A Quantifier Elimination Algorithm for Linear
Modular Equations and Disequations *

Ajith K John' and Supratik Chakraborty?

! Homi Bhabha National Institute, BARC, Mumbai, India
2 CFDVS, Dept. of Computer Sc. & Engg., IIT Bombay, India

Abstract. We present a layered bit-blasting-free algorithm for existen-
tially quantifying variables from conjunctions of linear modular (bit-
vector) equations (LMEs) and disequations (LMDs). We then extend
our algorithm to work with arbitrary Boolean combinations of LMEs
and LMDs using two approaches — one based on decision diagrams and
the other based on SMT solving. Our experiments establish conclusively
that our technique significantly outperforms alternative techniques for
eliminating quantifiers from systems of LMEs and LMDs in practice.

1 Introduction

Quantifier elimination (QE) is the process of converting a formula containing
existential and/or universal quantifiers in a suitable logic into a semantically
equivalent quantifier-free formula. Formally, let A be a quantifier-free formula
over a set X of free variables in a first-order theory 7. Consider the quantified
formula Q1y1 Q292 - .. QmYm- A, where Y = {y1,...ym} is a subset of X, and
Q; € {3,V}fori e {1,...m}. QE computes a quantifier-free formula A’ with free
variables in X \ Y such that A’ =7 Q1y1 Q2¥2 ... QmYm- A, where =7 denotes
semantic equivalence in theory 7. This has a number of important applica-
tions in formal verification and program analysis. Example applications include
computing abstractions of symbolic transition relations, computing strongest
postconditions of program statements and computing interpolants in CEGAR
frameworks. Since Vy.p = —3y. ¢ in all first-order theories, it suffices to fo-
cus on algorithms for eliminating existential quantifiers. This paper presents one
such algorithm for a fragment of the theory of bit-vectors that we have found
useful in verification of word-level RTL designs.

Currently, the most popular technique for eliminating quantifiers from bit-
vector formulae involves blasting bit-vectors into individual bits (Boolean vari-
ables), followed by quantification of the blasted Boolean variables. This ap-
proach has some undesirable features. For example, blasting involves a bitwidth-
dependent blow-up in the size of the problem. This can present scaling problems
in the usage of Boolean reasoning tools (e.g. BDD based tools), especially when
reasoning about wide words. Similarly, given an instance of the QE problem,
blasting variables that are quantified may transitively require blasting other vari-
ables (that are not quantified) as well. This can cause the quantifier-eliminated

* This work was supported by a research grant from Board of Research in Nuclear
Sciences, India.

formula to appear more like a propositional formula on blasted bits, instead of
being a bit-vector formula. Since reasoning at the level of bit-vectors is often
more efficient in practice than reasoning at the level of blasted bits, QE using
bit-blasting may not be the best option if the quantifier-eliminated formula is
intended to be used in further bit-vector level reasoning. This motivates us to
ask if we can efficiently eliminate quantifiers in the theory of bit-vectors without
resorting to bit-blasting (or model enumeration) in practice. Ideally, we would
have liked to obtain such a QE procedure for the entire theory of bit-vectors.
Unfortunately, we do not have this yet. We therefore focus on a fragment of
the theory, namely Boolean combinations of equations and disequations of bit-
vectors, that we have found useful in word-level verification of RTL designs, and
present a QE procedure for this fragment.

Since bit-vector arithmetic is the same as modular arithmetic on integers, our
algorithm can also be viewed as one for existentially quantifying variables from
a Boolean combination of linear modular integer equations and disequations.

A Linear Modular Equation (LME) is an equation of the form ¢; - 21 +--- +
Cn-Ty =co (mod 2P) where p is a positive integer constant, x1, ..., x, are p-bit
non-negative integer variables, and co, . . ., ¢, are integer constants in {1,...,2P—
1}. Similarly, a Linear Modular Disequation (LMD) is a disequation of the form
c1 1+ -+ cn Ty #co (mod 2P). Conventionally, 27 is called the modulus of
the LME or LMD. For notational convenience, we will henceforth use “LMC” to
refer to an LME or LMD. Since every variable in an LMC ¢y 21+ - -+¢p T, X ¢
(mod 2P), where e {=,#}, represents a p-bit integer, it follows that a set
of LMCs sharing a variable must have the same modulus. However, there are
applications where we need to consider Boolean combinations of LMCs that do
not share any variable, and have different moduli. In such cases, we propose
to appropriately shift the moduli of LMCs, so that all LMCs have the same
modulus. This can always be done since the LMCs Ay = ¢1-z1+---+¢n Ty X ¢
(mod 2P) and Ao = 29-¢y-af +-- - +29-¢,, -2, 129 -¢o (mod 2PT9) are related
in the following way: every solution of A\; can be bit-extended to give a solution
for Ao, and every solution of Ao can be bit-truncated to give a solution for A;.
Hence, using Ao in place of Ay suffices for checking satisfiability and also for
finding solutions of Boolean combinations of LMCs. In the remainder of this
paper, we will assume without loss of generality that whenever we consider a set
of LMCs, all of them have the same modulus.

Our primary motivation comes from bounded model checking (BMC) of
word-level RTL designs. As an example, consider the synchronous circuit shown
in Fig. 1, with the relevant part of its functionality described in VHDL with the
figure. The thick shaded arrows and the thin solid arrows in the figure represent
8-bit words and 1-bit lines respectively.

The circuit comprises a controller and two 8-bit registers, A and B. The
controller switches between two states, 0 and 1, depending on the value of A.
In state 0, A works as a down-counter until it reaches 0x003, in which case A
loads itself with an input value from InA and the controller switches to state

3 We use the 0x prefix to denote hexadecimal values.

if (clock’event and clock = ’1’) then
case state is
when ’0’ =>

n if (A = x"00") A <= InA; state <= ’1’;
else A <= A-1; state <= ’0’; end if;
InA Mux I b H +11 fo if (A = x"ff") B <= B-1;
K . else B <= A+1; end if;
| +1

A
when others =>
if (A = x"ff") A <= InA; state <= ’0’;
B <= B+1;
else A <= A+1; state <= ’1’; B <= A+1;
STATE end if:
MACHINE| ’
clock——>] end case;
end if;

Fig. 1. An Example Circuit

1. In state 1, A works as an up-counter until it reaches Oxff, in which case it
loads the value from InA and the controller switches to state 0. Register B is
always loaded with the value of A+ 1 except when A has the value Oxff. If this
happens in state 0 (down-counting state), B decrements its previously stored
value; otherwise, B increments its previously stored value.

