Knowledge Compilation for Boolean Functional
Synthesis

S. Akshay, Jatin Arora, Supratik Chakraborty, S. Krishna, Divya Raghunathan and Shetal Shah
Indian Institute of Technology Bombay, Mumbai, India

Abstract—Given a Boolean formula F(X,Y), where X is a
vector of outputs and Y is a vector of inputs, the Boolean
functional synthesis problem requires us to compute a Skolem
function vector ¥(Y) such that F(¥(Y),Y) holds whenever
IX F(X,Y) holds. In this paper, we investigate the relation
between the representation of the specification F'(X,Y) and the
complexity of synthesis. We introduce a new normal form for
Boolean formulas, called SynNNF, that guarantees polynomial-
time synthesis and also polynomial-time existential quantification
for some order of quantification of variables. We show that
several normal forms studied in the knowledge compilation
literature are subsumed by SynNNF, although SynNNF can be
super-polynomially more succinct than them. Motivated by these
results, we propose an algorithm to convert a specification in
CNF to SynNNF, with the intent of solving the Boolean functional
synthesis problem. Experiments with a prototype implementation
show that this approach solves several benchmarks beyond the
reach of state-of-the-art tools.

I. INTRODUCTION

Boolean functional synthesis is the problem of synthesizing
outputs as Boolean functions of inputs, while satisfying a
declarative relational specification between inputs and outputs.
Also called Skolem function synthesis, this problem has numer-
ous applications including certified QBF solving, reactive con-
trol synthesis, circuit and program repair and the like. While
variants of the problem have been studied since long [16], [4],
there has been significant recent interest in designing practi-
cally efficient algorithms for Boolean functional synthesis. The
resulting breed of algorithms [13], [21], [20], [9], [23], [10],
[12], [3], [2], [14], [6], [22] have been empirically shown to
work well on large collections of benchmarks. Nevertheless,
there are not-so-large examples that are currently not solvable
within reasonable resources by any known algorithm. To make
matters worse, it is not even fully understood what properties
of a Boolean relational specification or of its representation
make it amenable to efficient synthesis. In this paper, we take a
step towards answering this question. Specifically, we propose
a new sub-class of negation normal form called SynNNF,
such that every Boolean relational specification in SynNNF
admits polynomial-time synthesis. Furthermore, a Boolean
relational specification admits polynomial-time synthesis (by
any algorithm) if and only if there exists a polynomial-sized
refinement of the specification in SynNNF.

To illustrate the hardness of Boolean functional synthesis,
consider the specification F'(X,X2,Y) = (Y = (X1 X[y
Xo))A(Xy #0---01) A (Xg #0---01), where |Y| = 2n,
|X1| = |X2| = n and x|, denotes multiplication of n-bit
unsigned integers. This specification asserts that Y, viewed

as a 2n-bit unsigned integer, is the product of X; and Xo,
each viewed as an n-bit unsigned integer different from 1.
The specification F'(X1,X5,Y) can be easily represented as
a circuit of AND, OR, NOT gates with O(n?) gates. However,
synthesizing X; and X as functions of Y requires us to
obtain a circuit that factorizes a 2n-bit unsigned integer into
factors different from 1, whenever possible. It is a long-
standing open question whether such a circuit of size poly-
nomial in n exists. Thus, although the relational specification
is succinctly representable, the outputs expressed as functions
of the inputs may not have any known succinct representation.

It was recently shown [2] that unless some long-standing
complexity theoretic conjectures are falsified, Boolean func-
tional synthesis must necessarily require super-polynomial (or
even exponential) space and time. In the same work [2], it
was also shown that if a specification is represented in weak
decomposable negation normal form wWDNNF, synthesis can
be accomplished in time polynomial in the size of the specifi-
cation. While this was a first step towards identifying a normal
form with the explicit objective of polynomial-time synthesis,
experimental results in [2] indicate that WDNNF doesn’t
really characterize specifications that admit efficient synthesis.
Specifically, experiments in [2] showed that a polynomial-time
algorithm intended for synthesis from WDNNF specifications
ends up solving the synthesis problem for a large class of
specifications not in WDNNF. This motivates us to ask if there
exists a weaker (than WDNNF) sub-class of Boolean relational
specifications that admit polynomial-time synthesis.

We answer the above question affirmatively in this paper,
the polynomial dependence being quadratic in the number of
outputs and the size of the specification. En route, we also
show that the weaker normal form, viz. SynNNF, admits
polynomial-time existential quantifier elimination of a set of
variables for some (not all) order of quantification of variables.
Applications of such quantifier elimination abound in practice,
viz. image computation in symbolic model checking, synthesis
of QBF certificates, computation of interpolants etc. Note that
ensuring efficient quantifier elimination for some ordering of
variables is simpler than ensuring efficient quantifier elimi-
nation for all orderings of variables — the latter having been
addressed by normal forms like DNNF [7].

Our primary contributions can be summarized as follows:
« We present a new sub-class of negation normal form,

called SynNNF, that admits polynomial-time synthesis
and quantifier elimination for a set of variables.

o We show that SynNNF is super-polynomially (in some
cases, exponentially) more succinct than several other
sub-classes studied in the literature (viz. WDNNF,
dDNNF, DNNF, FBDD, ROBDD), unless some long-
standing complexity theoretic conjectures are falsified.

o We show that by suitably weakening SynNNF, we can
precisely characterize the class of Boolean specifications
that admit polynomial-time synthesis by a simple algo-
rithm originally proposed in [2].

o We define a natural notion of refinement of specifica-
tions w.r.it synthesis and show that every specification
that admits polynomial-time synthesis necessarily has a
polynomial-sized refinement that is in SynNNF.

« We present a novel algorithm for compiling a Boolean
relational specification in CNF to a refined specification
in SynNNF. We call this knowledge compilation for
synthesis and quantifier elimination.

« Finally, we present experimental results that show that
synthesis by compiling to SynNNF solves a large set
of benchmarks, including several benchmarks beyond the
reach of existing tools.

Related Work: The literature on knowledge compilation of
Boolean functions is rich and extensive [5], [7], [18], [8].
While existential quantification or forgetting of propositions
has been studied in [15], [8], neither Boolean functional
synthesis nor existential quantification for some (not all)
ordering of variables has received attention in earlier work on
knowledge compilation. Sub-classes of negation normal forms
like DNNF and other variants [8] admit efficient existential
quantification for all orders in which variables are quantified.
However, if we are interested in only the result of existen-
tially quantifying a given set of variables, these forms can
be unnecessarily restrictive and exponentially larger. Recent
work on Boolean functional synthesis [12], [13], [10], [22],
[9], [3], [2], [6] has focused more on algorithms to directly
synthesize outputs as functions of inputs. Some of these
algorithms (viz. [9], [2], [6]) exploit properties of specific input
representations for optimizing the synthesis process. This has
led to the articulation of sufficient conditions on representation
of specifications for efficient synthesis. For example, [14]
suggested using input-first ROBDDs for efficient synthesis,
and a quadratic-time algorithm for synthesis from input-first
ROBDDs was presented in [9]. This result was subsequently
generalized in [2], where it was shown that specifications in
WDNNF (which strictly subsumes ROBDDs) suffice to give
a quadratic-time algorithm for synthesis. As we show later,
WDNNF can itself be generalized to SynNNF. In another line
of investigation, it was shown [6] that if a CNF specification
is decomposed into an input-part and an output-part, then
synthesis can be achieved in time linear in the size of the
CNF specification and k, where k is the smaller of the count
of maximal falsifiable subsets (MFS) of the input-part and the
count of maximal satisfiable subsets (MSS) of the output-part.
However, this does not yield an algorithm whose running time
is polynomial in the size of the representation of F(X,Y).

