
Behind the Scenes of Building a Scalable
Approximate Model Counter

(Draft Version)

Supratik Chakraborty1, Kuldeep S. Meel2, and Moshe Y. Vardi3

1 Department of Computer Science and Engineering, I.I.T. Bombay, India
2 Department of Computer Science, National University of Singapore, Singapore

3 Department of Computer Science, Rice University

1 Introduction and preliminaries

Counting and uniformly sampling solutions of a system of constraints are funda-
mental problems in Computer Science with applications spanning diverse areas.
Example applications include functional verification of circuits and programs,
partition function estimation, probabilistic inference, network reliability estima-
tion, quantifying information leakage in programs and the like. Exact counting
and sampling are known to be computationally hard and are widely believed to
lie beyond the polynomial hierarchy. Significant effort has therefore been invested
over the last four decades in designing and analyzing approximate algorithms
for solving these problems.

For clarity of exposition, let us quickly review some terminology before
delving deeper. We will be primarily concerned with propositional constraints,
represented by a formula ϕ. We call the set of all variables in ϕ the sup-
port of ϕ, and denote it by Sup(ϕ). A satisfying assignment or model of ϕ
is an assignment of truth values to all variables in Sup(ϕ) such that ϕ eval-
uates to 1. We use Sol(ϕ) to denote the set of all models of ϕ. The model
counting problem asks: Given ϕ, find |Sol(ϕ)|. Several approximate variants of
this problem have been studied in the literature. The predominant one among
them concerns the following question: Given ϕ, a tolerance measure ε (> 0)
and a confidence measure δ (0 < δ ≤ 1), find a random number c (≥ 0)
such that Pr

[
|Sol(ϕ)| · (1 + ε)−1 ≤ c ≤ |Sol(ϕ)| · (1 + ε)

]
≥ 1 − δ. This is

also known as probably approximately correct (or PAC) model counting. The
problem of uniform sampling is intimately related to that of model counting.
In uniform sampling, we ask: Given ϕ, return a random assigment π to vari-
ables in Sup(ϕ) such that Pr [π is returned] = c (> 0) if π ∈ Sol(ϕ) and
Pr [π is returned] = 0 otherwise, where c is a positive real number that is in-
dependent of π. In the approximate variant of uniform sampling, also called
almost uniform sampling, we are given a tolerance ε (> 0), and we require that
c · (1 + ε)−1 ≤ Pr [π is output] ≤ c · (1 + ε) if π ∈ Sol(ϕ) and Pr [π is output] = 0
otherwise.

2

2 Understanding the problem

In the winter of 2011, we started surveying the literature on approximate algo-
rithms for sampling and counting, and came up with a rather curious observa-
tion. Existing techniques (as of 2011-2012) largely fell in one of two categories:
(a) those that provided strong approximation guarantees but did not scale well
in practice, and (b) those that scaled well in practice but provided weak or no
provable approximation guarantees. An example of a technique in the first cate-
gory is Stockmeyer’s randomized approximation scheme [24] for model counting
using 2-universal hash functions, while examples of the second category include
Monte Carlo estimators where the number of Monte Carlo steps is truncated
heuristically before the theory-mandated mixing of states happen [25]. As we
surveyed the literature, it soon became clear that marrying practical scalability
with strong approximation guarantees had remained an elusive goal despite a
few decades’ worth of extremely impressive research. This motivated us to delve
deeper to try to understand what was amiss in bridging this gap between theory
and practice.

