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Abstract—Boolean functional synthesis is the process of con-
structing a Boolean function from a Boolean specification that
relates input and output variables. Despite significant recent
developments in synthesis algorithms, Boolean functional syn-
thesis remains a challenging problem even when state-of-the-art
methods are used for decomposing the specification. In this work
we bring a fresh decomposition approach, orthogonal to existing
methods, that explores the decomposition of the specification
into separate input and output components. We make use of
an input-output decomposition of a given specification described
as a CNF formula, by alternatingly analyzing the separate input
and output components. We exploit well-defined properties of
these components to ultimately synthesize a solution for the entire
specification. We first provide a theoretical result that, for input
components with specific structures, synthesis for CNF formulas
via this framework can be performed more efficiently than in the
general case. We then show by experimental evaluations that our
algorithm performs well also in practice on instances which are
challenging for existing state-of-the-art tools, serving as a good
complement to modern synthesis techniques.

I. INTRODUCTION

Boolean functional synthesis is the problem of constructing
a Boolean function from a Boolean specification that describes
a relation between input and output variables [2], [12], [19],
[35]. This problem has been explored in a number of settings
including circuit design [20], QBF solving [27], and reactive
synthesis [36], and several tools have been developed for its
solution. Nevertheless, scalability of Boolean functional syn-
thesis methods remains a concern as the number of variables
and size of the formula grows. This is not surprising since
Boolean functional synthesis is in fact CO-NPNP-hard.

A standard practice for handling the problem of scalability
is based on decomposing the given formula into smaller sub-
specifications and synthesizing each component separately [2],
[19], [35]. The most common form of such decomposition,
called factorization, is when the formula is represented as
a conjunction of constraints, in which each conjunct can be
seen as a sub-specification [19], [35]. The main challenge
in this approach is that most factors cannot be synthesized
entirely separately due to the dependencies created by shared
input and output variables. The ways to meet this challenge
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are usually to either merge factors that share variables [35]
or perform additional computations in order to combine the
functions synthesized for different factors [19]. All these result
in additional work that must be performed during the synthesis.

In this work, we propose an alternative decomposition
framework, which follows naturally from the fact that vari-
ables in the specification are separated into input and output
variables. This idea was originally inspired by [11], which
explores the notion of sequential relational decomposition, in
which a relation is decomposed into two by introducing an
intermediate domain. Differently from factorization, this form
of decomposition allows the two components to be synthesized
completely independently. That work, however, shows that
decomposition is hard in general, and if the relation is given
as a Boolean circuit, decomposition is NEXPTIME-complete.
Furthermore, there is no guarantee that synthesizing the two
components independently would be easier than synthesizing
the original specification, since the synthesis of one component
might ignore useful information given by the other component.

We instead suggest a more relaxed notion of decomposition
for specifications described as CNF formulas, in which every
clause is split into an input and an output clause and the inde-
pendent analyses of the input/output components “cooperate”
to synthesize a function for the entire specification. Based on
this concept, we describe a novel synthesis algorithm for CNF
formulas called the “Back-and-Forth” algorithm, where rather
than synthesizing the input and output components entirely
independently we share information back and forth between
the two components to guide the synthesis. More specifically,
our algorithm alternates between SAT calls that follow the
input-component structure analysis and MaxSAT calls that
follow the output-component structure analysis. Thus, this
approach builds on recent progress with SAT and MaxSAT
solving [21], [30]. A notable consequence of our method is
that, as the number of SAT calls is dependent on the structure
of the input component, for specifications with some well-
defined input structure we can perform synthesis in PNP,
compared to the generally mentioned CO-NPNP-hardness. An
additional advantage of our algorithm is that it constructs the
synthesized function as a decision list [29]. Compared to other
data structures for representing Boolean functions, such as
ROBDDs or AIGs, decision lists have significant benefits in
term of explainability, allowing domain specialists to validate
and analyze their behavior (see discussion in Section VI for
more details).



We experimentally evaluate the “Back-and-Forth” algorithm
on a suite of standard synthesis benchmarks, comparing its per-
formance with that of state-of-the-art synthesis tools. Although
these tools perform very well on many families of benchmarks,
our results show that the “Back-and-Forth” algorithm is able
to handle classes of benchmarks that these tools are unable to
synthesize, indicating that it belongs in a portfolio of synthesis
algorithms.

II. RELATED WORK

Constructing explicit representations of implicitly speci-
fied functions is a fundamental problem of interest to both
theoreticians and practitioners. In the contexts of Boolean
functional synthesis and certified QBF solving, such functions
are also called Skolem functions [8], [14], [19]. Boole [9]
and Lowenheim [22] studied variants of this problem when
computing most general unifiers in resolution-based proofs.
Unfortunately, their algorithms, though elegant in theory, do
not scale well in practice [23]. The close relation between
Skolem functions and proof objects in specialized QBF proof
systems has been explored in [8], [14]. One of the earliest
applications of Boolean functional synthesis has been logic
synthesis - see [34] for a survey. More recently, Boolean func-
tional synthesis has found applications in diverse areas such
as temporal strategy synthesis [3], [16], [36], certified QBF
solving [6], [7], [26], [28], automated program synthesis [31],
[33], circuit repair and debugging [18], and the like. This has
resulted in a new generation of Boolean functional synthesis
tools, cf. [1], [2], [12], [14], [19], [27], [28], [35], that are
able to synthesize functions from significantly larger relational
specifications than what was possible a decade back.