II. PRELIMINARIES AND NOTATIONS

A Boolean formula F'(z1, . .. z,) on p variables is a mapping
F :{0,1}?» — {0, 1}. The set of variables {z1, ...z, } is called
the support of the formula, and denoted sup(F'). We normally
use Z to denote the sequence (z1,...2zp). For notational
convenience, we will also use Z to denote a set of variables,
when there is no confusion. A satisfying assignment or model
of F' is a mapping of variables in sup(F') to {0, 1} such that
F evaluates to 1 under this assignment. If 7 is a model of F’,
we write 7 = F and use 7(z;) to denote the value assigned to
z; € sup(F) by m. If Z' is a subsequence of Z, we use m}Z’
to denote the projection of 7w on Z/, i.e. (7(2'1),...m(2'%)),
where k = |Z'|. We use form(m]Z’) to denote the conjunction
of literals (i.e. variables or their negation) corresponding to
m|Z’'. For example, if 7 assigns 1 to 21, 23 and 0 to 29, z4 and
Z' = (21, z4), then form(m|Z') = z1 A —24.

1) Negation normal form (NNF): This is the class of
Boolean formulas in which (i) the only operators used are
conjunction (A), disjunction (V) and negation (—), and (ii)
negation is applied only to variables. Every Boolean formula
can be converted to a semantically equivalent NNF formula.
Moreover, this conversion can be done in linear time for
representations like AlGs, ROBDDs, Boolean circuits etc.

2) Unate formulas: Let F|,,—o (resp. F'|;,=1) denote the
positive (resp. negative) cofactor of F' with respect to z;. Then,
F is positive unate in z; € sup(F) iff F|,,—0 = F|.=1.
Similarly, F' is negative unate in z; iff F|,,—1 = F|,,—0. A
literal ¢ is said to be pure in an NNF formula F' iff F' has at
least one instance of £ but no instance of —/. If z; (resp. —z;)
is pure in F', then F' is positive (resp. negative) unate in z;.

3) Independent support and functionally defined variables:
A subsequence Z’ of Z is said to be an independent support
of F iff every pair of satisfying assignments 7,7’ of F' that
agree on the assignment of variables in Z’ also agree on the
assignment of all variables in Z. Variables not in Z’ are said to
be functionally defined by the independent support. Effectively,
the assignment of variables in Z’ uniquely determine that
of functionally defined variables, when satisfying F. CNF
encodings of Boolean functions originally specified as circuits,
ROBDDs, AlGs etc. often use Tseitin encoding [24], which
introduces a large number of functionally defined variables.

4) Boolean functional synthesis: Unless mentioned other-
wise, we use X = (z1,...x,) to denote a sequence of
Boolean outputs, and Y = (y1,...%m) to denote a se-
quence of Boolean inputs. The Boolean functional synthesis
problem, henceforth denoted BFnS, asks: given a Boolean
formula F(X,Y) specifying a relation between inputs Y
and outputs X, determine functions ¥ = (¢1(Y), ... ¥, (Y))
such that F'(¥,Y) holds whenever 3X F'(X,Y) holds. Thus,
VY(3X F(X,Y) & F(P,Y)) must be a tautology. The
function ; is called a Skolem function for z; in F, and W is
called a Skolem function vector for X in F'.

For 1<i<j<n, we use Xf to denote the subsequence

J
(Tis Tig1, - -

z;). If i <k < j, we sometimes use (X}, X7 ;)
interchangeably with X7 for notational convenience. Let

FO-D(X2,Y) denote IX''F(Xi™!, X? Y). It has been
argued in [13], [9], [3], [11] that the BFnS problem for
F(X,Y) can be solved by first ordering the outputs, say
as xl < x2--+ < x,, and then synthesizing a function
¥i(X2,,Y) = FO-D(X2,Y)[z; — 1] for each z;. This
ensures that FC~Y (1, X2 1, Y) & 3o, FOY (2, X7, Y).
Once all such ;’s are obtained, one can substitute ;11
through v, for x;y; through z,, respectively, in 1); to obtain
a Skolem function for z; as a function of Y. The primary
problem of using this approach as-is is the exponential blow-
up incurred in the size of the Skolem functions.

5) DAG representations: For an NNF formula F), its DAG
representation is naturally induced by the structure of F'.
Specifically, if F' is simply a literal ¢, its DAG representation
is a leaf labeled ¢. If F' is F'; op Fy where op € {V, A}, its
DAG representation is a node labeled op with two children,
viz. the DAG representations of F; and F5. W.l.o.g. we assume
that a DAG representation of F' is always in a simplified form,
where t A1, tV 0, t At and t V¢ are replaced by ¢, t A O is
replaced by 0 and ¢V 1 is replaced by 1 for every node ¢. We
use |F| for the node count in the DAG representation of F.

FBDD and ROBDD are well-known representations of
Boolean formulas and we skip their definitions. We briefly
recall the definitions of DNNF, dDNNF and wDNNF below.
Let o be the subformula represented by an internal node N
(labeled by A or V) in a DAG representation of an NNF
formula F'. We use lits(«) to denote the set of literals labeling
leaves that have a path to the node N representing « in the
DAG representation of F'. We also use atoms(«) to denote the
underlying set of variables in sup(F') that appear in lits(«).
For each A-labeled internal node NNV in the DAG of F' with o =
a1 /... Aoy being the subformula represented by [V, if for all
distinct indices r, s € {1,. ..k}, atoms(a,.)Natoms(as) = 0,
then F is said to be in DNNF [7]. If, instead, for all distinct
indices 7,s € {1,...k}, lits(a,) N {=l | £ € lits(as)} = 0,
then F' is said to be in WDNNF [2]. Finally F(X,Y) is said to
be in deterministic DNNF(or dDNNF) [8] if F' is in DNNF
and for each V-labeled internal node D in the DAG of F' with
B8 = p1 V...V B being the subformula represented by D,
B A Bs is a contradiction for all distinct indices r, s.