A word-level transition relation, R, for this circuit can be obtained by con-
joining the following three equality relations, where all operations on A and B
are assumed to be modulo 28.

state’ = ite(state = 0, ite(A = 0x00, 1, 0), ite(A = Oxff, 0, 1))
A" = ite(state = 0, ite(A = 0x00, InA, A — 1), ite(A = Oxff, InA, A + 1))
B’ = ite(state = 0, ite(A = Oxff, B — 1, A + 1), ite(A = Oxff, B+ 1, A+ 1))

In the above relations, state’, A’ and B’ refer to values of state, A and B after
the next rising edge of the clock. Note also that A, A’, B and B’ are 8—Dbit

wide bit-vector variables and state and state’ are propositional variables. Since
R is a conjunction of equalities involving ite, and since a = ite(b, ¢, d) represents
(bA(a=¢))V (=bA (a=d)), R is essentially a Boolean combination of LMCs.

The above circuit has the property that once started in state 0, it never
reaches state 1 with 0x00 in register B. Suppose we wish to use BMC to prove
that this property holds for the first N cycles of operation. This can be done
by unrolling the transition relation N times, conjoining the unrolled relation
with the negation of the property, and then checking for satisfiability of the
resulting constraint using an SMT solver that can reason about bit-vectors.
Since R contains all variables (in unprimed and primed versions) that appear in
the RTL description, unrolling R a large number of times gives a constraint with
a large number of variables. This problem is particularly acute for circuits with
a large number of internal state variables. While the number of variables in a
constraint is not the only factor that affects the performance of an SMT solver,
for large enough values of NV, the increased variable count indeed has an adverse
effect on the performance of the solver, as indicated by our experiments.

In order to alleviate the above problem, one can use an abstract transition
relation R’ that relates only a chosen subset of variables relevant to the property
being checked, while abstracting the relation between the other variables. In our
example, we can compute such an R’ by existentially quantifying the bit-vector
variables A and A’ from R. This gives R’ as:

((state’ = 1) A (B' = 0x01)) Vv

((state’ = 0) A (B’ = ite(state = 0,B —1,B +1))) V
((state’ = state) A (B’ # 0x00) A (B" # 0x01))

On careful examination, it can be seen that if we unroll R’ (instead of R)
during BMC, we can still prove that the circuit never reaches state 1 with B

set to 0x00 if it starts in state 0. Since R’ contains fewer variables than R, the
constraint obtained by unrolling R’ has fewer variables. In general, this can lead
to significantly better performance of the back-end SMT solver, as demonstrated
in our experiments.

The example presented above is representative of a more general scenario. In
general, Boolean combinations of LMCs arise when building transition relations
for RTL designs and/or embedded systems containing conditional statements
that check for equalities of words/registers. Building an abstract transition re-
lation in such cases requires existentially quantifying variables from Boolean
combinations of LMCs. Obtaining the abstract transition relation at the word-
level is particularly appealing since it allows word-level reasoning to be applied
to the abstraction. This motivates us to study the problem of eliminating quan-
tifiers from Boolean combinations of LMCs without resorting to bit-blasting (or
model enumeration) in practice.

Contributions. There are two primary contributions of this paper. First, we
describe a bit-blasting-free algorithm for eliminating quantifiers from conjunc-
tions of LMCs. The algorithm is based on a layered approach, i.e., the cheaper
layers are invoked first and more expensive layers are called only when required.
Later, we extend this to QE algorithm for Boolean combinations of LMCs. While
our algorithm uses a final layer of model enumeration for the sake of theoretical
completeness, extensive experiments indicate that we never need to invoke this
layer in practice. Our second contribution is an extensive set of carefully con-
ducted experiments that not only demonstrate the effectiveness of our approach
over alternative techniques, but also allows us to identify criteria for choosing
the right QE technique for a given problem instance.

Related Work. Several interesting approaches have been proposed earlier
for reasoning about LMEs (e.g., [6,7]). Although our study indicates that non-
trivial counts of LMDs appear in constraints arising from real verification prob-
lems, LMDs have traditionally received relatively less attention. Jain et al [7]
showed that the satisfiability problem for a conjunction of LMCs is NP-hard.
However, their work subsequently focused on systems of LMEs and Linear Dio-
phantine Equations and Disequations, and discussed algorithms to compute in-
terpolants in such systems. Bit-blasting [3] followed by bit-level QE is arguably
the dominant technique used in practice for eliminating quantifiers from bit-
vector constraints. As discussed earlier, this approach, though simple, destroys
the word-level structure of the problem and does not scale well for LMCs with
large modulus. Since LMEs and LMDs can be expressed as formulae in Pres-
burger Arithmetic (PA) [3], QE techniques for PA (e.g.those in [5]) can also
be used to eliminate quantifiers from Boolean combinations of LMCs. Similarly,
automata-theoretic approaches for eliminating quantifiers from PA formulae [8]
can also be used. However once converted to PA formulae, converting back to

Boolean combinations of LMCs is difficult. Also, empirical studies have shown
that using PA techniques to eliminate quantifiers from Boolean combinations of
LMCs often blows up in practice [3]. The work that is most closely related to our
is that of Ganesh and Dill [6]. The authors of [6] present a technique for reduc-
ing LMEs to a solved form by selecting variables in a specific order. While this
does not directly give us a technique to eliminate a user-specified variable from
a conjunction of LMEs, their work can be extended to achieve this. More impor-
tantly, [6] does not consider the problem of eliminating variables in constraints
involving LMDs. This problem is addressed in our current work.

2 Quantifier Elimination for a Conjunction of LMCs

The problem we wish to solve in this section can be formally stated as follows.
Given a set of LMCs over variables x1,...,z,, let A denote the conjunction of
the LMCs. Without loss of generality, we wish to compute A’ = 3z --- Jxy. A,
where A’ is a Boolean combination of LMCs. For reasons of succinctness, we
also require that A’ contains no ground terms other than integer constants,
and no ground (sub-)formulas other than true and false. This problem is easily
seen to be NP-hard. This follows from the facts: (i) the satisfiability problem
for a conjunction of LMCs is NP-hard, even when all moduli are a priori fixed
to 4 (see [7]), and (ii) a conjunction of LMCs A over x1,...,z, is satisfiable
iff an algorithm for computing A’ = Jz; --- 3z,. A returns true (due to the
succinctness requirement of A’).