Recent tools for Boolean functional synthesis can be broadly
categorized based on the techniques employed by them. Given
a specification F (~x, ~y), where ~x denotes inputs and ~y denotes
outputs, the work of [14] extracts Skolem functions for ~y in
terms of ~x from a proof of validity of ∀~x.∃~y.F (~x, ~y) expressed
in a specific format. The efficiency of this technique crucially
depends on the existence and size of a proof in the required
format. Incremental determinization [27] is a highly effective
synthesis technique that accepts as input a CNF representation
of a specification and builds on several successful heuristics
used in modern conflict-driven clause-learning (CDCL) SAT
solvers [30].

In [12], the composition-based synthesis approach of [17]
is adapted and new heuristics are proposed for synthesiz-
ing Skolem functions from an ROBDD representation of
the specification. The technique has been further improved
in [35] to work with factored specifications represented as
implicitly conjoined ROBDDs. CEGAR-based techniques that
use modern SAT solvers as black boxes [1], [2], [19] have
recently been shown to scale well on several classes of large
benchmarks. The idea behind these techniques is to start with
an efficiently computable initial estimate of Skolem functions,
and use a SAT solver to test if the estimates are correct.
A satisfying assignment returned by the solver provides a
counterexample to the correctness of the function estimates,

and can be used to iteratively refine the estimates. In [1], it is
shown that transforming the representation of the specification
to a special negation normal form allows one to efficiently
synthesize Skolem functions.

Both ROBDD and CEGAR-based approaches make use of
decomposition techniques to improve performance, the most
common of which is factorization [19], [35]. In this method,
every conjunct of a conjunctive specification is considered
individually. The main drawback in this approach is that
the dependencies between conjuncts limit how much each of
them can be analyzed independently of the others, requiring
either partially combining components, as in [35], or going
through a process of refinement of the results [19]. This issue
motivates the search for alternative notions of decomposition
for synthesis problems. Our approach is loosely inspired by the
idea of sequential relational decomposition explored in depth
in [11]. A more direct application of this idea to synthesis
might still be possible, but requires further exploration. In
addition to the above techniques, templates or sketches have
been used to synthesize functions when information about the
possible functional forms is available a priori [32], [33].

As is clear from above, several orthogonal techniques have
been found to be useful for the Boolean functional synthesis
problem. In fact, there remain difficult corners, where the
specification is stated simply, and yet finding Skolem functions
that satisfy the specification has turned out to be hard for all
state-of-the-art tools. Our goal in this paper is to present a
new technique and algorithm for this problem, that does not
necessarily outperform existing techniques on all benchmarks,
but certainly outperforms them on instances in some of these
difficult corners. We envisage our technique being added to
the existing repertoire of techniques in a portfolio Skolem-
function synthesizer, to expand the range of problems that can
be solved.

III. PRELIMINARIES

A. Boolean Functional Synthesis

A specification for the Boolean functional synthesis problem
is a (quantifier-free) Boolean formula F (~x, ~y) over input
variables ~x = (x1, . . . , xm) and output variables ~y =
(y1, . . . , yn). Note that F can be interpreted as a relation
F ⊆ X × Y , where X is the set of all assignments x̂ to
~x and Y is the set of all assignments ŷ to ~y. With that in
mind, we denote by Dom(F ) = {x̂ | ∃ŷ.(F (x̂, ŷ) = 1)} and
Img(F ) = {ŷ | ∃x̂.(F (x̂, ŷ) = 1)} the domain and image
of the relation represented by F . We also use Imgx̂(F ) =
{ŷ | F (x̂, ŷ) = 1} to denote the image of a specific element
x̂ ∈ X . If Dom(F ) = X , then we say that F is realizable.

Two Boolean formulas F (~w) and F ′(~w) are said to be
logically equivalent, denoted by F ≡ F ′, if they have the same
solution space; that is, for every assignment ŵ to ~w, F (ŵ) = 1
iff F ′(ŵ) = 1. Unless stated otherwise, all Boolean formulas
mentioned in this work are quantifier free.

We say that a partial function g : X → Y implements a
relation F ⊆ X × Y if for every x̂ ∈ Dom(F ) we have that
(x̂, g(x̂)) ∈ F . Such a g is also called a Skolem function of F .



Note that if F is realizable, then g is a total function. Finally,
we define the Boolean-synthesis problem as follows:

Problem 1. Given a specification F (~x, ~y), construct a partial
function g that implements F .

For more information on Boolean synthesis, see [12], [19].

B. Decision lists

Our choice of representation of Skolem functions in this
work is inspired by the idea that we can represent an arbitrary
Boolean function f by a decision list [29]. A decision list
is an expression of the form if f1(~x) then ŷ1 else if
f2(~x) then ŷ2 else . . . else ŷk, where each fi is a
formula in terms of the input variables ~x and each ŷi is an
assignment to the output variables ~y. The length k of the
list corresponds to the number of decisions. Clearly, for a
specification F (~x, ~y) with m input variables we can always
synthesize as an implementation a decision list of length 2m,
where for every possible assignment of ~x we choose an assign-
ment of ~y that satisfies the specification. Many specifications,
however, can be implemented by significantly smaller decision
lists, by taking advantage of the fact that multiple inputs can
be mapped to the same output. Our analysis identifies and
exploits these cases.