6) Positive form of input specification: Given a specifica-
tion F(X,Y) in NNF, we denote by F(X,X,Y) the formula
obtained by replacing every occurrence of —z; (z; € X) in
F with a fresh variable Z;. This is also called the positive
form of the specification and has been used earlier in [3].
Observe that for any F' in NNF, Fis positive unate (or
monotone) in all variables in X and X. For i € {1,...n}, we
sometimes split X into two parts, X¢ and X7, 1, and represent
F(X,X,Y) as ﬁ(xg,xgl,xl,xzﬂ,). For b, c € {0,1},
let b? (resp. c’) denote a vector of 7 b’s (resp c’s). For
notational convenience, we use F(b X7, ¢t X, +1>Y) to

denote F(X1 X, X17Xi+17Y)
III. A NEwW NORMAL FORM FOR EFFICIENT SYNTHESIS

In [2], it was shown that if F'(X,Y) is represented as a
ROBDD/FBDD or in DNNF or in wDNNF form, Skolem

Xi=biX;=ci’

functions can be synthesized in time polynomial in |F'|. In
this section, we define a new normal form called SynNNF that
subsumes and is more succinct than these other normal forms,
and yet guarantees efficient synthesis of Skolem functions.

Definition 1. Given a specification F(X,Y), for every i €
{1,...n} we define the ith-reduct of F, denoted [F;, to
be F(ll 1 X7? 171 X[Y). We also define [Fl,y1 to be
F@r,1n Y)

Note that [F]; is the same as F, and sup([F];) = Xy
X UY forie{l,...n}.

Example 1. Consider the NNF formula K (x1,72,y1,y2) =
(1 V@) A (=22 Vy1) A (=1 V y2). Then K = ((z1V x2) A
(T2 Vy1) A(=y1 Vyz)). Thus, we have (K], = K and [K]s =
K[I‘l — 171'71’—) 1] = (:Tg\/yl) AN (_|y1 \/yg).

Next, we define a useful property for the i*"-reduct, which
will be crucial for efficient synthesis of Skolem functions.

Definition 2. Given F(X,Y), let a* denote [F)i[z;
5T k,X?ﬂ = = X7], where],k € {0,1}. We say
that [F); is As-unrealizable if ¢ = o' A —al® A =0l
unsatisfiable.

A

Intuitively, we wish to say that there is no assignment to
X7, 1 and Y such that [F]; is equivalent to x; AT;. The formula
¢ captures this semantic condition. Indeed, if an assignment
makes (true, then it also makes [F] equivalent to z; AT; (i.e.,
[F]; = 1 for z;,%; having values (1,1), but not for (0,1),
(1,0), (0,0)). Note that since [F]; is positive unate in z; and
Z;, ¢ is satisfiable iff ¢ A —a¥ is satisfiable; we need not
conjoin =0 in the definition of (. A sufficient condition for
[F), i to be Aj;-unrealizable is that in the DAG representation
of [F;, there is no pair of paths — one from z; and the other
from z; — WhichAmeet for the first time at an A-labeled node.
In Example 1, [K]; is A;-unrealizable since there is no leaf
labeled 77 in its DAG representation. Similarly, [K]s = (T2 V
Y1) A (my1V y2) is Az-unrealizable as there is no leaf labeled
x2 in the DAG representation of [K]2 (although such a leaf
exists in the DAG representation of [K];).

Example 2. Let H(@\l, Zo,Y1,Y2) = (1 Vaa Vy1) A (—z1 V
(=22 A y2)). Then H(X,X,Y) = (1 Va2 Vy1) A (T V
(T2 A y2)). Using the notation in Definition 2, ail = 1,
at® = —x9 Ay and ot = (x5 V y1). There is an assignment
(x2 = 0,y2 = 0,y1 = 0) such that (o' A —ai® A —aft) is
satisfiable. Hence [H|; is not \y-unrealizable (equivalently, it
is Ai-realizable). However, [H|y = H[x1 — 1,77 — 1] = 1;
hence it is vacuously N\s-unrealizable.

Definition 3. A formula F(X,Y) is said to be in synthesiz-
able NNF (or SynNNF) wrt the sequence X if I is in NNF,
and for all 1 < i <n, [F); is N\;-unrealizable.

In Examples 1, 2, K is in SynNNF, while H is not. Also
neither of them are in DNNF or wDNNF. Additionally, the
functions as presented do not correspond to ROBDD/FBDD
representations either. We now show three important properties

of SynNNF which motivate our proposal of SynNNF as a
normal form for synthesis and existential quantification.

1) SynNNF leads to efficient quantification and synthesis:
Our first result is that existentially quantifying X and synthe-
sizing X are easy for SynNNF.

Theorem 1. Suppose F(X,Y) is in SynNNF. Then,
(i) IX{F(X,Y) & [F]i+1[XZL+1 = X7y for i€
{1,...,n},
(ii) Skolem function vector U} for X7 can be computed in
O(n? - |F|) time and O(n - |F|) space, where |X| = n.

Proof. The proof of Part (i) is similar to that of The-
orem 2(a) in [2], and follows by induction on .
For i = 1, EIXlF(X Y) & F(l X%,0, —|X’217Y)
F(O X2,1,-X3Y) = F(l X5, 1,-X3,Y) = [F] X, —
—-X%] (by positive unateness of F in x1,77). Conversely,
as F' is in SynNNF, [F]z is Ag-unrealizable, which im-
plies that with notation as in Definition 2, o' = af® Vv
o', ie., F(1,X5,1,-X3,Y) = F(1,X3,0,-X3,Y) v
F(O X%,1,-X3,Y). This give us the proof in the reverse
dlrectlon ie., [F]o[Xy — —X3] = IXIF(X,Y).

Suppose the statement holds for 1 < 7 < n. We will
show that it holds for ¢ + 1 as well. By inductive hypothesis
and definition of existential quantification, IXIH R (X, Y)
3$1+1[F]Z+I[Xz+1 = _‘X1+1] & [Flipalw = 1 XH—I =
—X7] Vv [F]H_l[zZ — 0, XH_1 — X7,]. Again, using
unateness of [F]ZH in x;41 and Z;;7 in one dlrection and
using the defining property of SynNNF (al}, = oif, V

; +1) in the other direction, we obtain IX!MF(X,Y) <
[F]l+2[Xz+2 = ﬁ)(z—&-Q]‘

Part(ii): For i € {1 ~.n}, let (X7, ,,Y) denote
[F] [x; = 1,7; — 0, XhLl — =X] = o} Further, from
n to 1, we recursively define ¢,(Y) = ¢/,(Y) and ¢;(Y) =
(U7 1(Y),Y). We can now show that ¢;(Y) is indeed a
correct Skolem function for z; in F'. Starting from n to 1,
we know from the preliminaries that F("~ D[z, — 1] gives
a correct Skolem function for x,, in F From part (i) above,
F(=1 & [F],[X7 — —~X"]. Hence !0 = ¢, = ¢/, gives a
correct Skolem function for x,, in F'. For any i € {1,...n—1},
assuming that W7, ; gives a correct Skolem function vector for
X7, in F, the same argument shows that +; (¢, ;(Y),Y) is
a correct Skolem function for x; in f‘