Since an algorithm for computing Jz;. A can be used in an iterative way to
compute 3z; - - Ixy. A, we will initially focus on the (seemingly simpler) problem
of computing Jz;. A in the subsequent discussion. All LMCs considered in the
remainder of this section have modulus 2P, for some positive integer p, unless
stated otherwise. For notational clarity, we will therefore omit mentioning *
(mod 2P)” with LMCs in the following discussion. We have skipped the proofs
of lemmas and the details of some procedures which can be found in a detailed
version of this paper [13].

In the following discussion, we use names starting with “QFE1” and “QE” for
procedures to eliminate a single quantifier and multiple quantifiers respectively.

Lemma 1. An LMC ¢y -2y + -+ + ¢y - T, X ¢ can be equivalently expressed
as 2K -2y > ty, where € {=,#}, t1 is a term free of x1 and ky is an integer
such that 0 < k; <p—1.

Example: All LMCs in this example have modulus 8. Consider the LME 6x +
4y = 0. Rearranging the terms modulo 8, we get 3 - 2'z = 4y. Multiplying by 3
(multiplicative inverse of 3 modulo 8) and simplifying gives, 2'x = 4y.

For brevity, henceforth whenever we express LMCs as 2% - z; ta t; where
<€ {=,#}, we will omit mentioning “¢; is a term free of 21 and k; is an integer
such that 0 < k; <p—1".

Lemma 2. 3z,. (2% -2y =t1) = (2P7%1 . t; = 0)

Exzample: All LMCs in this example have modulus 8. Jy. 2.y = 5.0 +2) =
(237L(5.2+2) =0) = (4.2 =0)

Lemma 3. Let A be the conjunction of m LMEs of the form 2% -z, = t;,
where i ranges from 1 through m. Then 3x1. A can be equivalently expressed as
a conjunction of LMEs each of which is free of x1.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing Jy. ((2'y = 5z + 2) A(2%y = 5z + 62) A(2'y = 2z + 4)). This
can be equivalently expressed as Jy. ((2y = 5z + 2) A(2- (bz + 2) = bz + 62)
A5z 4+ 2 = 2z + 4)). Simplifying modulo 8, we get Jy. ((2y = bz + 2)) A5z +
2z = 4) A (3z = 2). Using Lemma 2, we obtain the final result as (4dx = 0)
Az 42z =4) A 3z = 2).

Lemma 4. Let A be the conjunction of r LMCs of the form 2% -z > t;, where
€ {=,#} and i ranges from 1 through r. Let 2K - 1 = t; be the LME with
the minimum k; among all LMEs in A. Then Jx1. A = 1 A Jx1.9, where Yy
18 a conjunction of LMCs independent of x1, and 1o is a conjunction of LMCs
with at most one LME 2% . 2y = t,. In addition, 15 contains only those LMDs
in A in which the coefficient of x1 is of the form 2%:, where k; < k;.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing Jy. ((2'y = bz + 2) A(2%y = ba + 62) A(2'y # 22 +4) A(2% #
6x+7z)). This can be equivalently expressed as Jy. ((2y = bz +2) A(2- (bz+2) =
S5z + 62) A(bx 4+ 2 # 2z 4+ 4) Ay # 6z + 7z)). Simplifying modulo 8, we get
(5x+2z=4) A3z # 2) AJy. ((2y = 5z +2) A (y # 6x + 7z)). Note that ¢, and
x1. 19 here are (5bx+2z = 4) A (3z # 2) and Fy. ((2y = bz +2) A (y # 62+ T7z2))
respectively.

The above results immediately yield two simple algorithms: (a) QEI_1LME
that takes an LME and a variable to quantify out, and returns the equivalent
quantifier-free formula (based on Lemma 2), and (b) QE1_Layerl that takes a
conjunction of LMCs and a variable x; to quantify out and returns the equivalent
conjunction of ©; and 3z1.1)2 (as given by Lemma 4).

If the k;’s of all LMDs in A are such that k; < k;, then Jxq.15 reduces
to 3wy. (2% - 2y = t;). According to Lemma 2, this is equivalent to 2P~ .
t; = 0. Hence, in this case, algorithms QF1_Layer! and QFE1_1LME suffice to
compute Jx1. A. In general, however, Jz;.1), may contain LMDs containing x
that require further processing before x; is eliminated. We describe techniques
for doing this in the following subsections.

2.1 Dropping Unconstraining LMDs

‘We now consider the problem of simplifying Jx;. ¥ obtained above, when 3x;. ¥
contains LMDs. Let ¥ = & A A, where X is an LMD and £ is a conjunction of
LMCs. We say that A is unconstraining in 3x1. Y9 iff 1. (EAAX) = Fz1.€. Un-
constraining LMDs can simply be dropped from Jx;. ¥s, thereby simplifying the
task of QE. Unfortunately, identifying all unconstraining LMDs from 15 involves
invoking an SMT solver for quantified bit-vector formulas. In this subsection, we
present a sound technique for identifying a subset of unconstraining LMDs in
Jx1. 9. Our approach exploits the fact that an LMD is satisfied even if a single
bit in the left-hand side of the LMD differs from the corresponding bit in the

right-hand side. We therefore propose to identify LMDs in Jz;.9 that can be
satisfied by selectively assigning values to specific bits of x1, without causing
any other LME or LMD in Jz;.15 to be violated. Since z; is existentially quan-
tified, these LMDs are effectively unconstraining in Jzi. 1. We illustrate this
idea below through an example.

Consider the problem Jz. (§ AX) where £ = (4o = 6y +22) A 2z # 2y +42) A
(2 # 6y + 62) and A = (xz # y + 2), and all LMCs have modulus 8. For clarity
of exposition, we use the notation z[i] to denote the i*" bit of a bit-vector z, and
adopt the convention that z[0] denotes the least significant bit of z. We claim
that any solution of £ can be “engineered” by possibly modifying the value of z[2]
to give a solution of £ A)\, and vice versa. In order to see why this is true, note
that the LME 4z = 6y + 2z constrains only z[0] and the LMDs (2z # 2y + 4z),
(22 # 6y + 62) constrain only x[0] and x[1]. Therefore, the value of 2[2] does not
affect satisfaction of £. Any solution of £ can therefore be engineered to a solution
of £ A X by ensuring that z[2] differs from the most-significant bit of y+ z. Hence,
Jz. (&) = Fx. (€ A X). The converse, i.e. Iz. (£ A X) = Jz. (§) obviously holds.
Hence in this example, (z # y + z) is an unconstraining LMD in Jz. (£ A \).