Despite being a natural representation, decision lists might
not be appropriate for a physical implementation of the synthe-
sized function as a circuit. In this case, it might make sense to
collect the decisions into a more compact representation, such
as an ROBDD.

C. Conjunctive Normal Form

A Boolean formula F (~w) is in conjunctive normal form
(CNF) if F is a conjunction of clauses C1 ∧ . . . ∧ Ck, where
every clause Ci is a disjunction of literals (a variable or its
negation). A subset S of the clauses of a CNF formula F is
satisfiable if there exists an assignment ŵ to the variables ~w in
F such that Ci(ŵ) = 1 for every clause Ci ∈ S. Similarly, a
subset S of the clauses of F is all-falsifiable if there exists an
assignment ŵ such that Ci(ŵ) = 0 for every clause Ci ∈ S.
A subset S of clauses is a maximal satisfiable subset (MSS)
if S is satisfiable and every superset S′ ⊃ S is unsatisfiable.
Similarly, S is a maximal falsifiable subset (MFS) if S is all-
falsifiable and every superset S′ ⊃ S is not all-falsifiable. For
more information on MSS and MFS, refer to [15].

IV. SYNTHESIS VIA INPUT-OUTPUT SEPARATION

In this section, we present a novel algorithm for Boolean
functional synthesis from CNF specifications. Our approach is
based on a separation of every clause into an input part and
an output part. First, we describe how a decision list imple-
menting the specification can be constructed by enumerating
MFSs of the input clauses, or similarly by enumerating MSSs
of the output clauses. Then, we show how we can benefit from
alternating between the two: the MFSs can be used to avoid
useless MSSs, while the MSSs can be used to cover multiple
MFSs at the same time without enumerating all of them.

Given a CNF formula F (~x, ~y), assume F (~x, ~y) =
∧k

i=1 Ci,
where C1, . . . , Ck are clauses over ~x and ~y. Let Ci|~x denote
the x-part of clause Ci, that is, the disjunction of all x literals
in Ci. Similarly, let Ci|~y be the y-part of clause Ci, the
disjunction of all y literals in Ci. We call S~x = {Ci|~x |
Ci is a clause in F} and S~y = {Ci|~y | Ci is a clause in F}
the set of input and output clauses of the specification,
respectively.

In the following sections, we describe how to perform
separate analyses of the input component S~x and the output
component S~y , and then how to combine these analyses into
a single synthesis algorithm that alternates between the two
components.

A. Analysis of the Input Component

In this subsection we assume that the specification F is
realizable. First, consider a single assignment x̂ to the input
variables ~x. Let Fals(x̂) = {Ci|~x ∈ S~x | Ci|~x(x̂) = 0} be the
subset of input clauses that x̂ falsifies. For a set S′

~x ⊆ S~x of
input clauses, let Co(S′

~x) = {Ci|~y ∈ S~y | Ci|~x ∈ S′
~x} be the

corresponding set of output clauses and let MustSat(x̂) =
Co(Fals(x̂)). Note that Ci ≡ (Ci|~x ∨ Ci|~y) ≡ (¬Ci|~x →
Ci|~y) for every clause Ci. Therefore MustSat(x̂) is the subset
of output clauses that must be satisfied in order to satisfy F
when x̂ is the input assignment.

A key observation is that for two different input assignments
x̂ and x̂′, if Fals(x̂′) ⊆ Fals(x̂), then MustSat(x̂′) ⊆
MustSat(x̂), and therefore every output assignment ŷ that
satisfies the specification for x̂ also satisfies the specification
for x̂′. Hence, it is enough to consider only assignments for
~x that falsify a maximal number of input clauses. This leads
to the following lemma:

Lemma 1. Let M~x be an MFS of S~x, and ŷ be an assignment
that satisfies Co(M~x). Then: (1) For every assignment x̂ such
that Fals(x̂) ⊆ M~x, the assignment (x̂, ŷ) satisfies F (~x, ~y);
and (2) There is no assignment x̂ such that Fals(x̂) ⊃M~x.

Proof. (1) For every clause Ci|~x ∈ Fals(x̂), since Ci|~x ∈M~x,
we have that Ci|~y is in Co(M~x) and therefore is satisfied by
ŷ. Therefore, every clause Ci in F (~x, ~y) that is not satisfied
by x̂ is satisfied by ŷ. Note that (2) follows from M~x being
maximal.

From Lemma 1 and our assumption that F (~x, ~y) is realiz-
able, we can conclude the following.

Corollary 1. F can be implemented by a decision list of length
equal to the number of MFS of S~x, where each fi in the
decision list is of size linear in the size of the specification.

Proof. Construct fi(~x) by taking the conjunction of all input
clauses C|~x not contained in the i-th MFS Mi. Then, fi(~x) is
satisfied exactly by those assignments x̂ such that Fals(x̂) is
a subset of Mi. Then, set the corresponding output assignment
ŷi to an arbitrary satisfying assignment of Co(Mi).