Finally, note that [¢),,| is at most | FF|, which is in O(|F|). A
DAG representation of v, requires a fresh copy of [F],—,
but can re-use the DAG representations of v, for j € {n—k—+
1,...n} as sub-DAGs. Thus, is in O(k-|F|). Hence, if
we use a multi-rooted DAG to represent all Skolem functions
together, we need only O(n - |F|) nodes. The time required
is in O(n? - |F|) since the resulting DAG has Y ;_, k edges
(root of 1); connects to a leaf of every v; for ¢ < 7). O

The above polynomial-time strategy based on [ﬁ]l was used
in [2] for computing over-approximations of Skolem functions
UR (X;+1,Y) for each z; € X. Specifically, it was shown that
[Flilzi +— 1,7; — 1] over-approximates 3X{F(X,Y) and

[F|;[z; — 1,7; — 0] over-approximates a Skolem function
for x; in F. In the remainder of this paper, we refer to the
functions v; used in the proof of Part (ii) above as GACKS
functions (after the author names of [2]). We use U to denote
the GACKS (Skolem) function vector (¢1,...,%¥y,).

2) Succincmess of SynNNF: SynNNF strictly subsumes
many known representations used for efficient analysis of
Boolean functions. In the following theorem, sizes and times
are in terms of the number of input and output variables.

Theorem 2. (i) Every specification in ROBDD/FBDD,
dDNNF, DNNF or wDNNF form is either already in
SynNNF or can be compiled in linear time to SynNNF.

(ii) There exist poly-sized SynNNF specifications that only
admit

a) exponential sized FBDD representations.
b) super-polynomial sized dDNNF representations, un-
less P = VNP
¢) super-polynomial sized WODNNF and DNNF represen-
tations, unless P = NP.
(iii) There exist poly-sized NNF-representations that only
admit super-polynomial sized SynNNF representations,

unless the polynomial hierarchy collapses.

In the above, VNP is the algebraic analogue of NP [25].
We omit the proof of this theorem due to lack of space. This,
and all skipped proofs, can be found in the full version of
the paper [1]. Note that Theorem 2(iii) implies that we cannot
always hope to obtain a succinct SynNNF representation.

3) SynNNF “almost” characterizes efficient synthesis us-
ing GACKS functions: We now show that SynNNF precisely
characterizes specifications that admit linear-time existential
quantification of output variables strengthening Theorem 1(i).
Further, a slight weakening of SynNNF condition by restrict-
ing assignments on X7, ; gives us a necessary and sufficient
condition for poly-time synthesis using GACKS functions.

Theorem 3. Given a relational specification F(X,Y),
(i) F is in SynNNF iff 3XiF(X,Y) & [Flini Xy —
_'X?-H]
(it) The GACKS-function vector V7 is a Skolem function vec-
tor for X7 in F(X,Y) iff [F] (XP = U7, X

—WP] is Aj-unrealizable for all i € {1...n}.

In [13], it was shown that an error formula € for U7, defined
as F(X,Y)A-F(X",Y) AN, (z} ¢ ¥;) is unsatisfiable
iff U3 is a Skolem function vector for F. Therefore, an
(un)satisfiability check for & serves to check if [F; X7, —
U7,] is As-unrealizable for all ¢ € {1...n}. Further, in [2],
it was observed experimentally, that GACKS functions give
correct Skolem functions, even when the specifications are
not in WDNNF. This surprising behavior, which was left
unexplained in [2], can now be explained using SynNNF,
thanks to Theorem 3(ii).

Note that Theorem 3(ii) weakens the requirement of
SynNNF since X7, are constrained to take only the values
defined by W7, ;. For an example of a specification not in

SynNNF for which GACKS functions are correct Skolem
functions, consider again H from Example 2, WhiC/f\l we saw
was not in SynNNF. In this case, ¢} (z2,Y) = [H|1[z1 —
LTy = 0,72 = —x2] = ~22 Ayo and ¢2(Y) = 95(Y) =
[H]2[z2 — 1,T2 + 0] = 1. Therefore, 1(Y) = ¢j[z2 —
12(Y)] = 0. It can be verified that z; = ¢1(Y) = 0,22 =
12(Y) =1 is indeed a correct Skolem function vector for X
1n H. Also, H satisfies the condition of Theorem ’%(11) since
[H] [IQ — 1/)2,I2 — _‘d)g] =7 <;é> (:ZZl /\1'1) and [H]Q =1.

IV. REFINEMENT FOR SYNTHESIS

Given a specification F'(X,Y), sometimes it is easier to
solve the BFnS problem for a “simpler” specification F(X,Y)
such that a solution for F also serves as a solution for F.
While “simplifications” of this nature have been used in earlier
work [13], [2], [20], [6], we formalize this notion below as
one of refinement.

Definition 4. Let F(X,Y) and F(X,Y) be Boolean re-
lational specifications. We say that F refines I’ wur.t.
synthesis, denoted F =, F, iff the following condi-

tions hold: (a) VY (EIXF(X, Y) = 3IX'F(X/, Y))), and (b)

vYVX' ((3XF(X,Y) AFX,Y)) = F(X’,Y)). If the
implication in condition (a) is strengthened to a bi-implication,
we say that F strongly refines I’ w.r.t. synthesis, denoted
F=: F.

—syn

Informally, condition (a) specifies that F doesn’t restrict (and
preserves, for strong refinement) the set of input valuations
over which the specification F' can be satisfied, and condition
(b) specifies that for all such input valuations Y, any X' that
satisfies F also satisfies F.

Ler~nma 4. If F =syn I, every Skolem function vector for X
in F is also a Skolem function vector for X in F.

We say F refines I’ w.r.t. synthesis because the set of all
Skolem function vectors for X in F is a subset of that for X in
F. Note that Definition 4 provides a direct 2QBF-SAT based
check of whether F refines F' without referring to the details
of how F is obtained from F'.

Example 3. Let G(x1,22,y1,y2) = (mx1 Va2 V1) A (21 V
—w2) A (w1 Vy) A(w2 Vye) and G(x1, T2, Y1, y2) = T2 AT
Although G ¢ G, both conditions (a) and (b) of Definition 4
are satisfied; hence G =syn G. In fact, G =oun G-

The following are easy consequences of Definition 4.

Proposition 5. 1) Both =y, and =7, are reflexive and

transitive relations on Boolean relanonal specifications.

2) If /\yjeY (Fly,=0 < Fly,=1) and w = F(X,Y), then
form(m|X) <3, F.

D Aiex (Floimo & Flaoon), then 1 Zay
F|X:a =iyn I, where a is any vector in {0,1}".

4) If F is positive (resp. negative) unate in r; € X, then
T A Flg,=1 (resp. —xi A Flg,=0) 25, F.