DropLMDWithSMT(E, D, ;)
while(true)
impl « NULL;
for each LMD d € D
if (E U (D\d) =d)
impl « d; break;

DropLMDSimple(E, D, z;)
core «— E;
while(core # E U D)
if (isExt(core, E U D, x1))
return core;

else s (s
d « getLstCnstr(D\core); 1fl()1rrggi{.— NULL)
core « core U d; :
. : D « D\impl;
return core; return EUD;

Fig. 2. Algorithms to drop unconstraining LMDs

The above idea leads to a simple algorithm, called DropLMDSimple, shown
in Fig. 2. This algorithm takes as inputs a set of LMEs FE, a set of LMDs D,
and a variable x; to be quantified from the conjunction of all LMCs in EU D.
Algorithm DropLMDSimple returns a subset of LMCs in £ U D such that the
result of quantifying x; from the conjunction of LMCs in this subset is equivalent
to the result of quantifying x; from the conjunction of LMCs in EU D.

Algorithm DropLMDSimple computes the desired subset in a variable core
that is initialized to E. Subsequently, it determines if any solution to the con-
junction of LMCs in core can be engineered by modifying specific bits of z; to
give a solution to the conjunction of LMCs in FUD. This is achieved by invoking
a function isExt. If such an engineering is indeed possible, then all LMDs not
in core are unconstraining, and algorithm DropLMDSimple returns core. Other-
wise we identify the LMDs in D\ core whose truth depends on the least number
of bits of 1 using a function getLstCnstr. Intuitively, these LMDs are the most
difficult ones to satisfy among the LMDs in D \ core. These LMDs are then
included in core and the process repeats. Clearly, algorithm DropLMDSimple
terminates since core cannot have more LMCs than those in FU D.

Since each LMD is of the form 2%¢ -z, # t;, the LMD with the largest k; is the
one whose truth depends on the least number of bits of x;. This gives a simple
implementation of function getLstCnstr. One possible implementation of isExt
is through the use of an SMT solver that checks if one quantified formula implies
another quantified formula. However, this is inefficient in general. Instead, we
propose an implementation of isExt based on the following Lemma.

Lemma 5. Let keore be the smallest among the k;’s of all LMCs in core. Let
D\ core be expressed as {(2F1 - w1 # t1),..., (2" - xy # t,)}. If n = 2keore —
3 2% > 1, any solution to the conjunction of LMCs in core can be engineered

i=1
to give a solution to the conjunction of LMCs in E U D.

We give a sketch of the proof of Lemma 5 here. Let C; and C5 be the conjunction
of LMCs in core and the conjunction of LMDs outside core respectively. Let 7
be any solution to C;. 7 constrains only the bits x[0] through z[p — keore — 1].
Hence there are 2Fcore ways in which bits z[p — 1] through z[p — keore] can be
assigned values such that 7 remains as a solution to Cy. It can be shown that

n
n = 2kecore — 3~ 2ki yunder-approximates the number of ways in which bits z[p—1]

i=1
through 2[p — kcore] can be assigned values such that m becomes a solution to
C5 and remains as a solution to Cy. Therefore if n > 1, there exists at least one
assignment of values to bits z[p — 1] through z[p — kcore] such that 7 becomes a
solution to the conjunction of LMCs in F U D.

DropLMDSimple may not be able to identify all the unconstraining LMDs
in 3z1.19. For example, consider the problem Jz. ((2z = y) A (x # 2y) A (z #
y)), where all LMCs have modulus 8. We have, core = {2z = y}, keore = 1,
k1 = ko = 0. Therefore, n = 0 and DropLMDSimple identifies that it is not
possible in general to engineer a solution of (2z = y) to give a solution of
(2 = y) A (z # 2y) A (z # y) by assigning values to specific bits of z. Hence,
DropLMDSimple cannot identify any LMD to drop. However, it can be seen that
(20 = y) A (x # 29) = (¢ #). Hence 3. (22 = y) A (x # 29) A (¢ # y)) =
Jz. ((22 = y) A (x # 2y)). Once x # y is dropped, DropLMDSimple can further
reduce 3z. ((2z = y) A (z # 2y)) to Jz. (22 = y). Based on this idea, we present
an algorithm to drop implied LMDs called DropLMDWithSMT (see Fig. 2). The
notation used in this algorithm is the same as used in algorithm Drop LM DSimple.
The implication check in DropLMDWithSMT requires invoking an SMT solver,
in general.

We now present an algorithm QFE1_Layer3 which drops LMDs from Jz. 15
using DropLMDSimple and DropLMDWithSMT. Given 3x1. 2, QFE1_Layer3 ini-
tially employs DropLMDSimple to drop unconstraining LMDs. If there still exist
LMDs, DropLMDWithSMT is applied to identify the implied LMDs and drop
them. If there exist LMDs in the output of DropLMDWithSMT, it is given to
DropLMDSimple. Thus finally, we are left with a conjunction of LMCs v}, with
possibly fewer LMDs compared to v, while guaranteeing that Jz;. ¢¥9 = Jx1. ¢5.

The algorithms QFE1_Layerl, DropLMDSimple and QFE1_Layer3 form the
first three layers of our layered QE algorithm. We present in Fig. 3, a proce-

dure QFE1_Layers1To3 which tries to compute Jz;. A using these layers. Ini-
tially QFE1_Layerl is called to reduce dz1. A to 1 A Jxy.vs. If 1 is free of
LMDs, QFEI_1LME is called to compute 3z1.19 and hence Jx1. A is computed
by the first layer itself. If ¥ is not free of LMDs, QFE1_Layers1To3 initially calls
DropLMDSimple and later on QF1_Layer3 (if required) to drop the LMDs. If
all the LMDs in 3z1. 19 are dropped by DropLMDSimple (QFE1_Layer3), 1. A
gets computed in the second (third) layer. Otherwise, QEI_Layers1To8 returns
1 A 3y,) such that ¢y A Jzq. 90y = Jx1. A. The techniques to compute such
(harder) instances of 3x;. A are presented in the following subsection.