Example 1. Let F (x1, x2, y1, y2) = (x1 ∨ ¬x2 ∨ y1) ∧ (x1 ∨
x2∨¬y1)∧(x2∨y1∨¬y2)∧(¬x1∨x2∨y2). We first construct



input clauses S~x = {(x1 ∨¬x2), (x1 ∨ x2), (x2), (¬x1 ∨ x2)}
and output clauses S~y = {(y1), (¬y1), (y1 ∨ ¬y2), (y2)}.
S~x has three MFS: {(x1 ∨ ¬x2)}, {(x1 ∨ x2), (x2)} and
{(x2), (¬x1 ∨ x2)}. From these MFS we can construct a
decision list implementing F in the way described above. Note
that this decision list necessarily covers every possible input
assignment:

if (x1 ∨ x2) ∧ (x2) ∧ (¬x1 ∨ x2) then (y1 := 1; y2 := 0)

else if (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) then (y1 := 0; y2 := 0)

else if (x1 ∨ ¬x2) ∧ (x1 ∨ x2) then (y1 := 1; y2 := 1)

Note that we require F (~x, ~y) to be realizable because
otherwise we cannot guarantee that Co(M~x) will be satisfiable
for every MFS M~x of the input clauses. If Co(M~x) is
unsatisfiable, however, it is not enough to simply remove
the corresponding fi(~x) from the decision list, because there
might be a subset M ′

~x ⊂M~x for which Co(M ′
~x) is satisfiable.

This is the first time to our knowledge that MFS are used
for synthesis purposes. An advantage of enumerating MFS is
that finding an MFS can be easily done, in a precise sense
discussed below. One way to do this is through the conflict
graph of the set of input clauses [13]. Given a set of clauses
S, the conflict graph of S is the graph where every vertex
corresponds to a clause in S, and there is an edge between two
vertices iff the corresponding clauses have a complementary
pair of literals between them (that is, the same variable appears
in positive form in one clause and in negative form in the
other). The complement of the conflict graph is called a
consensus graph [13].

Since two clauses can be falsified at the same time iff there
is no edge between them in the conflict graph, or alternatively
there is an edge between them in the consensus graph, there
is a one-to-one correspondence between MFS of the set of
clauses, maximal independent sets (MIS) in the conflict graph,
and maximal cliques in the consensus graph. Therefore, we can
enumerate the MFS in a set of clauses by either enumerating
MIS in the conflict graph or maximal cliques in the consensus
graph. The benefit of this reduction is that maximal cliques
display a so called polynomial-time listability, meaning that
finding a maximal clique can be performed in polynomial
time, and therefore enumeration takes polynomial time in the
number of maximal cliques [15].

This relation between the set of MFS and maximal cliques
implies that the size of the smallest decision list that imple-
ments a given specification is upper bounded by the number of
maximal cliques in the consensus graph of the input clauses.
Therefore we have the following result.

Theorem 1. Synthesis can be performed in PNP for specifica-
tions for which the consensus graph of S~x has a polynomial
number of maximal cliques (such as planar or chordal graphs).

Proof. Given a specification F , construct the consensus graph
of the input component, enumerate the maximal cliques and
for each one use a SAT solver to obtain a corresponding
satisfying assignment for the output clauses. Since the number

of maximal cliques is polynomial, only a polynomial number
of SAT calls is required.

Theorem 1 demonstrates an improvement relative to the
general CO-NPNP-hardness of synthesis. Moreover, construct-
ing the consensus graph of the input component is easy,
as is testing for certain graph properties, such as planarity,
that ensure a small number of maximal cliques. Therefore,
Theorem 1 provides an elegant method of deciding whether
synthesis can be performed efficiently in practice before even
beginning the synthesis process.

To summarize this section, the analysis of the input compo-
nent provides two insights. First, a decision list implementing
the specification can be constructed from the list of MFS of
the input clauses. Second, analyzing the graph structure of the
input component allows us to identify classes of specifications
for which synthesis can be performed more efficiently. Note
that this analysis, however, does not take into account the
properties of the output component, and as such the decision
list produced by ignoring the output component may be longer
than necessary. With that in mind, the next section presents
a complementary analysis of the output component that can
help to produce a smaller decision list.

B. Analysis of the Output Component

For the analysis of the output component, consider the set
MustSat(x̂), defined in the previous subsection, of output
clauses that must be satisfied when x̂ is the input assign-
ment. Then for every two input assignments x̂ and x̂′, if
MustSat(x̂′) ⊆MustSat(x̂), every output assignment ŷ that
satisfies the specification for x̂ also satisfies the specification
for x̂′. Therefore, it is enough when constructing the decision
list to consider only those satisfiable subsets of S~y that are of
maximal size. Similarly to Lemma 1 in the previous section,
this insight allows us to state the following lemma:

Lemma 2. Let M~y be an MSS of S~y and ŷ be an assignment
that satisfies M~y . Then: (1) for every assignment x̂ such that
MustSat(x̂) ⊆ M~y , the assignment (x̂, ŷ) satisfies F (~x, ~y);
and (2) for every assignment x̂ such that MustSat(x̂) ⊃M~y ,
there is no ŷ′ such that the assignment (x̂, ŷ′) satisfies F (~x, ~y).