F and

5) a) Let F1
(Fy V Fy).
b) Let Fl =syn F1 and FQ =syn Fo. If the output
supports of Fy and Fs, and similarly of Fl and ?2,
are disjoint, then (El A Fg) Zsyn (F1 N Fy). If,

yn F1 and F2 <*

—syn

Fs. Then (Fl \/Fg) jsyn

—S

in addition, Fy =<7, Fy and Fy <5, [, then
(F1 A\ FQ) j;yn (F1 /\Fg).

Note that Propositions 5(2) and 5(3) effectively require
F(X,Y) to be semantically (but not necessarily syntactically)
independent of Y and X respectively. Interestingly, a version
of Proposition 5(4) was used in a pre-processing step of
BFSS [2], although the precise notion of refinement w.r.t.
synthesis was not defined there.

Suppose the specification F'(X,Y') uniquely defines an out-
put variable as a function of other input and output variables.
For example, if F(X,Y) = (—x; V))A(—x; Vye) Az V -z V
—yg) A -+, then F(X,Y) = (z; & (z; Ayg)). Such spec-
ifications arise naturally when a non-CNF Boolean formula
is converted to CNF via Tseitin encoding [24]. Variables like
x; above are said to be functionally determined (henceforth
called FD) in F, and implied functional dependencies like
(x; <> (xzj Ayy)) are called functional definitions (henceforth
called f-defs) of FD variables in F'.

Let T C X be a set of FD output variables in F,
and let Funt be the conjunction of f-defs of all variables
in T. We say that (T,Funt) is an acyclic system of f-
defs if no variable in T transitively depends on itself via
the functional definitions in Funt. In other words, Funt
induces an acyclic system of functional dependencies be-
tween variables in T. For z; € X \ T, define Op T4, 4
to be the formula (F(X Y)lei=a A Ay exy(rogesh (@5 € @) A
Fune (X', Y)l,_y_,) = F(X',Y)|,1_,_, , where a € {0,1} and
X’ is a sequence of fresh variables (. ..2}). Informally,
0F,T,2,,q asserts that if the specification F' can be satisfied by
setting a non-FD output z; to a, then it can also be satisfied by
setting x; to the complement value (1 — a), while preserving
the values of all other non-FD outputs. The FD outputs in T
must of course be set as per the functional definitions in Fun-.

Lemma 6. Ler (T, Funt) be an acyclic system of f-defs in F.

1) If X = T, then Funp(X,Y) =4yn F(X,Y). Further-
more, Funt(X,Y) A IXF(X,Y)) =5, F(X,Y)

2) If X\ T # 0, then for every x; € X\ T, we have:
If 0120 is a tautology, then (x; N Fly=1) =%,

F. Similarly, if Or T 2,1 is a tautology, then (mxy A

Flg,—0) 3%, F.

eyn

If T =, Lemma 6(2) simply reduces to Proposition 5(4).
However, if T # () (as is often the case), Lemma 6(2) shows
that «; A F'|,—1 (resp. =z; A F|,—0) can refine F' even if F’
is not positive (resp. negative) unate in x;. As an illustration,
the specification G(x1, 2, Y1, y2) in Example 3 is not unate in
either x; or x2. However, with T = {2} and Funt = (11 &
(x2 V 41)), we have Op T 4,0 = 1. Hence, 22 A G|yy=1 =

(1 A w2) =3, G. When F is refined by an application of

Lemma 6(2), we say that F' is refined by pivoting on x;.

Lemma 7. Let (T, Funt) and (T', Funt) be acyclic systems
of f-defs in F, where T' C T C X and Funy = Fung/ A
Funp\. For a € {0,1}, if Op 1 0,0 is a tautology, then so
is QF_’T,L.”Q.

Lemma 7, along with Lemma 6(2), shows that if T C T C
X, the system of acyclic f-defs (T, Funt) potentially provides
more opportunities for refinement compared to (T’, Fun).
Hence, it is advantageous to augment the set T of FD outputs
(and correspondingly Funt) whenever possible.

The following theorem suggests that compiling a given
specification to a refined SynNNF specification (as opposed
to an equivalent SynNNF specification) holds promise for
Boolean functional synthesis.

Theorem 8. For every relational specification F(X,Y), there
exists a polynomial-sized Skolem function vector for X in I
iff there exists a SynNNF specification F(X,Y) such that
F =syn I and F is polynomial-sized in F.

Theorem 8 guarantees that whenever a polynomial-sized
Skolem function vector exists for a specification F(X,Y),
there is also a polynomial-sized refined specification in
SynNNF. It is therefore interesting to ask if we can compile
F(X,Y) to a “small enough” SynNNF specification F(X,Y)
that refines F'. In the next section, we present such a compi-
lation algorithm and results of our preliminary experiments
using this algorithm. As shown in [2], there exist problem
instances for which there are no polynomial-sized Skolem
functions, unless the Polynomial Hierarchy (PH) collapses.
Thus, any algorithm for compilation to SynNNF must incur
super-polynomial blow-up (unless PH collapses). Neverthe-
less, as our experiments show, the compilation-based approach
works reasonably well in practice, even solving benchmarks
beyond the reach of existing state-of-the-art BFnS tools.

V. A REFINING CNF To SYNNNF COMPILER

We now describe C2Syn — an algorithm that takes as input
a CNF specification F(X,Y) given as a set of clauses, and
outputs a DAG representation of a SynNNF specification
F(X,Y) that refines F(X,Y) w.rt. synthesis. Let S =
{C1,...C;} be a set of clauses. We use s to denote the
formula /\Cie s Ci. Abusing notation introduced in Section II,
let atoms(C;) = {z | 2 € X UY,lits(C;) N {z,~z} # 0}.
We define an undirected graph Gs = (Vs,Es), where
Vs = {Cl, . Cr} and (OZ,C]) € FEg iff ¢ 7& J and
atoms(C;) Natoms(C;) N X # (). Thus, there exists an edge
(Cs, Cy) iff C; and Cj share an output atom. Let {Sy,...Sg}
be the set of maximally connected components (henceforth
called MCCs) of Gs. It is easy to see that o5 = AF_, ¢s,:
moreover, the output supports of ¢gs, for k € {1,...q} are
mutually disjoint. We use C; ~s C; to denote that clauses C;
and C; are in the same MCC of GGs. We will soon see how
factoring s based on MCCs of Gs allows us to decompose
the CNF-to-SynNNF compilation problem into independent

Algorithm 1: FDREFINE

Input: S: set of clauses, (T, Funt): acyclic f-defs in ps
Output: S’: set of clauses s.t. ¢ g/ Siyn PS>
(T’, Funs): Augmented acyclic f-defs in ¢ g/