2.2 Splitting and Model Enumeration

Let us have a closer look at the instances of dx;. A which cannot be computed
by QF1_Layers1To3. The difficulty in QE in such cases arises from the fact that
there are no LMEs constraining some of the bits of x; constrained by the LMDs.
For example, consider the problem of computing 3z. ((2z = a)A(x # b)A(x # ¢))
where all the LMCs have modulus 8. The LME (2z = a) constrains only the
bits z[1] and z[0] whereas the LMDs constrain the bits z[0], z[1] and z[2]. It
can be observed that in this example, QE cannot be performed by the proce-
dure QFE1_Layers1To3. We describe two techniques to compute such instances
of 3x1. A - Splitting and Model Enumeration®.

Splitting is based on the observation that each LMD 2% . 21 # t; in A
can be equivalently expressed as the disjunction of two constraints - an LMD
(2% .2y # 2F=Fi.¢;) and a conjunction ((2%- 2y = 2F=ki . ;) A (2% .2 £ ;) where
k; < k. This converts A into Ay V...V A, where each A; is a conjunction of
LMCs. dz;. A is thus equivalent to Jz1. A1 V...V3z. A, where each subproblem
dx1. A; is potentially simpler to compute than the original problem Jz;. A. For
example, in the previous problem, the LMD (x # b) can be split into (2z #
2b) V ((2x = 2b) A (z # b)) converting the problem into Jz. ((2x = a) A (2z #
20) Az #¢))VIz. (2x=a) A2z =2b) A (z #b) A (z #).

Model Enumeration is based on the observation that Jxq. A can be equiva-
lently expressed as Alz, oV ...V Aly 201 (where Al;,—; denotes A with zy
replaced by constant).

We call (i) the procedure which makes use of Splitting and Model Enumera-
tion to compute Jx1. A as QF1_Layerj and (ii) the procedure which makes use
of QE1_Layerj to compute dxq --- da;. A as QE_Layer}.

We present in Fig. 3 the algorithm QFE_LMC which computes Jx; --- Ja;. A
using QFI_Layers1To3 and QE_Layer4. QE_LMC' initially tries to eliminate
the quantified variables 1, ..., z; one by one by applying the cheaper procedure
QFE1_Layers1To3. The variables which cannot be eliminated by QE1_Layers1To3
are collected in a set Y. It can be observed that after the for loop in QE_LMC,
Jxq --- Jxs. A can be equivalently expressed as 1 A 3Y. s where ¢ and po
are conjunctions of LMCs (using a procedure scopeReduce in Fig. 3). Y. o is
computed by QF_Layer4 which is conjoined with ¢; to obtain the final result.

4 For all the benchmarks we have experimented with, Splitting and Model Enumeration
were never required to eliminate quantifiers. Hence they are only briefly described
here.

QFE_Layer/ computes the result as a disjunction of conjunctions of LMCs. Hence
the result here is, in general a Boolean combination of LMCs.
QE1_Layers1To3(A, z1)

Y1 A Jx1.v9 — QF1_Layeri(A, z1);
if (s is free of LMDs) QELMC(A, {21, :})

Y .
return (V1A QEI_ILME (12, 21)); for :aig’xi €{x1,..., x4t}
else{_ LME i 46y A" — QFEI1_Layers1To3 (A, x;);
e 2; o if(A’ is free of ;)
¥p,2 « set of LMDs in s; A Al
if(DropLMDSimple({e},Yp 2, 1) = {e}) Al = ¥
return (1A QEI_1LME((e, x1)); elilei 21 X :ppél/\ Fnevet/
elsg) Y —« YU {z}
fbfz </—_QE1,Layer5’({e},1/JD,2,3U1), w1 A JY. o — scopeReduce(A,Y);
if(yy =€) ¢y — QE_Layerf(p2, Y);

return (V1A QF1_1LME (e, x1));

¥
else return (¢ A Jz1.9%); return 1/ ¢y;

Fig. 3. Procedures QF1_Layers1To8 and QE_LMC
3 Boolean Combinations of LMCs

The QE algorithm QFE_LMC accepts a conjunction of LMCs. In this section,
we explore two approaches for extending QFE_LMC to Boolean combinations of
LMCs: Decision Diagram (DD) based approach and DAG based (SMT solving
based) approach.

3.1 Quantifier Elimination by DD Based Approach

We introduce a data structure called Linear Modular Decision Diagram (LMDD)
which represents Boolean combinations of LMCs. They are BDDs [4] with nodes
labeled with LMEs. The problem we wish to solve in this subsection can be for-
mally stated as follows. Given an LMDD f representing a Boolean combination
of LMCs over a set of variables X, we wish to compute an LMDD ¢g = 3V. f
where V C X.

The algorithms presented in this subsection use the following procedures. a)
createLMDD : Creates an LMDD from a DAG representing a Boolean combina-
tion of LMCs, b) isUnsat : Returns true if the conjunction of LMCs in the given
set is unsatisfiable and false otherwise, d) getConjunct : Given a set of LMCs ¢,
returns the conjunction of LMCs in ¢,) AND, OR, NOT, ITE : Perform the
basic operations on LMDDs indicated by their names. We denote a non-terminal
LMDD node f as (P(f),H(f),L(f)) where P(f) is an LME, and H(f), L(f)
are the high child and low child respectively as defined in [4].

A straightforward procedure to compute 3V. f is to apply QE-LMC to each
path in f similar to Black-box QE on Linear Decision Diagrams described in
[1]. However, as observed in [1], this technique is not amenable to dynamic
programming and the number of recursive calls to the procedure is linear in the
number of paths in f (which is bad).

In the following text, we present a more efficient procedure QuaLMoDE
to compute IV. f. QuaLMoDE makes use of a procedure QEI_-LMDD which

eliminates a single variable v from f (see Fig. 4). To compute Jv. f, we call
QF1_-LMDD with arguments f, { }, { }, v. QEI_LMDD performs recursive traver-
sal of f carrying along each path, the set of LMEs F and the set of LMDs D
containing v, encountered on the path so far (called the context). However, it
tries to simplify f using F in the following way.