Proof. (1) Since ŷ satisfies every clause Ci|~y in M~y , it must be
that ŷ also satisfies every clause in MustSat(x̂). Therefore,
for every clause Ci in F , either Ci|~x is satisfied by x̂ (and
therefore Ci|~y 6∈ MustSat(x̂)) or Ci|~y is satisfied by ŷ.
Therefore (x̂, ŷ) satisfies F (~x, ~y). (2) Since M~y is maximal,
then in this case MustSat(x̂) must be unsatisfiable. Therefore
there is no ŷ′ that can satisfy all clauses that x̂ does not already
satisfy.

Therefore, similarly to the analysis of the input component,
we have:

Corollary 2. F can be implemented by a decision list of
length equal to the number of MSS of S~y , where each fi in the
decision list is of size linear in the size of the specification.



Proof. Construct fi(~x) by taking the conjunction of all input
clauses C|~x such that C|~y is not contained in the i-th MSS
Mi. Then, fi(~x) is satisfied exactly by those assignments
x̂ such that MustSat(x̂) is a subset of Mi. Then, set the
corresponding output assignment ŷi to an arbitrary satisfying
assignment of Mi.

Example 2. Let F , S~x and S~y be the same as in Example 1. S~y

has three MSS: {(y1), (y1 ∨ ¬y2), (y2)}, {(¬y1), (y1 ∨ ¬y2)}
and {(¬y1), (y2)}. From these MSS we can construct a
decision list implementing F in the way described above. Note
that some decisions in the list might be redundant:

if (x1 ∨ x2) then (y1 := 1; y2 := 1)

else if (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) then (y1 := 0; y2 := 0)

else if (x1 ∨ ¬x2) ∧ (x2) then (y1 := 0; y2 := 1)

Unlike the input component, the output analysis does not
require the specification to be realizable to produce the correct
answer: for every input x̂ for which an output ŷ exists,
MustSat(x̂) will be contained in some MSS, and therefore
will be covered by the decision list. On the other hand, we do
not care about the case where an input x̂ has no corresponding
output ŷ. Note, however, that unlike the input component, we
do not have here a simple graph structure that can be exploited
to obtain the list of MSSs, and finding an MSS is clearly NP-
hard. Therefore, it is unlikely for us to be able to efficiently
identify instances where the number of MSS is polynomial.

More importantly, however, is that taking into account only
the output component and ignoring the input component may
also lead to a large decision list that includes many MSSs that
would never be activated by an input. This fact emphasizes
the drawbacks of independent synthesis of the components,
and motivates the development of an algorithm that combines
the input and output analyses to produce a decision list that
is smaller than either of the ones produced by each analysis
individually.

C. Alternating between Input and Output Components
Our next goal is to combine the input and output analyses

obtained so far into a synthesis procedure that constructs a
decision list of length upper-bounded by the minimum among
the number of MFS of the input clauses and the number of
MSS of the output clauses. Due to the restrictions of the
input analysis, if the specification is unrealizable the procedure
terminates without producing a decision list. Extending the
synthesis to unrealizable specifications is left for future work.
We first state the following lemma:

Lemma 3. If F (~x, ~y) is realizable, then for every MFS M~x

of S~x, Co(M~x) ⊆M~y for some MSS M~y of S~y .

Proof. For every MFS M~x, since M~x is all-falsifiable, there
exists an input assignment x̂ such that Fals(x̂) = M~x. Then,
since F is realizable, MustSat(x̂) = Co(M~x) is satisfiable,
and therefore is contained in some MSS.

Given an MFS M~x for the input clauses, we say that an
MSS M~y for the output clauses covers M~x if Co(M~x) ⊆M~y .

Algorithm 1 Back-and-Forth synthesis algorithm combining
MFS and MSS analysis.

1: initialize a list of MSSs L to the empty list
2: while there are still MFS left to generate do
3: M~x ← MFS of S~x not covered by any MSS in L
4: if MSS M~y ⊆ S~y covering M~x exists then
5: add M~y to L
6: else
7: FAIL: specification is unrealizable
8: end if
9: end while

10: construct decision list from L

Lemma 3 says that for every MFS M~x, there exists at least
one MSS M~y that covers M~x. Therefore, instead of producing
a satisfying assignment for Co(M~x), we can produce a satis-
fying assignment for M~y . In fact, such satisfying assignment
also takes care of every other MFS covered by M~y , making it
unnecessary to generate them.

The above insight gives rise to Algorithm 1, which we
call the ”Back-and-Forth” algorithm. In this algorithm, we
maintain a list L of MSSs that is initially empty. At every
iteration of the algorithm, we produce a new MFS that is not
covered by the MSSs already in L. Then, we find an MSS
that covers this new MFS. If no such MSS exists, it means
the specification is unrealizable, and so the algorithm emits
an error message and terminates. Otherwise, we add this MSS
to L. After all the MFS have been covered, we construct a
decision list from the obtained list L of MSS in the same way
as described in Section IV-B: fi(~x) is a formula that is satisfied
exactly when MustSat(~x) is a subset of the i-th MSS, and the
corresponding output assignment ŷi is a satisfying assignment
for that MSS.