Out :=sup(ps) N X;
S =8; (T',Funys) := (T, Funt);
repeat
(T’, Fung/) == FINDFD(S’, T/, Funp/);
Let F' be the formula ¢ g/;
foreach z; € Out \ T’ do

if Op 1/ . o is a tautology then
S =8 p=1 Uz T =T U{zs}s
Funps := Fungs A (x5 < 1);
10 else if Op x/ . 1 is a tautology then
1 8§ =8"z;=0o U{~a:}s T =T U{x:};
12 Funp/ := Funps A (z; < 0);

/* initialization =*/

LI = T

13 until either T/ or S’ changes;
14 return (S’, T/, Funy/);

sub-problems, thanks to Proposition 5(5)b. Note that factoring
based on MCCs has also been used in DSHARP [18] for
converting a CNF formula to dDNNF. However, unlike G g
above, the underlying graph in DSHARP has an edge between
every pair of clauses that shares any atom, including input
variables. Thus, GGs has potentially fewer edges, and hence
smaller MCCs, than the corresponding graph constructed by
DSHARP. Before delving into Algorithm C2Syn, we first
discuss some important sub-routines used in the algorithm.
Sub-routine FDREFINE takes as inputs a set S of clauses
and a (possibly empty) acyclic system of f-defs (T, Funt) in
ps. It returns a (possibly augmented) acyclic system of f-defs
(T', Fung) and a set of clauses &’ such that o5 <7, ,, s and
ps = Fungs. Sub-routine FDREFINE works by iteratively
finding new FD ouptut variables and refining the specification
using Lemma 6(2) whenever possible. In the pseudo-code of
FDREFINE (see Algorithm 1), sub-routine FINDFD matches
a pre-defined set of clause-patterns in S’ to identify new FD
output variables not already in T’. The patterns currently
matched correspond to CNF encodings of the input-output
relation of common Boolean functions, viz. and, or, nand,
nor, xor, xnor, not and identity. For example, we match the
pattern (—a V B1) A (ma V B2) A (=81 V =82 V a), where
«, f1, B2 are place-holders, to identify the functional definition
(o 4> (B1 A B2)). Each new FD output variable thus identified
is added to T’ and the corresponding functional definition is
added to Fun: unless this introduces a cyclic dependency
among the f-defs already in Fung/. Assuming all patterns
used by FINDFD to determine functional dependencies are
sound, the (possibly augmented) (T',Funt/) computed by
FINDFD is a system of acyclic f-defs in ¢s/. In lines 6-12
of Algorithm 1, we next check if Lemma 6(2) can be applied
to refine s/ by pivoting on some variable z; € Out \ T'.
The refinement, if applicable, is easily done by replacing each
clause C; € 8’ by C;|y,=1 (resp. C;|.,—0) and by adding the
unit clause x; (resp. —z;) to S’. The pivot z; is also added
to T’ and the corresponding functional definition (z; < 1 or
xz; < 0 as the case may be) is added to Fung.

In general, identifying an acyclic system of f-defs in F
potentially enables refinement of F' via Lemma 6(2), which

in turn, can lead to augmenting the acyclic system of f-defs
further. Therefore, the loop in lines 3-13 of Algorithm 1 is
iterated until no new FD outputs or additional refinements are
obtained. Once this happens, subroutine FDREFINE returns the
resulting acyclic system of f-defs (T’, Funt-) and the resulting
set of refined clauses S'.

Two other important sub-routines used in C2Syn are
GETCKT and GETDEFCKT. Sub-routine GETCKT takes as
input an NNF specification G(X,Y) and returns the DAG rep-
resentation of G(X,Y). Sub-routine GETDEFCKT is slightly
more involved. It takes as input an NNF specification G(X,Y)
and a system of acyclic f-defs (T,Funt), where X = T.
It returns a DAG representation of a SynNNF specification
equivalent to Funt A IXG(X,Y). This is accomplished
as follows. Let z; < op;(u1,...u,,) be the functional
definition of z; in Funy, where op; is a Boolean function
identified via clause-pattern matching in sub-routine FINDFD.
For each x; € T, GETDEFCKT first constructs two DAGs,
D; and &;, representing op, (u1, . .. uy,) and —op;(uy, ... uy,,)
in NNF. Let the root nodes of these DAGs be labeled
v; and nwv; respectively. Then, GETDEFCKT constructs a
DAG representing the formula £(Z,V,Y) = G(V,Y) A

‘l}:ql ((zi ANvi) V (mz; A —w;)), where Z and 'V are vectors of
fresh variables with |Z| = |V| = |X|. For every leaf [in this
DAG that is labeled v; (resp. —wv;), sub-routine GETDEFCKT
now creates an edge from the root of D; (resp. &;) to [,
rendering [a non-leaf node. However, this may result in some
new leaves (coming from DAGs like D; and &;) with labels
from X or their negations. For every such leaf [’ labeled z;
(resp. —x;), where x; € T, GETDEFCKT also creates an
edge from the root of D; (resp. &;) to I'. The above steps are
repeatedly applied until all leaves have labels only from ZUY
and their negations. Since (T, Funt) is an acyclic system of
f-defs, the above operation is guaranteed to terminate without
introducing any cycles. Finally, GETDEFCKT replaces every
leaf in the resulting graph with label z; (resp. —z;) with z;
(resp. —x;) and returns the resulting DAG, say D. It is easy
to see that D represents Funt A 3XG(X,Y) in SynNNF.

We are now in a position to describe Algorithm C2Syn.
The algorithm is recursive and takes as inputs a set S of
clauses, a (possibly empty) system of acyclic f-defs (T, Funt)
in g, and the recursion level /. Initially, C2Syn is invoked
with S = given set of CNF clauses, T = (), Funt = 1 and
¢ = 0. The pseudocode of C2Syn, shown in Algorithm 2, first
computes the output support Out of ys, and then checks a few
degenerate cases (lines 2-8) to determine if a refined SynNNF
specification can be easily obtained. In case these checks
fail, sub-routine FDREFINE is invoked to augment the set
T of functionally dependent outputs and their corresponding
acyclic f-defs Fungv, and also to obtain a (possibly) refined
set S’ of clauses. If all outputs in Out get functionally
determined by this, we use Lemma 6(1) to get the desired
SynNNF by invoking GETDEFCKT in line 12. Otherwise, we
check in lines 14-17 if Theorem 3(ii) can be applied. Recall
that Theorem 3(ii) relaxes the requirements of the SynNNF
definition by requiring A;-unrealizability only when GACKS

Algorithm 2: C2Syn

Input: S: set of clauses, (T, Funt): acyclic f-defs in s, £: recursion level
Output: DAG representation of F in SynNNF s.t. F <7, ps

1 Out :=sup(ps) NX;

if @5 is valid (resp. inconsistent) then
L return GETCKT(1) (resp. GETCKT(0));

[FENNY

IS

else if @ s is semantically independent of inputs Y then

5 Let 7 be a satisfying assignment of ¢ s;

6 return GETCKT(form(7/Out));

7 else if @5 is semantically independent of Out then

8 L return GETCKT(¢ s |Out=a); // a any vector in {0, 1}'0“”

9 else

10 (T, Funys, S’) := FDREFINE(S, T, FunT);