In a seminal paper published in 1986, Jerrum, Valiant, and Vazirani showed
that approximate counting and almost-uniform sampling are polynomially inter-
reducible [19]. From a theoretical perspective, the two problems can therefore be
viewed as different sides of the same coin. In the same paper, Jerrum, Valiant
and Vazirani also argued that Stockmeyer’s ground-breaking work of 1983 [24]
had all the ingredients to yield a randomized approximation scheme for model
counting that makes polynomially many calls to an NP-oracle. Given that mod-
ern propositional satisfiability (henceforth called SAT) solvers routinely check
satisfiability of formulas with hundreds of thousands to millions of variables,
this may lead one to falsely believe that it is not too difficult to obtain a prac-
tically efficient model counter with strong approximation guarantees. On the
face of it, all that needed to be done was to implement Stockmeyer’s algorithm
with a state-of-the-art SAT solver replacing the NP-oracle. Once this is done,
Jerrum, Valiant and Vazirani’s reduction could perhaps even be used to obtain
a practically efficient almost uniform sampler. Unfortunately, nobody had been
able to accomplish this feat succesfully until then, hinting that things were not
as simple as they appeared. A little experimentation made us realize that while
the theory is beautiful, the devil lies in the details of this theory is translated to
tools that can be run on benchmarks. The plot was thickening and we decided
to drill down further.

3 The gap between theory and practice

Our literature survey showed that the theoretical discourse on approximate
counting and sampling had largely revolved around its complexity relative to
an NP-oracle. Specifically, it was known that these problems were in BPPNP or
could be polynomially reduced to this complexity class, where the polynomial is
in the size of ϕ, 1/ε2 and log2(1/δ). Unfortunately, this said very little about the

3

running times of these algorithms in practice. For oracle-based algorithms to be
useful in practice, it was necessary to go beyond the theoretical models and con-
sider the overall running time. This meant that we needed to take into account
additional considerations that had hitherto been de-emphasized in the theoreti-
cal discourse. Specifically, it was clear that the basic BPP algorithm should have
a very low-degree polynomial running time. In addition, four decades of metic-
ulously documented SAT research had shown that there was wide variation in
SAT solving times across classes of problem instances and also across the space of
heuristics used. Therefore, if we wanted to design an approximate model counter
or sampler with a SAT solver in place of an NP-oracle, it was necessary to ensure
that (i) we didn’t blow up the sizes of SAT problem instances fed as inputs to
the oracle, and (ii) the oracle queries were such that an extant SAT solver could
solve them reasonably efficiently in practice.

Armed with this insight, we went back to the drawing board and asked our-
selves the following question: Can we design an approximate counting/sampling
algorithm that makes use of a modern SAT solver as a black-box (instead of an
NP-oracle), and makes judicious use of the strengths and limitations of state-of-
the-art SAT solving techniques? This called for a change in the way our algorithm
had to be designed. Specifically, we could no longer grant ourselves the freedom
to invoke a SAT solver polynomially many times for a high-degree polynomial,
or even with an input formula that had a very large support. Every invocation
of a SAT solver had a cost that could not be ignored, and our algorithm had
to optimize this cost as much as possible. We were also required to see if we
could exploit empirically observed strengths of modern SAT solvers in the de-
sign of our algorithm. For example, incremental SAT solving is known to yield
improved performance vis-a-vis stand-alone SAT solving. Similarly, the perfor-
mance of SAT solvers that accept as inputs CNF+XOR clauses are known to
deteriorate rapidly as the size of XOR clauses increases. Was there a way to
exploit these empirically observed properties in the design of our algorithm so
that it ran efficiently in practice? At the same time, we could not afford to rest
with just optimizing the peformance of our algorithm. We also needed to ensure
that every design choice we made didn’t end up breaking any formal approxi-
mation guarantees offered by our algorithm. Clearly, this was going to be a very
tight rope-walk, but certainly well worth trying. The technical challenges and
potential impact got us really fired up.