Example 3. Let F , S~x and S~y be the same as in Examples 1
and 2. In the first iteration, we generate the MFS M1

~x = {(x1∨
¬x2)}. Then, we expand Co(M1

~x) = {(y1)} into the MSS
M1

~y = {(y1), (y1 ∨ ¬y2), (y2)} and add M1
~y to L. Note that

M1
~y also covers, besides M1

~x , the MFS {(x2), (¬x1 ∨ x2)},
and therefore this MFS will not need to be generated. The only
remaining MFS is M2

~x = {(x1∨x2), (x2)}. M2
~y = Co(M2

~x) =
{(¬y1), (y1 ∨ ¬y2)} is already an MSS, so we add it to L.
Since all MFS have been covered, the procedure terminates.
Note that we did not need to add the MSS {(¬y1), (y2)} to L,
since no MFS is covered by this MSS. From L, we can now
construct a decision list as described earlier:

if (x1 ∨ x2) then (y1 := 1; y2 := 1)

else if (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) then (y1 := 0; y2 := 0)

a) Implementation details: The key steps of Algorithm 1
are the generation of the MFS M~x in line 3 and the MSS
M~y in line 4. These steps are similar to the input and output
analyses in Sections IV-A and IV-B. Since, however, we use
communication between the input and output components,
we have additional constraints on the MFS and MSS being



generated. At each step the generated MFS must not be
covered by the previously-generated MSSs, and the generated
MSS must cover the most recently generated MFS.

While generating an arbitrary MFS can be done in polyno-
mial time, we prove that adding the restriction that the MFS
must not be covered by a previous MSS makes the MFS
generation an NP-complete problem (see extended version
of the paper for proper theorem and proof). Therefore, we
implement the MFS generation in the following way. First,
we use a SAT solver as an NP oracle to find an (not-
necessarily maximal) all-falsifiable subset of S~x not covered
by the previous MSSs. Then, we extend this subset to an
MFS by iterating over the remaining input clauses and at each
step adding to the growing set a clause that does not conflict
with the clauses already present in that set. This process of
obtaining an MFS from S~x is easier to implement when we
use the conflict graph representation of S~x. Given k previous
MSSs M1, . . . ,Mk and the conflict graph G = (V,E), we use
the following SAT query to generate an all-falsifiable subset:

ϕ ≡
k∧

i=1

 ∨
Cj |~y ∈ S~y\Mi

zj

 ∧ ∧
(Ci|~x,Cj |~x) ∈ E

(¬zi ∨ ¬zj)

We use variable zi to indicate whether clause Ci|~x is present
in the all-falsifiable subset. The first conjunction encodes that
for every previous MSS, the subset must include a clause Cj |~x
not covered by that MSS. The second conjunction expresses
that if two clauses conflict with each other, they cannot both
be added to the subset. Note that whenever we generate a new
MFS, we only need to add extra clauses of the first form to
this query, allowing us to employ incremental capabilities of
SAT solvers.

After extending the subset produced by the SAT solver to
an MFS M~x, we have to generate a new MSS M~y that covers
M~x. For that we use a partial MaxSAT solver as an oracle. In a
partial MaxSAT problem, some clauses are set as hard clauses
and others are set as soft clauses [4]. The solver then returns
an assignment that satisfies all hard clauses and the maximum
possible number of soft clauses. We call the MaxSAT solver
on the set of output clauses S~y , where the clauses in Co(M~x)
are set as hard clauses, and all other clauses are set as soft
clauses. This way, the MaxSAT solver is guaranteed to return a
satisfiable set of clauses containing Co(M~x) and of maximum
size. Since a satisfiable subset of maximum size is necessarily
maximal, the satisfied clauses returned by the MaxSAT solver
is an MSS, as desired.

b) Analysis and Correctness: Since exactly one new
MFS and one new MSS are generated at every iteration,
the number of iterations in Algorithm 1 is upper bounded
by min(#MFS,#MSS). Yet, since Algorithm 1 does not
generate redundant MFS and MSS, the number of iterations,
and thus the size of the decision list, can be much smaller.

We now formalize and prove the correctness of Algorithm 1.

Lemma 4. For a realizable specification F (~x, ~y), let
〈(f1, ŷ1), . . . , (fk, ŷk)〉 be the decision list produced by Al-

gorithm 1. Then (1) For every x̂ such that fi(x̂) = 1,
F (x̂, ŷi) = 1; (2) For every x̂ there is at least one i such
that fi(x̂) = 1.

Proof. (1) Let M~y be the i-th MSS generated by the algorithm.
Then, by construction, fi(x̂) = 1 iff MustSat(x̂) ⊆M~y , and
ŷi is a satisfying assignment to M~y . Therefore, if fi(x̂) = 1
then ŷi satisfies MustSat(x̂), and so (x̂, ŷi) satisfies F .

(2) For every x̂, there exists an MFS M~x such that
Fals(x̂) ⊆ M~x. If M~x was generated by the algorithm, then
an MSS M~y that covers M~x was added to the MSS list. If
M~x was not generated by the algorithm, it must be because
there was already a previously generated MSS M~y that covers
M~x. Either way, since M~y covers M~x and Fals(x̂) ⊆ M~x,
M~y covers Fals(x̂). Therefore, the corresponding fi in the
decision list is such that fi(x̂) = 1.

From Lemma 4 we obtain the following corollary.

Corollary 3. Given a realizable specification F (~x, ~y), the
decision list produced by Algorithm 1 implements F .