When QF1_-LMDD is called with arguments f, E, D, v, we wish to com-
pute Jv. (f A Cg A Cp), where Cg and Cp denote the conjunctions of LMEs
in F and LMDs in D respectively. Using Lemma 1, F can be expressed as
{(2M v =1ty),...,(2% -v =t,)}. Without loss of generality, let k; be the mini-
mum among k1, ..., k,. Let g be an internal non-terminal node of f denoted as
(P(9),H(g), L(g)) with P(g) expressed as (2 - v = t) such that k > k;. It can
be observed that g can be simplified to ((2¥7*1 ¢, =), H(g), L(g)) using the
LME (2%t . v = t;). The procedures selectLME and simplifyLMDD (see Fig. 4)
respectively perform the selection of LME with the minimum k& among the LMEs
in E and simplification of f using the selected LME e; as described above. The
procedure applyL1 in Fig. 4 returns an LME equivalent to the argument LME
using Lemma 1.

It can be observed that simplifyLMDD does not require propagation of the
context. If the same LMDD node is encountered with the same LME following
two different paths, the results of the calls are the same. Hence simplifyLMDD
can be implemented with dynamic programming.

Note that if simplifyLMDD is successful in eliminating all occurrences of
variable v using the LME selected, QE1_LMDD returns without any further re-
cursive calls. The procedure QF1_LMDD can be repeatedly invoked to compute
3V. f. This is implemented in the procedure QuaLMoDE.

3.2 Quantifier Elimination by DAG Based Approach

The problem we wish to solve in this subsection is the following. Given a DAG f
representing a Boolean combination of LMCs over a set of variables X, we wish
to compute a DAG g = 3V. f where V C X.

We present an algorithm Monniauz to compute V. f which is a simple exten-
sion of the algorithm EXISTELIM in [2]. EXISTELIM as given in [2] computes
V. f where f is a Boolean combination of linear inequalities over reals. A naive
way of computing this is by converting f to DNF by enumerating all satisfying
assignments, and by using a QE technique for conjunctions of linear inequal-
ities. EXISTELIM improves upon this by generalizing a satisfying assignment
to obtain a cube of satisfying assignments, and by projecting the cube on the
remaining variables (not in V) before its complement is conjoined with f and
further satisfying assignments are found.

Our algorithm Monniauz is an extension of the algorithm EXISTELIM with
the following changes. a) The predicates are LMCs, not linear inequalities over
reals, b) the projection algorithm PROJECT [2] is replaced by QE_LMC, and c)
the algorithm GENERALIZE?2 [2] for generalization of conjunctions is replaced
by an algorithm GENERALIZE2_LMC.

Given a formula G and a conjunction M of literals of G such that M = -G,
the algorithm GENERALIZE2 removes unnecessary literals from M and returns

QE1_LMDD(f, E, D, v)

if (f =0V isUnsat(E U D)) simplifyLMDD(f, v, ¢)
_ return 0; if(f=1orf=0)
if (f=1) return f;

return createLMDD(QE_LMC e — P(f):

(getConjunct(E U D), {v})); if (e is free of v)

if (E # ¢) return ITE(e
6,1 — sleleCt.LME(E); . simplify LMDD(H(f), v, e1)
£ simplifyLMDD(£, v, e1); simplifyLMDD(L(f), v, e;));
if (f7 is free of v) else
return AND(, createLMDD (2F v =t) « applyL1 (e, v);
(QE_LMC (getConjunct(E U D), {v}))); (281 . v =t1) — applyLl’(el 7v)'

e — P(P); return ITE(2"% 1) =1,

if (e is free of v) Sz:mplz:fyLMDD(H(f), v, e1),
return ITE(e, QE1_LMDD(H(f’), E, D, v),| simplifyLMDD(L(f), v, e1));

E1_LMDD(L(f), E, D, v)): else
eléQe (L{E), E, D, v)); return ITE e,

return OR simplifyLMDD (H(f), v, e1),
(QE],LMDD(H(F), E U {6},])7 V), szmplzfyLMDD(L(f), v, 61));
QE1_LMDD(L(f), E, D U{=e}, v));

Fig. 4. Algorithms QE1_-LMDD and simplifyLMDD

M’ such that M = M’ and M’ = —G. However, in our experiments, we have
found that GENERALIZE?2 is prohibitively time consuming as it involves SMT
solver calls equal to the number of literals in M.

Our algorithm GENERALIZE2_LMC works in the following way. Note that
M assigns a Boolean value to each atomic predicate of the formula —-G. We
evaluate the propositional skeleton (DAG representation of the propositional
structure) P of =G using these Boolean values assigned to the atomic predicates.
This assigns a Boolean value b,, to each node n in P. We now find the subset S,
of literals in M which is sufficient to evaluate n to b,,. Let S, be the set of literals
found in this way for the root r of P. Let M’ be the conjunction of literals in
Sy. It is easy to see that M = M’ and M’ = —G. We illustrate this idea with
the help of an example. Let =G be the formula ite(A, B,C) Vite(D, E, F) and
let M be ANBA-CAN-DA—-EAF where A, B, C, D, E and F are LMCs. It
is easy to see that the set of literals { A, B} is sufficient to evaluate ite(A, B, C)
to true. Similarly {—D, F'} is sufficient to evaluate ite(D, E, F') to true. Hence,
it follows that {A, B} (or {—=D, F'}) is sufficient to evaluate =G to true. Hence
GENERALIZE2_LMC returns AA B (or =D A F) as M'.