We went back and re-examined Stockmeyer’s model counting algorithm and
realized that in order to obtain an approximate count within a user-specified

tolerance ε of the true model count, we would need to make Θ
(

1
log2(1+ε)

)
in-

dependent copies of the original system of constraints and conjoin them before
feeding them to a SAT solver. This had important consequences, since it entailed
a blow-up in the support of the formula, which in turn entailed an increase in
the number and size of XOR clauses in the formula fed as input to the SAT
solver. We also looked at techniques that weren’t directly derived from Stock-
meyer’s approach. Since counting and sampling are two faces of the same coin,
we looked up relevant work on approximate sampling as well. We found that in

4

2000, Bellare, Goldreich and Petrank [5] had proposed an algorithm for almost
uniform generation of models of propositional formulas using hash functions of
high degree of universality and an NP-oracle. Although the theory is absolutely
beautiful, our best implementation efforts in 2012 revealed that the approach
scaled only to formulas with support of around 20 variables. The big hurdle that
came in the way of scalability in this case was the need to invert a hash function
with a high degree of universality. Encoding this requirement as a propositional
formula resulted in complex constraints that choked state-of-the-art SAT solvers.
The need to incorporate insights from modern SAT solvers in the design of the
algorithm was staring at us in the face.

4 An attempt to bridge the gap

By the end of 2012, we knew that if our project was to succeed, we had to work
with hash functions of low degree of universality, be overly cautious about the
formulas being fed as inputs to the SAT solver, and ensure that nothing we did
to accommodate the practical limitations of SAT solvers invalidated our proofs
of approximation guarantees. Around this time, we also studied the work of
Gomes, Sabharwal and Selman [17], who had proposed a parameterized approx-
imate counting algorithm that used XOR constraints as 2-universal hash func-
tions. This was a bold attempt to address the same concerns that we were trying
to address. However, we quickly realized that using an algorithm whose perfor-
mance crucially depends on user-provided parameters wasn’t going to result in a
practically useful model counter or sampler. Indeed, automatically choosing the
right combination of parameters in Gomes, Sabharwal and Selman’s algorithm
turned out to be highly non-trivial in general, and this came in the way of scal-
ing up the algorithm’s performance. We needed to come up with an algorithm
that was fully automatic – all parameters required for the correct and efficient
operation of the algorithm should either be pre-determined and hard-coded in
the algorithm, or computed automatically on-the-fly.

As we kept working on various alternative algorithms, it became clear that
using XOR constraints as 2-universal (in fact, they are 3-universal as well) hash
functions would be crucial in our approach. The literature contained sufficient
warnings that CDCL SAT solvers performed badly when an input formula had
XOR clauses encoded in CNF. Indeed, this is what we observed in our experi-
ments as well. To scale up to large problem instances, we desperately needed a
SAT solver that could benefit from the rich legacy of CDCL SAT solvers working
on CNF formulas, and also on Gaussian elimination applied to XOR clauses.
Around this time, we came across CryptoMiniSat, a CDCL SAT solver for CNF
and XOR clauses, developed by Soos, Nohl and Castelluccia [23]. Although Soos
et had developed CryptoMiniSat for cryptographic applications, it fit our require-
ments of a SAT solver for CNF+XOR clauses beautifully. This saved us at least
a year’s (perhaps more) work of integrating Gaussian reasoning on XOR clauses
inside a state-of-the-art CDCL SAT solver for CNF formulas.