It is worth noting that if the number of MFS is small as
discussed in Section IV-A, then purely enumerating MFS, as in
Section IV-A can be theoretically faster than using Algorithm
1. That is because finding an MFS can be done in polynomial
time, while Algorithm 1 requires calls to a SAT and MaxSAT
solvers. In practice, however, we observed that the Back-and-
Forth algorithm often avoids a large number of redundant
MFS, which makes up for the extra complexity in generating
each MFS. Still, for specifications that are known to have a
small number of MFS, restriction to the analysis of the input
component as in Section IV-A can be sufficient.

D. Partitioning the Specification into Distinct Output Vari-
ables

Some of the cases in the back-and-forth analysis which
cause the number of MFS or MSS to be exponential can be
simplified by partitioning the specification into sets of clauses
that do not share output variables. As an example, consider
the specification for the identity function:

F (~x, ~y) = (x1 ↔ y1) ∧ . . . ∧ (xk ↔ yk)

or in a CNF form:

F (~x, ~y) = (¬x1∨y1)∧(x1∨¬y1)∧. . .∧(¬xk∨yk)∧(xk∨¬yk)

It is easy to see that both the number of MFS and MSS for
this formula are 2k. Each output variable, however, does not
appear in the same clause with other output variables. There-
fore, we can consider each pair (¬xi∨yi)∧(xi∨¬yi) of clauses
as a separate specification and synthesize it independently as
a decision list of size 2. As such, the total number of MFS
and MSS grow linearly with k.

Therefore we propose the following preprocessing step.
1) Given the specification F , construct a graph with a vertex

for each clause and an edge between two vertices iff the
corresponding clauses share an output variable.



2) Separate the graph into connected components
C1, . . . ,Ck. Note that the Ci are completely disjoint in
terms of output variables.

3) For every Ci, define a sub-specification Fi by taking only
the clauses in F whose corresponding vertex is in Ci.

4) Call Algorithm 1 for each specification Fi. This gives us
a decision list Di for Fi that decides on an assignment
for only the output variables in Fi.

Since the Fi have disjoint sets of output variables, every
Di decides on an assignment for a different partition of output
variables. Therefore, given an input x̂ we can produce a corre-
sponding output ŷ by simply evaluating each Di independently
on x̂ and combining the results.

V. EXPERIMENTAL EVALUATION

In order to evaluate the performance of the Back-and-Forth
synthesis algorithm, we ran the algorithm on benchmarks from
the 2QBF track of the QBFEVAL’16 QBF-solving compe-
tition [25]. This track is composed of QBF benchmarks of
the form ∀~x.∃~y.F (~x, ~y), where F is a CNF formula. We
can see these benchmarks as synthesis problems asking if we
can synthesize a Skolem function for the existential variables
in terms of the universal variables such that the formula F
is satisfied. For this experimental evaluation we used only
those benchmarks that are realizable, since adjusting the Back-
and-Forth algorithm to handle unrealizable benchmarks is
future work. The benchmarks can be classified into seven
families: MUTEXP (7 instances), QSHIFTER (6 instances),
RANKINGFUNCTIONS (49 instances), REDUCTIONFINDING
(34 instances), SORTINGNETWORKS (22 instances), TREE (5
instances) and FIXPOINTDETECTION (93 instances). Because
benchmarks in the same family tend to have similar properties,
it makes sense to evaluate performance over each family, rather
than over specific instances.

We compared the running time of the Back-and-Forth
algorithm on these benchmarks with three state-of-the-art
tools that employ different synthesis approaches: the CDCL-
based CADET [27], the ROBDD-based RSynth [35], and the
CEGAR-based BFSS [1]. Since the Back-and-Forth algorithm,
CADET and RSynth are all sequential algorithms, to ensure
fair comparison of computational effort, the version of BFSS
used was compiled with the MiniSAT SAT solver [10] instead
of the parallelized UniGen sampler used in [1]. We leave for
future work the exploration of performance of the different
tools in a parallel scenario.

Our implementation of the Back-and-Forth algorithm used
the Glucose SAT solver [5], based on MiniSAT, and the Open-
WBO MaxSAT solver [24]. The implementation also used the
partitioning described in Section IV-D. All experiments were
executed in the DAVinCI cluster at Rice University, consisting
of 192 Westmere nodes of 12 processor cores each, running at
2.83 GHz with 4 GB of RAM per core, and 6 Sandy Bridge
nodes of 16 processor cores each, running at 2.2 GHz with 8
GB of RAM per core. Our algorithm has not been parallelized,
so the cluster was solely used to run multiple experiments
simultaneously. Each instance had a timeout of 8 hours.
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Fig. 1. Percentage of instances solved by each synthesis algorithm for each
of the benchmark families.

Figure 1 shows for each family the percentage of instances
each tool was able to solve in the time limit. We can divide
the results into three parts:

In the RANKINGFUNCTIONS and FIXPOINTDETECTION
families the Back-and-Forth algorithm timed out on almost
all instances, only being able to solve the easiest instances of
FIXPOINTDETECTION. CADET, on the other hand, performed
very well, being able to solve all instances. RSynth and BFSS
also outperformed the Back-and-Forth algorithm, although
they did not perform as well as CADET.

The TREE, MUTEXP, and QSHIFTER families had almost
all instances solved by the Back-and-Forth algorithm in under
45 seconds (except for the two hardest instances of QSHIFTER,
which timed out), in many cases outperforming RSynth or
BFSS. Even so, CADET still performed the best in these
classes, solving all instances faster than our algorithm.