1 if Out \ T’ = 0 then

12 | return GETDEFCKT(pg/, Out, Funous);

13 else

14 Let ¥ be GACKS Skolem function vector for Out in ¢ g/;

15 Let € =
05/ (Out, Y) A —ps (Out’, Y) A A, cous () € Vi)
/* error formula for ¥, as in L[13] x/

16 if € is unsat then

17 L return GETDEFCKT(p g/, Out, /\wieout(l'i < Uy);

18 x := CHOOSEOUTPUTVAR(S’, Out \ T');

19 Pos := {C; € 8" | z € lits(C;)};

20 Neg := {C; € 8’ | -z € lits(C;)};

21 Sy :={C; € §' | 3C; € Pos (C; ~5/ Cj)};

2 Ty =T N sup(ps,):

23 Sy :={C; € 8’ | IC; € Neg (C; ~5r Cj)};

24 T2 =T N sup(ps,):

25 S5 :={C; € 8’ | VC; € Pos U Neg (C; %gr Cj);

26 T3 =T N sup(psy):

27 Let t1 := root of C2Syn(S1|z=0, T1, Funt, |z=0,£ + 1);

28 Let t2 := root of C2Syn(S2|z=1, T2, FunT,|e=1,£ + 1);

29 Let t3 := root of C2Syn(S3, T3, Funt,, £+ 1);

30 return GETCKT(t3 A ((z A t2) V (mz A t1)))

functions are substituted for the X variables. As discussed
in Section III-3, the relaxed requirement can be checked
by testing the unsatisfiability of the error formula ¢ for the
GACKS function vector W. If € is indeed unsatisfiable, ¥ is a
Skolem function vector for Out in pg:.

If ¢ is satisfiable, we use a sub-routine CHOOSEOQUTPUT-
VAR that heuristically chooses an output variable z € Out\T’
on which to branch. Currently, we use a VSIDS [17] score
based heuristic, similar to that used in DSHARP [18], to
rank variables in Out \ T’, and then choose the variable
with the highest score. This allows us to represent s/ as
Ty Npsr,_, ¥V T N\ Psr|,_y» 0 that we can refine the two
disjuncts independently, thanks to Proposition 5(5)a. However,
this may lead to some duplicate processing of clauses. We
can avoid this by factoring out the subset of clauses whose
satisfiability is independent of whether x; is set to 1 or 0. Let
S1 (resp. S2) be the subset of clauses in S’ that are in the
same MCC of G/ as some C that has 2 (resp. —x) as a
literal. Let S5 be the set of all clauses in S’ that are neither
in S; nor Ss. By definition of G, the sub-specifications ¢s,
and ¢s, (and similarly, ¢s, and @s,) do not share any output
variable in their supports, and can be refined independently.
This is exactly what algorthm C2Syn does in lines 19-30. The
roots of the DAGs resulting from the recursive calls in lines
27, 28 and 29 are finally combined as in line 30 to yield the
desired DAG representation.

Theorem 9. For every set S of clauses, C2Syn(S,0,1,0)
always terminates and_returns a DAG representation of a
SynNNF specification F s.t., F =3, ¢s. The worst-case size

of F is linear in |S| and exponential in the maximum recursion
level, which is bounded above by the output support of ¢s.

VI. EXPERIMENTAL RESULTS

We ran Algorithm C2Syn on a suite of CNF specifica-
tions comprised of benchmarks from the Prenex 2QBF track
of QBFEvAL 2018 [19], and the .gdimacs version of
FACTORIZATION benchmarks [2], which we will refer to as
FA.QD. By Theorem 2(i), a ROBDD/FBDD specification
can be compiled to an equivalent SynNNF specification in
linear time. Therefore, any algorithm that compiles a CNF
specification to an ROBDD can be viewed as an alternative to
C2Syn for compiling a CNF specification to SynNNF (albeit
without refinement). We compare the performance of C2Syn
with that of a BDD compiler and two state-of-the-art boolean
function synthesis tools, namely, (i) the AIG-NNF pipeline
of BFSS [2] with ABC’s MiniSat as the SAT solver and (i)
CADET [20], [22]. For the BDD Compiler, the .gdimacs
input was converted to an AIG using simple Tseitin variable
detection; this AIG was then simplified and ROBDDs built
using dynamic variable ordering (of all input and output
variables) — this is part of the BDD pipeline of BFSS [2],
henceforth called BDD®™%. We also ran DSHARP [18] which
compiles a CNF formula into dDNNF (and hence SynNNF
by Theorem 2(i)), but it was successful on very few of our
benchmarks; hence we do not present its performance. Each
tool took as input the same . gdimacs file. Experiments were
performed on a cluster with 20 cores and 64 GB memory per
node, each core being a 2.2 GHz Intel Xeon processor running
CentOS6.5. Each run was performed on a single core, with
timeout of 1 hour and main memory limited to 16GB.

For C2Syn, several benchmarks were solved in the initial
part of the Algorithm 2 before line 17, i.e., before any recursive
calls are made. Table I presents the results for C2Syn, divided
into those that succeeded at recursion level zero (Stage-I) and
those that required recursions (Stage-II), as well as comparison
with BDD®"™S, Since BDDs are also in SynNNF, the total
number of benchmarks in QBFEVAL which could be compiled
into SynNNF (by either compiler) is a whopping 283.

Benchmarks Compiled By C2Syn BDD Total
(Total) Stage T | Stage IT | Total | compilation | in SynNNF
QBFEVAL (402) 103 83 186 153 283
FA.QD (6) 0 6 6 6 6

TABLE I: Compilation into SynNNF

Figure 1 (left) compares the run-times of C2Syn and
BDD®™5: for most QBFEVAL benchmarks that were solved
by both, C2Syn took less time, while for FA.QD, C2Syn
took more time. There were 130 QBFEVAL benchmarks that
C2Syn solved by BDD®™S couldn’t, whereas 98 were solved
by BDD®"® but not C2Syn.

We next compare C2Syn with CADET and BFSS. CADET
(resp. BFSS) solved 213 (resp. 181) benchmarks in QBFEVAL

C2Syn vs CADET C2Syn vs BFSS C2Syn \
Bench C2Syn CADET C2Syn BFSS (CADET U
mark CADET C2Syn BFSS C2Syn BFSS)
QBFEVAL 78 105 83 78 75
FA.QD 2 0 3 0 2

TABLE II: Comparison Results of C2Syn

2
o
3
o
=
o

TO C— —c TO 5 0 oG — TO

2
2
@

EXR
<.