5

By the end of 2012, a simple idea was emerging for our CryptoMiniSat-based
approximate counter and sampler The gist of our idea was as follows. Given a
propositional formula ϕ, let hi(Sup(ϕ)) denote the conjunction of i independent
identically distributed random XOR clauses over the variables in Sup(ϕ). As
in [17], each XOR clause is obtained by randomly selecting a subset of Sup(ϕ),
taking the XOR of the selected variables, and equating the resulting formula to
either 1 or 0 chosen at random. Each such XOR clause maps an assignment of
Sup(ϕ) to either 1 or 0. Hence, hi can also be viewed as a hash function map-
ping {1, 0}|Sup(ϕ)| to {1, 0}i. Since each XOR clause in hi is chosen randomly
and independently, hi randomly partitions the solution space of ϕ into 2i cells,
and the solutions of ϕ∧hi(Sup(ϕ)) comprise one such cell. We were able to show
that the size of an arbitrary chosen cell induced by the above partitioning is not
only an unbiased estimator of |Sol(ϕ)|/2i, but also crucially has small variance.
By choosing i appropriately, the cells can indeed be made “small” and similar
enough. Once this is achieved, the problem of almost uniform sampling and ap-
proximate model counting then reduces to uniform sampling and exact counting
in an arbitrarily chosen “small” cell. Our theoretical analysis showed that the
threshold for deciding whether a cell is “small” enough depended on 1/ε2, and
could be statically pre-computed. This analysis crucially used universality prop-
erties of XOR based hashing. In the case of approximate model counting, the
above method suffices to give an approximate count within the specified toler-
ance of the actual count, but with a fixed confidence. To amplify the confidence
to the user-specified level, standard probability amplification arguments can be
used by repeating the entire procedure sufficiently many times. The count of
such repetitions was also pre-computed and shown to depend on log2(1/δ).

The only parameter that could not be statically pre-computed in the above
approach was the right value of i to be used in hi(Sup(ϕ)). Our theoretical anal-
ysis showed that this value ought to be log2 |Sol(ϕ)| in expectation. However,
since we didn’t know |Sol(ϕ)| to begin with, this couldn’t be pre-computed. In-
stead, we decided to find the right value of i iteratively. This involved iteratively
increasing i from 1 to |Sup(ϕ)| and checking at each step whether the count of
solutions of ϕ ∧ hi(Sup(ϕ)) was below the pre-computed threshold, say thresh,
for a cell to be considered “small”. Note that this required making no more than
thresh invocations of CryptoMiniSat for each value of i, since we could abort the
check and increment i once thresh solutions of ϕ ∧ hi(Sup(ϕ)) had been found.
Thus, our method resulted in thresh · log2 |Sol(ϕ)| invocations of CryptoMiniSat in
expectation, where each invocation involved the formula ϕ∧hi(Sup(ϕ)). This cir-
cumvented the twin problems of blowing up the support of the input formula and
invoking CryptoMiniSat prohibitively many times. Needless to say, the worst-case
behaviour of our algorithm was going to be bad, since a call to CryptoMiniSat
could take exponential time in the worst-case. However, since the observed per-
formance of CryptoMiniSat was far better, we expected our approximate counter
and solver to work well in practice.

By late 2012, we had implemented a sampler named UniGen, using the above
ideas, and had worked out a proof of it almost uniform guarantee. UniGen sig-

6

nificantly outperformed the best available approximate samplers at that time in
terms of the experimentally observed uniformity of samples generated, and did
not take prohibitively large time to generate a few samples. In fact, with the
highly engineered CryptoMiniSat as our backend engine, we were able to gener-
ate samples from the space of solutions of fairly large formulas that had hitherto
been beyond the reach of almost uniform samplers with strong approximation
guarantees. A paper on UniGen was published in CAV 2013 [8], and was well
received by the community. In parallel, we were also working on an approximate
model counter using similar ideas. We chose not to use Jerrum et al’s reduction
of approximate counting to almost uniform sampling or vice versa in designing
either the counter or sampler. This was an informed choice motivated by the ob-
servation that we were using a real SAT solver (instead of an NP-oracle) in our
implementation, and Jerrum et al’s reduction would have effectively increased
the number of invocations of this solver prohibitively. Our work on the first scal-
able, fully automatic (i.e. no dependence on user-provided parameters) approxi-
mate model counter, called ApproxMC, with provable approximation guarantees
was published in CP 2013 [9]. Since we did not use Jerrum et al’s reduction, we
had to work out the theoretical analyses of UniGen and ApproxMC separately.
Not surprisingly, there were commonalities between the analyses of UniGen and
ApproxMC. Surprisingly however, there were some key differences as well. In par-
ticular, our analysis of UniGen required using 3-universality properties of XOR
based hash functions, while the analysis of ApproxMC required only 2-universality
properties of the same hash functions. This discrepancy has continued to puzzle
us over the years, and it is only recently that we are beginning to understand
that it may be possible to re-design UniGen so that only 2-universality proper-
ties of XOR-based hash functions are needed to provide the same approximation
guarantees.