Lastly, REDUCTIONFINDING and SORTINGNETWORKS
seem to be the most challenging families for existing tools,
with CADET only being able to solve two instances in total,
RSynth one, and BFSS none. In contrast, our Back-and-
Forth algorithm solved 13 cases in REDUCTIONFINDING and
6 in SORTINGNETWORKS. Furthermore, as can be seen in
Figure 2, every instance that was solved by other tools was
also solved by the Back-and-Forth algorithm, which was faster
by over an order of magnitude.

In summary, the Back-and-Forth algorithm performed com-
petitively in 5 out of 7 families, and was strictly superior
in 2 out of 7 families. Due to the difficulty of analyzing
CNF formulas, the exact reason why the algorithm performs
well in these particular families and not in others remains
an open question, to be explored in future work. Still, the
results suggest that the Back-and-Forth algorithm can serve
as a good complement to modern synthesis tools, performing
well exactly in the cases in which these tools struggle the most,
and therefore it would be a good candidate for membership in
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a portfolio of synthesis algorithms.

VI. DISCUSSION

A recurrent observation in recent evaluations [1], [2], [19],
[35] of Boolean functional synthesis tools has been that no
single tool or algorithm dominates the others in all classes
of benchmarks. To build industry-strength Boolean functional
solvers, it is therefore inevitable that a portfolio approach be
adopted. Since decomposition-based techniques (beyond fac-
tored specifications) have not been used in existing tools so far,
our original motivation was to develop a decomposition-centric
framework for Boolean functional synthesis that complements
(rather than dominates) the strengths of existing tools. As
our experiments with the Back-and-Forth algorithm show, we
have been able to take the first few steps in this direction by
successfully solving some classes of benchmarks that state-
of-the-art tools choke on. While we have tried to understand
features of these benchmarks that make them particularly
amenable to our technique, a lot more work remains to be
done to elucidate this relation clearly.

Yet another motivation for exploring a decomposition-
centric synthesis approach was to be able to generate Skolem
functions in a format that lends itself to easy independent
validation by domain experts. Interestingly, despite the sin-
gular importance of this aspect, it has been largely ignored
by existing Boolean functional synthesis tools, most of which
construct a circuit representation of the function using an
acyclic-graph data structure such as an ROBDD or an And-
Inverter Graph. While these are known to be efficient repre-
sentations of Boolean functions, they are not amenable to easy
validation by a domain expert, especially when their sizes are
large, often requiring a satisfiability solver to check that the
generated Skolem functions indeed satisfy the specifications.
Synthesizing functions as decision lists is a natural and well-

studied choice for meeting this objective. Along with each
decision in the decision list, we can also identify the clauses
that contribute to the generation of the outputs (these are
clauses whose input components are falsified by the decision),
thereby providing clues about which part of the specifica-
tion is responsible for the outputs generated in a particular
branch of the decision-list representation. Our work shows
that decomposition-based techniques lend themselves easily
to such representations.

In order to be consistent with performance comparison
experiments reported in the literature, all specifications used
in our evaluation were prenex CNF (PCNF) formulas taken
from the QBFEVAL’16 benchmark suite. While this certainly
presents challenging instances of Boolean functional synthesis,
PCNF is not a natural choice of representing specifications in
several important application areas. For example, the industry
standard (IEC 1131-3) for reactive programs for programmable
logic controllers (PLC) includes a set of languages that allow
the user to specify combinations of outputs based on different
combinations of input conditions. The same is also true
in the specification of several bus protocols like the VME
Bus or AMBA Bus. Scenario-based specifications such as
these are much more amenable to our decomposition-based
approach, since there is a natural separation of input and
output components of the specification. In addition, with such
specifications, it is meaningful to analyze the structure of
dependence between the input and output components, and
exploit structural properties (viz. the size of the MIS in the
conflict graph as explained in Section IV) in synthesis. We
believe that as we look beyond PCNF representations of
specifications, techniques like those presented in this paper
will be even more useful in a portfolio approach to synthesis.

In our experimental evaluation, we chose CADET as a
representative of the state-of-the-art on Boolean synthesis
stemming from the QBF community. This is due to its focus
on 2QBF (which suffices for Boolean synthesis of realizable
specifications) and its performance on recent QBFEVAL com-
petitions. Another certifying QBF solver, CAQE [28], uses
techniques that are similar to the clause splitting used in our
algorithm. But CAQE targets QBF instances with arbitrary
quantifier alternation, requiring additional mechanisms for
handling these cases, and furthermore does not perform the
same analysis as here, based on MFS and MSS. Due to their
similarities, it would be interesting to perform a comparison
between the two algorithms in the future.

Finally, the techniques presented in this work are clearly
not the only ways to achieve synthesis via decomposition,
and there exists scope for significant innovation and creativity,
both in the manner in which a specification is decomposed,
and in the way the decomposition is exploited to arrive at an
efficient synthesis algorithm. One example lies in identifying
algorithms for sequential decomposition, as presented in [11],
which are applicable to a synthesis context. In summary,
synthesis based on input-output decomposition presents un-
charted territory that deserves systematic exploration in order
to complement the strengths of existing synthesis tools.
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