3
&

Time in Cadet (sec)
Time in BFSS (sec)

3
%
%

Time in BDD Compiler (sec)
ao

B
]
B

107

E3

. T0
102 107 10° 10" 10® 10° 10
Time in C2Syn (sec)

To
‘02 2 1 0 1 2 3 4

102 107 10° 10" 10* 10° 10
Time in C2Syn (sec)

» TO
102 10" 10° 10" 10® 10° 10
Time in C2Syn (sec)

10

10

Fig. 1: Time comparisons: C2Syn vs BDD®™%, CADET, BFSS

and 4 (resp. 3) in FA.QD. Table II gives a comparison in
terms of number of benchmarks solved by each tool but not
by others. Figure 1 (middle, right) compares the run-times
of C2Syn and those of CADET and BFSS, respectively. As
expected, since C2Syn does complete compilation, it takes
more time than CADET and marginally more than BFSS on
many benchmarks, though for most of these, the time taken
is less than a minute. In fact for FA.QD, C2Syn takes less
time than BFSS on all benchmarks. Overall, C2Syn appears
to have strengths orthogonal to BDD®"*%, BFSs and CADET,
and adds to the repertoire of state-of-the-art tools for Boolean
functional synthesis.

To validate our experimental results, we also developed an
independent approach to verify if the output of C2Syn is (i)
in SynNNF and (ii) a refinement of the original specification
Of the 83 QBFEVAL benchmarks that required C2Syn to go
beyond recursion level 0, successfully verified 82 and ran
out of memory on 1. Of the 6 factorization benchmarks on
which C2Syn was successful, our verifier successfully verified
4 and ran out of time on one and out of memory on another
benchmark (time limit: 2 hours, memory limit: 16GB). More
details of the verification approach, as well as size comparison
plots are in [1].

Finally, note that Stage-I of C2Syn subsumes some prepro-
cessing techniques used in SAT/QBF-SAT solving, e.g., unit
clause and pure literal detection, semantic unateness checks
and Tseitin variable identification. Using more aggressive
preprocessing could further improve the performance of our
tool. We leave this for future work.

VII. CONCLUSION

We presented a new sub-class of NNF called SynNNF
that admits quadratic-time synthesis and linear-time existential
quantification of a set of variables. Our prototype compiler
is able to handle several benchmarks that cannot be han-
dled by other state-of-the-art tools. Since representations like
ROBDDs, DNNF and the like are either already in or easily
transformable to SynNNF, our work is widely applicable and
can be used in tandem with other techniques. As future work,
we intend to work on optimizing our SynNNF compiler.

[1]

[2]

[3

=

[4]

[6]

[7

—

[8]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

[19
[20]

[21]

[22]

[23

[trt

[24]

REFERENCES

S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, and
S. Shah. Knowledge compilation for boolean functional synthesis.
CoRR, submit/2808510, 2019.

S. Akshay, S. Chakraborty, S. Goel, S. Kulal, and S. Shah. What’s
hard about Boolean functional synthesis? In Computer Aided Verifica-
tion - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I, pages 251-269, 2018.

S. Akshay, S. Chakraborty, A. K. John, and S. Shah. Towards Parallel
Boolean Functional Synthesis. In TACAS 2017 Proceedings, Part I,
pages 337-353, 2017.

G. Boole. The Mathematical Analysis of Logic. Philosophical Library,
1847.

M. Cadoli and F. M. Donini. A survey on knowledge compilation. A/
Commun., 10(3-4):137-150, 1997.

S. Chakraborty, D. Fried, L. M. Tabajara, and M. Y. Vardi. Functional
synthesis via input-output separation. In 2018 Formal Methods in
Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 -
November 2, 2018, pages 1-9, 2018.

A. Darwiche. Decomposable negation normal form. J. ACM, 48(4):608—
647, 2001.

A. Darwiche and P. Marquis. A knowledge compilation map. CoRR,
abs/1106.1819, 2011.

D. Fried, L. M. Tabajara, and M. Y. Vardi. BDD-based boolean
functional synthesis. In Computer Aided Verification - 28th Interna-
tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II, pages 402421, 2016.

M. Heule, M. Seidl, and A. Biere. Efficient Extraction of Skolem
Functions from QRAT Proofs. In Formal Methods in Computer-Aided
Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014,
pages 107-114, 2014.

J.-H. R. Jiang. Quantifier elimination via functional composition. In
Proc. of CAV, pages 383-397. Springer, 2009.

J.-H. R. Jiang and V Balabanov. Resolution proofs and Skolem functions
in QBF evaluation and applications. In Proc. of CAV, pages 149-164.
Springer, 2011.

A. John, S. Shah, S. Chakraborty, A. Trivedi, and S. Akshay. Skolem
functions for factored formulas. In FMCAD, pages 73-80, 2015.

V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. SIGPLAN Not., 45(6):316-329, June 2010.

J. Lang, P. Liberatore, and P. Marquis. Propositional independence -
formula-variable independence and forgetting. CoRR, abs/1106.4578,
2011.

L. Lowenheim. Uber die Auflésung von Gleichungen in Logischen
Gebietkalkul. Math. Ann., 68:169-207, 1910.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Annual Design Automation Conference, DAC *01, pages 530-535, New
York, NY, USA, 2001. ACM.

C. Muise, S. A. Mcllraith, C. Beck, and E. Hsu. DSHARP: Fast d-
DNNF Compilation with sharpSAT . In AAAI-16 Workshop on Beyond
NP, 2016.

QBFLib. QBFEval 2018. http://www.qbflib.org/qbfeval18.php.

M. N. Rabe and S. A. Seshia. Incremental determinization. In Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, pages 375—
392, 2016.

M. N. Rabe and L. Tentrup. CAQE: A certifying QBF solver. In Formal
Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015., pages 136-143, 2015.

M. N. Rabe, L. Tentrup, C. Rasmussen, and S. A. Seshia. Understanding
and extending incremental determinization for 2QBF. In Computer
Aided Verification - 30th International Conference, CAV 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I, pages 256-274, 2018.

L. M. Tabajara and M. Y. Vardi. Factored boolean functional synthesis.
In 2017 Formal Methods in Computer Aided Design, FMCAD 2017,
Vienna, Austria, October 2-6, 2017, pages 124—131, 2017.

G. S. Tseitin. On the complexity of derivation in propositional calculus.
Structures in Constructive Mathematics and Mathematical Logic, Part
1I, Seminars in Mathematics, pages 115-125, 1968.

[25] L. G. Valiant. Completeness classes in algebra. In Proceedings of the

Eleventh Annual ACM Symposium on Theory of Computing, STOC 79,
pages 249-261, New York, NY, USA, 1979. ACM.

http://www.qbflib.org/qbfeval18.php

	Introduction
	Preliminaries and notations
	Negation normal form (NNF)
	Unate formulas
	Independent support and functionally defined variables
	Boolean functional synthesis
	DAG representations
	Positive form of input specification

	A New Normal Form for Efficient Synthesis
	SynNNF leads to efficient quantification and synthesis
	Succinctness of SynNNF
	SynNNF ``almost'' characterizes efficient synthesis using GACKS functions

	Refinement for Synthesis
	A Refining CNF to SynNNF Compiler
	Experimental results
	Conclusion
	References