5 Work post 2013

The year 2013 also saw another paper [16], authored by Ermon et al, that de-
scribed an independent effort to design a scalable approximate model counter
with provable guarantees in a weighted setting. Interestingly, this algorithm re-
duced to Stockmeyer’s algorithm in case a constant weight function was used.
While there were commonalities in the technical concerns addressed in our work
and that of [16], the techniques used were different.

Since 2013, there has been a fair body of work that has taken the work of [9]
forward. Three significant developments are worth mentioning here.

1. Use of indepedent supports in XOR-based hashing: An independent
support of a Boolean formula ϕ is a subset I of Sup(ϕ) such that whenever
two satisfying assignments π1 and π2 of ϕ agree on I, then π1 = π2. Of-
ten, the size of an independent support of a formula can be 1-2 orders of
magnitude smaller than the size of its support. Therefore, if XOR clauses
are constructed using only variables in the independent support of ϕ, we are
likely to have significantly smaller XOR clauses. This is known to improve

7

the performance of solvers like CryptoMiniSat. In [10], this idea was used
to significantly speed up ApproxMC without sacrificing any approximation
guarantee. In [18], an algorithmic framework, called MIS, was also proposed
to compute an independent support of a given CNF formula automatically,
by reducing this problem to the Group-oriented Minimal Unsatisfiable Sub-
formula problem [20, 21].
Since the size of XOR clauses has a significant bearing on the performance
of SAT solvers that reason about combinations of CNF and XOR clauses,
there has been significant interest in recent times in reducing the size of
XOR clauses using sophisticated families of hash functions [26, 3, 2, 1]. The
problem is particularly challenging since reducing the size of XOR clauses
almost always weakens the approximation guarantees that one can derive for
XOR-hashing based approximate counters. This is an extremely active area
of research, and any breakthrough here can trigger the next quantum jump
in performance of approximate model counters. However, the final word on
this is yet to be said.

2. Use of dependent XOR clauses in XOR-based hashing: While the
hash function hi(Sup(ϕ)) described above was constructed by choosing i
XOR constraints independently at random, we have subsequently shown
in [11] that there are significant benefits that can be reaped by carefully
introducing dependence among the random XOR constraints. Specifically, we
introduced the prefix-family of dependent XOR clause based hash functions
in [11], and showed that this leads to significant reduction in running time
of ApproxMC. This improvement can be attributed to two different reasons.
First, the prefix family of hash functions makes it possible to use a binary
search to determine the right value of i in hi(Sup(ϕ)). In contrast, with
independent hash functions, a linear search was needed to find the right
value of i. Second, the prefix family of hash functions makes it possible to
use incremental SAT solving when searching for the right value of i. It is well-
known that incremental SAT solving can lead to significant improvements in
run-time when a sequence of SAT solver calls on related problem instances
must be made. ApproxMC directly benefits from this by using the prefix
family of hash functions. The flip side of using the prefix family of hash
functions is that earlier proofs of approximation guarantees that assumed
independence of the clauses were no longer applicable. Therefore we had to
re-work the proofs from scratch for the prefix family of hash functions. This
required a significant re-think of the analysis, and eventually, we were able
to establish exactly the same approximation guarantees that independent
XOR clause-based hashing provided.q