4 Experimental Results

We conducted three sets of experiments a) to evaluate QuaLMoDE, Monniauz
and QE_LMC, b) to compare the performance of QF_LMC with alternative QE
techniques and ¢) to evaluate the utility of our QE algorithms in verification.
The experiments are performed on a 1.83 GHz Intel(R) Core 2 Duo machine
with 2GB memory running Ubuntu 8.04. We have implemented our own LMDD

package for carrying out the QE experiments by DD based approach. In our
implementation, we convert LMDs with modulus 2 to equivalent LMEs as a
simplification step. Hence, in this section “LMD” refers to LMD with modulus
greater than 2.
Evaluation of QuaLMoDE, Monniaux and QE_LMC': In order to eval-
uate QuaLMoDE and Monniauz, we used a benchmark suite consisting of 210
real benchmarks and 212 artificial benchmarks. The real benchmarks are derived
from real word-level VHDL designs. We created these benchmarks by obtaining
the transition relations (R) of these designs and then (i) computing abstract
transition relation by quantifying out the internal variables of the design from
R, (ii) computing the set of states reachable in 2! steps using iterative squaring.
We observed a significant number of LMDs in these benchmarks when ex-
pressed in Negation Normal Form (NNF) (see Fig. 5(a)). In order to generate
the artificial benchmarks, we selected some of the real benchmarks and some
SMTLib benchmarks from the category QF_BV /bruttomesso/simple_processor/
of the SMTLib fixed size bit-vector benchmarks [10] and used different random
choices for the set of variables to be eliminated®. The number of variables (N),
number of variables to be eliminated (F) and the number of bits to be eliminated
in the benchmarks range from 3 to 175, 1 to 170 and 1 to 1265 respectively.

70 —= . . : : 1200 ' ' ' 75<=N-E =
w N-E<75&EN<=05 +
L 60 . i 000t N-E<75&E/N>0.5
z 8 TOmrrn . =+ BN u
£ 50 “ : 5
3 A A A A } AAA B 8 800 I
S 40 ra S :; a a %} +
3 e * * aa £ 600 +
5 3p . s s X s .
5 rs s AL 3 *
o 20 fa o P LV N A man’ £ 400 -
g . A A aaa o a - g x
10 i -] i
z A A Am , =, 200 iy
ot o aa g ah m asa” 2 M + +
PO S - S . I 4
0 & #
0 50 100 150 200 250 0 200 200 500 300 10 1000
Benchmark QualLMoDE Time (Seconds)

Fig.5. Plots showing (a) significant number of LMDs in the real benchmarks. (b)
QuaLMoDE Time Vs Monniauz Time (TO : > 900 seconds)

We measured the QE time by QuaLMoDE and Monniaux for each bench-
mark (For QuaLMoDE, this includes the time taken to build the LMDD also). It
is observed that (see Fig. 5(b)), for the benchmarks with N — E below a certain
threshold t; and E/N above a certain threshold t2, Monniauz performs better
than QuaLMoDE in most of the cases (For our benchmark suite, ¢; and ¢o were
empirically estimated as 75 and 0.5 respectively). For the other benchmarks,
QuaLMoDE outperforms Monniauz. It is also observed that, for the bench-
marks with ¢t < N — E, Monniauz times out irrespective of E/N. We figured
out that this is due to the following reasons. (i) For the benchmarks with low
N — E and high E/N, the interleaving of projection inside model enumeration

5 The SMTLib benchmarks contain bit-vector operators like selection and concatena-
tion which our work does not address. We introduced a fresh variable to denote the
result of each such operator.

1200

100000

1000

++
&
<
@
=
N

10000 ¢

100 |
1000 N

100 -

H
S}

+i
i
+

10 ,}Eww A ey
-

Calls to Layers in Monniaux + 1

1

+
v
+
A
+
n
Calls to Layers in QuaLMoDE + 1
*

100 150 200 250 0 50 100 150 200
Benchmark Benchmark

o
a1
o

Fig. 6. Contribution of the layers in QE_LMC
in Monniauz simplifies the problem considerably whereas for the other bench-
marks this simplification is not substantial. (ii) The single variable elimination
strategy in QuaLMoDFE results in more calls to QEI_LMDD from QuaLMoDE
for benchmarks with low N — E and high E/N.

The number of calls to QE_LMC from QuaLMoDE and Monniaux while
performing QE from the real benchmarks ranges from 1 to 205 and 1 to 3842 re-
spectively. We observed that a considerable number of these calls contain LMDs.
The average number of LMDs in these QE_LMC calls from QuaLMoDE and
Monniauz ranges from 0 to 12.2 and 0 to 18.8 respectively and the average of
the ratio of the number of LMEs to the number of LMDs ranges from 0 to 1 and
0.19 to 23.4 respectively.

We evaluated the contribution of different layers of QE_LMC in performing
QE from the real benchmarks. It was observed that all the quantifiers were
eliminated by the first two layers - without even a single call to QF1_Layer3 or
QFE_Layer). A large fraction of the calls to QFE1_Layers1To8 were solved by the
first layer itself and the remaining by the second layer (see Fig. 6)°.

10000

250

l_IQgO .

" odd |+
Even

170 ¢

100 +

100 ¢

100
[] "
N

e
=%

0.01

(Seconds)

10 +

1
0.1

BV_Solve Time

0.1%

Omega Test Time (Seconds)

0.01%

0.001 0.001

0.001 0.01 0.1 1 10 100 1000 10000 0.001 0.01 0.1 1 10 100
QE_LMC Time (Seconds) To QE_LMC Time (Seconds)

Fig. 7. Plots comparing (a) QE_-LMC with BV_Solve (b) QE_LMC with Omega Test
(TO : > 900 seconds)

Comparison of QF_LMC with alternative QE techniques : We com-
pared the performance of QE_LMC with QE based on Presburger Arithmetic
using Omega Test and QE based on bit-blasting (see Fig. 7). In the latter case,
we have used a procedure BV_Solve which performs the elimination of quanti-

5 Note that the y-axis of both the plots are in log-scale. One is added to the y-values
to include the points with no calls to the second layer.

1000
TO

fied variables appearing with odd coefficients in LMEs using the ideas described
in [6] followed by bit-blasting and bit-level QE using [11]. We used a set of
405 benchmarks which are instances of the QE problem at conjunction level -
371 of them arise from QuaLMoDE/Monniaur when QE is performed on the
real benchmarks and 34 are randomly generated. Our results clearly demon-
strate that QE_LMC outperforms these alternative QE techniques. In Fig. 7(a),
a benchmark is labeled “Odd” if each quantified variable in it appears with odd
coefficient in at least one LME and “Even” otherwise. Our results demonstrate
that BV_Solve performs comparable to QFE_LMC for the “Odd” benchmarks,
but not for the “Even” ones. This is not surprising; since BV_Solve uses the
technique from [6] to eliminate variables whenever possible before bit-blasting,
it is able to eliminate variables without any bit-blasting for all “Odd” bench-
marks. In contrast, BV_Solve has to bit-blast for “Even” benchmarks, thereby
performing poorly.

