (∆ in Section 4) was chosen to be 7.
This resulted in a pruned subgraph with 297 nodes and 1858 edges. Of these
nodes, 55 are up-regulated and 26 are down-regulated, as per the microarray
data (see [1] for details). Finally, we also fixed an upper bound on number of
relaxations that we allow among the nodes and edges in the worst case, i.e.,
the window size, denoted below as W to be at most 30 × 30. Note that this
does not mean that we cannot have fewer perturbations, just that more than 30
errors (of either nodes or edges) were considered impractical. While we fix all
the above parameters to be able to present results, we emphasize that these are
easily tunable by the user. In our experiments, the relaxation weight function R
assigned weight 1 to all nodes and edges. But the formulation allows generalizing
to other weight functions, e.g., to not relax a node or edge, it suffices to assign
a large weight to that node/edge.

With this setup, we encoded finding a relaxed explanation graph, as discussed
in Section 4, and considered different source and target pairs, as well as different
candidate actors which were checked for functional significance.We computed the
Pareto optimal curves with and without the actor to check functional significance
of the actor. All experiments were performed on an Intel(R)-Core(TM)-i7-3770
CPU. It had 8 cores with clock speed 3.40 GHz and total of 32 GB RAM. The
code used C++ API of Z3 version 4.7.1 on Ubuntu 18.04.



Functional significance checking in noisy gene regulatory networks 13

Source-Target pair (Expt condition) Func. Sign. Cand. Pareto shift (Y/N) # SAT Calls Time (in hrs)
Synthetic1-5var-W (5, 5) x Y 5 .035
Synthetic2-15var-W (5, 5) x Y 6 .35
Synthetic3-45var-W (0, 0) x Y 2 .004

TNFa-IkBa (Expr/Act merged) None - 62 5
TNFa-IkBa (Expr/Act merged) p38 Y 72 5
TNFa-IkBa (Expr/Act merged) ERK N 62 2.6
TNFa-IkBa (Expr/Act merged) PIK3CA Y 71 1.5
TNFa-IkBa (Expr/Act merged) AKT Y 42 11

TNFa-IkBa (Expr only) None - 63 9
TNFa-IkBa (Expr only) p38 Y 63 15
TNFa-IkBa (Expr only) ERK Y 63 15
TNFa-IkBa (Expr only) PIK3CA N 68 14
TNFa-IkBa (Expr only) AKT N 68 18.4
TNFa-IkBa (Act only) None - 64 15.6
TNFa-IkBa (Act only) p38 Y 64 37
TNFa-IkBa (Act only) ERK N 64 25.8
TNFa-IkBa (Act only) PIK3CA Y 64 18.5
TNFa-IkBa (Act only) AKT Y 54 44

TNFa-A20 None - 56 0.3
TNFa-A20 ERK Y 57 0.7
TNFa-A20 AKT N 52 0.3
TNFa-A20 p38 N 54 0.3

Table 1: Shift of Pareto curves

One way to understand the explanations is to enumerate and exhaustively
look at each solution. However, with window size 30× 30, there are 900 points,
of which all points on or above the PO curve have multiple solutions. In our
case, we found that for all such points there were at least > 1000 solutions
per point. And enumerating these, and printing the solutions for just 30 of them
(for inspection), for a single PO curve took over 100 hours of computations time.
Thus, examining all solutions even at each point on the Pareto-optimal curve
(to identify key players in the solution) is already prohibitively expensive. This
leads us to use the shift of the Pareto-optimality curves to identify key players
in context of an experiment. In Table 1, we present the results for a few different
source-target pairs, different candidate actors and whether a shift was observed
in the Pareto-curves or not, along with the time taken to plot these curves. The
Pareto-optimality curves themselves, along with further experiments with more
source-target pairs including ITGB1-ACTB, ITGB1-STAT3 are in [1]. We also
performed experiments on synthetically constructed benchmarks motivated by
Proof of Theorem 2. The benchmarks were parametrized by number of variables
(in the 3SAT problem), and node, edge relaxation upper bounds, and a special
node x that was made functionally significant. A select few results are in Table 1,
with more in [1]. Interestingly, almost the entire time taken by our tool went
into SAT solving using a state-of-the-art solver (Z3). Our tool minimizes the
number of SAT calls as described in Section 4. The scalability of our approach
hence crucially depends on the performance of the SAT solver, and is expected
to improve with further improvements in SAT solvers.

In Table 1, Act/Expr merged means we included both types of edges in our
potential explanation. However, we also experimented by (i) asking for the target
IkBa to be expressed, and not just activated (by required the solution to have at
least one expression edge reaching the target) and (ii) asking target IkBa to be
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activated (by requiring the solution to have at least one activation edge reaching
the target), which led to surprisingly different Pareto-shifts.