3. Tighter integration of Gaussian elimination and CDCL reasoning:
Recently, the capabilities of CryptoMiniSat have been significantly enhanced
by very innovative engineering by Soos and Meel [22]. Specifically, Soos and
Meel have proposed a scheme of blasting of XOR clauses into CNF clauses,
in-processing the resulting ensemble of CNF clauses, recovering (potentially
new) XOR clauses from the in-processed CNF clauses, combining CDCL on
CNF clauses and Gaussian elimination on the recovered XOR clauses, and

8

then destroying all recovered XOR clauses before repeating the above steps
in each re-start of the CDCL solver. Since checking satisfiability of formulas
with mixed CNF and XOR clauses is the single most time consuming step
in ApproxMC and UniGen, it is not surprising that this has led to dramatic
improvements in the running time of the latest versions of ApproxMC and
UniGen.

The combination of the three ideas discussed above, along with other engineer-
ing optimizations, has helped push the frontiers of practical approximate model
counting with strong guarantees to uncharted territory. In their latest paper [22],
Soos and Meel report that the latest version of ApproxMC is able to solve prob-
lems with more half a million variables. Thanks to the close connection between
approximate model counting and almost uniform sampling, almost all the devel-
opments discussed above have positively impacted the performance of UniGen as
well. In fact, in the context of almost uniform sampling, we developed a truly
parallel version of UniGen and discussed it in [12].

Building on the succes of ApproxMC, we also extended the core idea to the
setting of weighted model counting in [6]. In weighted model counting, every
assignment of variables in Sup(ϕ) is assigned a non-negative weight by a weight
function, and our goal is to compute the sum of weights of all solutions of a
given formula ϕ. The approach used in [6] required the use of a satisfiability
solver that accepts a mix of pseudo-Boolean constraints and XOR constraints
as inputs. While the theory works out beautifully, the primary bottleneck in
practical deployment turned out to be the availability of practically efficient
pseudo-Boolean+XOR solvers. More recently, it has been shown by de Colnet
and Meel [14] that weighted model counting can be naturally reduced to ei-
ther an optimization problem, as has been used in [16], or to the problem of
counting models with a specified minimum weight. In an independent line of
work, we also showed in [13] that weighted model counting can be reduced all
the way to (unweighted) model counting for a specific class of weight functions
called literal weight functions. This requires encoding the weights of literals us-
ing separate gadgets that involve additional variables. While this approach has
shown promise in the setting of exact weighted model counting, the introduc-
tion of additional variables increases the sizes of XOR clauses when ApproxMC
is run on the transformed problem instances. Experiments on a range of bench-
marks show that this doesn’t always yield better performance vis-a-vis other
methods discussed above for solving weighted model counting directly. Finally,
in [7], we also extended our work on approximate counting to counting mod-
els of quantifier-free SMT formulas in the theory of bit-vectors. This required
generalizing XOR-based hash functions to linear modular hash functions with
prime moduli to preserve the same approximation guarantees as provided by
XOR-based hash functions. The backend engine also had to be correspondingly
replaced by an SMT solver like Z3 [15] or CVC4 [4]. Our initial experiments,
reported in [7], showed that while this succeeded in solving a decent number of
benchmarks, the lack of a tight integration between Gaussian elimination and
core SMT reasoning (viz. DPLL(T)) eventually came in the way of scaling up to

9

large problem instances. We are hopeful that once this integration reaches the
level of sophistication as it has in CryptoMiniSat, approximate model counting
for bit-vector SMT formulas will also scale to large industry-scale examples.

6 Concluding remarks

It has been a long journey from where we started in the winter of 2011 to where
we are today with respect to approximate model counters and almost uniform
samplers. The ability to scale to industry-scale problems and also provide rigor-
ous approximation guarantees has encouraged researchers working from diverse
domains to use our tools as backend engines in their work. We believe this will
enrich the area and will spur further improvements in approximate model count-
ing and sampling. While the bridge between theory and practice has been partly
bridged, there is still a lot more that needs to be done. Fortunately, this is an
active area of research today, and we hope that further breakthroughs will hap-
pen soon enough so that we can break the million variable barrier and go far
beyond.
[An expanded version of our original CP 2013 paper, complete with all proofs,
can be found at https://arxiv.org/pdf/1306.5726.pdf.]