Utility of our QE algorithms in verification : In order to evaluate the
utility of our QE algorithms, we used QuaLMoDE to compute abstract tran-
sition relations when doing BMC of word-level VHDL designs. We derive the
transition relation R of the design and then for each BMC frame i, we obtain a
slice R; of R containing only relevant part of R for this frame. Next we elimi-
nate a chosen subset of variables (subset of internal variables) from R; to obtain
R} using QuaLMoDE as well as QBV_Solve (an extension of BV_Solve using
the DD based approach). The final unrolled constraint is a conjunction of the
different Rls computed by QuaLMoDE /QBV_Solve which after conjoining with
the negation of the property is given to an SMT solver for proving/refuting.
The SMT solver used is simplifyingSTP [12]7. Table 1 gives a summary of these
results. The designs machine_1 to machine_12 are modified versions of publicly
available benchmarks obtained from [9]. The remaining designs are proprietary
and were obtained from safety critical applications used in nuclear reactors. They
are control-oriented designs with wide data paths. Our results clearly demon-
strate (i) the significant performance benefit of using abstract transition relations
computed by QuaLMoDFE in these verification exercises and (ii) the performance
upper hand of QuaLMoDE over QBV_Solve in computing the abstract transi-
tion relations particularly for designs involving constant multiplications with
even coefficients and large bit widths.

Our QE algorithms can be used for solving Boolean combinations of LMCs
by quantifying out all the variables. However our preliminary experiments sug-
gest that this approach is not competitive with DPLL-style SMT solvers or
bit-blasting followed by QBF solving.

5 Conclusion

In this paper, we tackled the QE problem for LMCs. Our main contributions are
: (1) A bit-blasting-free QE algorithm for conjunctions of LMCs which is later
extended to QE algorithm for Boolean combination of LMCs, (ii) comparison of

" We selected simplifyingSTP because (i) it is the winner of SMT-COMP 2010 bit-
vector category and (ii) it has a variable eliminator implemented as per [6].

Table 1. Experimental Results on VHDL Programs

Design ‘LOC‘SS‘ TR NA ‘UNgL—wT QB
(371, 20, 547)] TO(TO) | 98(4, 27) | TO(TO,)
(371, 19, 341)| TO(TO) | 70(2, 0) | TO(TO, =)
(395, 22, 344)| TO(TO) | 75(3, 3) | TO(TO, -)
(235, 19, 515)[1497(1418)[79(1, 0) | TO(TO,
(235, 19, 387)[1527(1451)| 76(1, 0) | TO(TO,
(242, 15, 56) | 122(30) | 41(0,0) | 52(2, 3)
(270, 20, 61) | 206(152) | 52(3, 1) | 66(3, 5)
(170, 13, 83) | 225(195) | 30(L, 1) | 35(4, 1)
(170, 13, 323)] TO(TO) | 30(L, 1) | 53(28, 1)
(242, 15, 356)] TO(TO) | 40(1, 0) | 63(13, 3)
(352, 22, 96) | TO(TO) | 97(L, 7) | 93(2, 24)
(242, 15, 356)| TO(TO) [478(8, 427)| TO(TO, -)
(265, 13, 163)[1455(1426)| B1(24, 0) | TO(TO, -)
(283, 13, 163)] TO(TO) | 66(49, 0) | TO(TO, -)
board3 | 503 | 4 [(284, 13, 190)| TO(TO) | 67(44, 0) | TO(TO, -)
board 4 | 415 (272, 11, 31) | 362(220) | 111(10, 3) |215(104, 13)

All times are in seconds. TO : > 1800 seconds, LOC : Lines of code, SS : Symbolic simulation
time, TR : Transition relation details (dag size, number of variables, number of bits), NA :
Without abstraction : total time (simplifyingSTP time), QL : With QuaLMoDE for abstraction :
total time (QuaLMoDE time, simplifyingSTP time), QB : With QBV_Solve for abstraction : total
time (QBV_Solve time, simplifyingSTP time) (for NA, QL and QB most of the remaining time is
spent in slicing - we use a naive implementation of slicer), UNR : Number of BMC unrollings

machine_1 | 363
machine_2 | 373
machine_3 | 383
machine_4 | 253
machine_5 | 253
machine_6 | 363
machine_7 | 379
machine_8 | 251
machine 9 | 251
machine_10| 363
machine_11| 363
machine_12| 363

board_-1 404

board_2 373

-)
-)

| | wof | | o] en| o pof | | | | ~1| | 00

our approach with alternative techniques and the identification of a simple-to-
use criteria for choosing the right QE approach for a given problem instance. We
propose to study QE from linear modular inequalities as part of future work.
Acknowledgements : We would like to thank Trevor Hansen and Vijay Ganesh
for providing us with the latest version of simplifyingSTP. We also thank Mukesh
Sharma, Ashutosh Kulkarni, Rajkumar Gajavelly and Nachiket Vaidya for their
valuable support. We convey our special acknowledgement to Anup Bhattachar-
jee and S.D.Dhodapkar for their indispensable help and support.

References

1. S. Chaki, A. Gurfinkel, O. Strichman. Decision diagrams for linear arithmetic, In
FMCAD 2009
2. D. Monniaux. A quantifier elimination algorithm for linear real arithmetic, In
LPAR 2008
3. D. Kroening, O. Strichman. Decision procedures : an algorithmic point of view,
Texts In Theoretical Computer Science, Springer 2008
4. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, 1986
5. W. Pugh. The Omega Test : a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM, Pages 102-114, 1992
6. V. Ganesh, D. Dill. A decision procedure for bit-vectors and arrays, In CAV 2007
7. H. Jain, E. M. Clarke, O. Grumberg. Efficient Craig interpolation for linear dio-
phantine (dis)equations and linear modular equations, In CAV 2008
8. V. Ganesh, S. Berezin, D. Dill. Deciding Presburger arithmetic by model checking
and comparisons with other methods, In FMCAD 2002
9. ITC’99 benchmarks, http://www.cad.polito.it/downloads/tools/itc99.html
10. SMTLib website, http://goedel.cs.uiowa.edu/smtlib/
11. CUDD release 2.4.2 website, vlsi.colorado.edu/~fabio/CUDD
12. STP website, http://sites.google.com/site/stpfastprover/
13. http://www.cse.iitb.ac.in/~supratik/software/qualmode