Case-study: role of ERK,A20 in PSMD9-induced inhibition of NFkB:
We performed a detailed case-study on a mammalian cell line model system,
created as part of a joint project with researchers from a Cancer research insti-
tute: these were the embryonic human kidney cell lines called HEK 293 cell that
stably over express PSMD9 (an important gene associated with radio resistance
in breast cancer and glioblastoma [26, 36].) and obtained differential gene ex-
pression data specific to PSMD9. Among the many signalling events that could
possibly be modulated by PSMD9, we were interested in finding key players
that regulated the expression of IkBa, for a very specific reason. IkBa is a po-
tent inhibitor of NFkB a transcription factor induced upon chemo and radiation
therapy in cancer treatment [3, 17].

One of the mechanisms by which PSMD9 may achieve this is by inducing
NFkB activation [39]. However, besides the reported mechanism, there are a
number of other ways in which the activity of this gene can be modulated and
this can vary depending on the context. Several kinases and transcription factors
are involved and inflammatory cytokines such as TNFa can modulate activity
of these players. NFkB is also under a remarkable tight feed-back loop involving
both positive and negative regulators that are transcribed by NFkB and other
TFs. Therefore any attempt towards developing therapeutic mechanism to over-
come therapy resistance associated with PSMD9 demands a comprehensive un-
derstand of the many mechanism leading to the expression of the target genes
of NFkB including IkBa, the contribution of other TFs, the role of kinases and
their crosstalk. Since this also involves feed-back loops and it can become chal-
lenging to identify the activation/repression status of the genes involved both
for experimental verification and computational approaches. This provided us
with a case study: we considered the gene expression data from above and took
TNFa, a gene induced by PSMD9 overexpression as the stimulus and IkBa as the
target to help uncover the key players involved in the expression of IkBa, the en-
dogenous inhibition of NFkB. From the literature and using domain knowledge,
4 candidate key actors were chosen, namely p38, ERK, PIK3CA and AKT. The
Pareto-optimality curves generated for TNFa to IkBa are shown in Figure 4.

Biological Validation. Among nodes explored for functionality, we completed wet-
lab investigations at submission-time for ERK and AKT kinases, which showed
PSMD9-induced phosphorylation. As mentioned earlier, we used a merged KEGG-
graph combining activation and expression edges for simplicity. Since negative
feedback loops involving both IkBa and A20 control NFkB activation and tar-
get gene expression, we also conducted experiments for both these targets after
separating the composite graphs into activation and expression graphs (see [1]).
Phosphorylation impacts (in)activation status of transcription factors (in-built in
Response: KEGG) and hence must be integrated into gene expression studies. In-
deed, excluding ERK from composite graphs did not induce Pareto shift, whereas
separating into activation and expression graphs did. As can be gleaned from
Table 1 (and [1]), ERK exclusion, but not AKT exclusion induced a Pareto shift
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Fig. 4: Individual plots of the exclusion experiments for TNFa-IkBa

indicating its requirement in both IkBa and A20 expression. Only AKT induced
IkBa (in)activation Pareto shift (see [1]). We tested ERK’s significance in IkBa
and A20 gene expression using qPCR. A two-fold decrease in A20 mRNA was
observed in PSMD9 overexpression cells upon ERK inhibition [p=0.03] whereas
AKT inhibition did not impact IkBa or A20 mRNA levels, a trend consistent
even upon TNFa stimulation (t=3hrs). The lack of impact of ERK inhibition on
IkBa mRNA levels is likely due to as yet unexplored PSMD9-specific effects. The
NFkB-dependence for IkBa or A20 expression was evident from lack of solutions
upon its exclusion. The routinely-used PD98059 and LY294002 signaling in-
hibitors achieved ERK (∼ 100%) and AKT (∼ 90%) phosphorylation inhibition,
respectively, at recommended IC50 values. They may have off-target effects. Im-
portantly, these inhibition-dependent mRNA level changes were PSMD9-specific,
consistent with computational predictions.

6 Conclusion

We presented a novel problem formulation to capture functional signficance of a
node in an interaction pathway between a stimulus and a target observation, in
a highly noisy environment with minimal experimental data and using publicly
available pathway databases. Our definition comes closest to a computational
simulation of a knockout experiment that is classically done to establish the
functional significance of a node in wet-lab experiments. After showing theoret-
ical hardness results, we design practical encodings using SAT, which we imple-
mented and validated by some wet-lab experiments and domain knowledge.
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