References

1. Dimitris Achlioptas, Zayd Hammoudeh, and Panos Theodoropoulos. Fast and
flexible probabilistic model counting. In International Conference on Theory and
Applications of Satisfiability Testing, pages 148–164. Springer, 2018.

2. Dimitris Achlioptas and Panos Theodoropoulos. Probabilistic model counting with
short xors. In International Conference on Theory and Applications of Satisfiability
Testing, pages 3–19. Springer, 2017.

3. Megasthenis Asteris and Alexandros G Dimakis. Ldpc codes for discrete integra-
tion. Technical report, Technical report, UT Austin, 2016.

4. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV ’11), volume 6806 of Lecture
Notes in Computer Science, pages 171–177. Springer, July 2011. Snowbird, Utah.

5. M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses
using an NP-oracle. Information and Computation, 163(2):510–526, 2000.

6. S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi.
Distribution-aware sampling and weighted model counting for SAT. In Proc. of
AAAI, pages 1722–1730, 2014.

7. S. Chakraborty, K. S. Meel, R. Mistry, and M. Y. Vardi. Approximate probabilistic
inference via word-level counting. In Proc. of AAAI, 2016.

8. S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable and nearly uniform
generator of SAT witnesses. In Proc. of CAV, pages 608–623, 2013.

9. S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable approximate model
counter. In Proc. of CP, pages 200–216, 2013.

10

10. S. Chakraborty, K. S. Meel, and M. Y. Vardi. Balancing scalability and uniformity
in SAT witness generator. In Proc. of DAC, pages 1–6, 2014.

11. S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorithmic improvements in approx-
imate counting for probabilistic inference: From linear to logarithmic SAT calls.
In Proc. of IJCAI, 2016.

12. Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and
Moshe Y. Vardi. On parallel scalable uniform sat witness generation. In Proc. of
TACAS, pages 304–319, 2015.

13. Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. From
weighted to unweighted model counting. In Proceedings of AAAI, pages 689–695,
2015.

14. Alexis de Colnet and Kuldeep S. Meel. Dual hashing-based algorithms for discrete
integration. In Proc. of CP, 10 2019.

15. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. of
TACAS, pages 337–340. Springer, 2008.

16. Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Taming the
curse of dimensionality: Discrete integration by hashing and optimization. In Proc.
of ICML, pages 334–342, 2013.

17. C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strategy for
obtaining good bounds. In Proc. of AAAI, volume 21, pages 54–61, 2006.

18. Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi. On comput-
ing minimal independent support and its applications to sampling and counting.
Constraints, pages 1–18, 2015.

19. M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combi-
natorial structures from a uniform distribution. Theoretical Computer Science,
43(2-3):169–188, 1986.

20. Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal
unsatisfiable subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

21. Alexander Nadel. Boosting minimal unsatisfiable core extraction. In Proc. 10th
Int. Conf. on Formal Methods in Computer-Aided Design, pages 221–229, 2010.

22. Mate Soos and Kuldeep S Meel. BIRD: Engineering an efficient CNF-XOR SAT
solver and its applications to approximate model counting. In Proceedings of AAAI
Conference on Artificial Intelligence (AAAI)(1 2019), 2019.

23. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to
cryptographic problems. In Proc. of SAT, pages 244–257, 2009.

24. L. Stockmeyer. The complexity of approximate counting. In Proc. of STOC, pages
118–126, 1983.

25. W. Wei and B. Selman. A new approach to model counting. In Proc. of SAT,
pages 2293–2299. Springer, 2005.

26. S. Zhao, S. Chaturapruek, A. Sabharwal, and S. Ermon. Closing the gap between
short and long xors for model counting. In Proc. of AAAI, 2016.

