
A Quantifier Elimination Algorithm for Linear

Modular Equations and Disequations ⋆

Ajith K John1 and Supratik Chakraborty2

1 Homi Bhabha National Institute, BARC, Mumbai, India
2 CFDVS, Dept. of Computer Sc. & Engg., IIT Bombay, India

Abstract. We present a layered bit-blasting-free algorithm for existen-
tially quantifying variables from conjunctions of linear modular (bit-
vector) equations (LMEs) and disequations (LMDs). We then extend
our algorithm to work with arbitrary Boolean combinations of LMEs
and LMDs using two approaches – one based on decision diagrams and
the other based on SMT solving. Our experiments establish conclusively
that our technique significantly outperforms alternative techniques for
eliminating quantifiers from systems of LMEs and LMDs in practice.

1 Introduction

Quantifier elimination (QE) is the process of converting a formula containing
existential and/or universal quantifiers in a suitable logic into a semantically
equivalent quantifier-free formula. Formally, let A be a quantifier-free formula
over a set X of free variables in a first-order theory T . Consider the quantified
formula Q1y1Q2y2 . . . Qmym. A, where Y = {y1, . . . ym} is a subset of X, and
Qi ∈ {∃,∀} for i ∈ {1, . . .m}. QE computes a quantifier-free formula A′ with free
variables in X \ Y such that A′ ≡T Q1y1Q2y2 . . . Qmym. A, where ≡T denotes
semantic equivalence in theory T . This has a number of important applica-
tions in formal verification and program analysis. Example applications include
computing abstractions of symbolic transition relations, computing strongest
postconditions of program statements and computing interpolants in CEGAR
frameworks. Since ∀y. ϕ ≡ ¬∃y.¬ϕ in all first-order theories, it suffices to fo-
cus on algorithms for eliminating existential quantifiers. This paper presents one
such algorithm for a fragment of the theory of bit-vectors that we have found
useful in verification of word-level RTL designs.

Currently, the most popular technique for eliminating quantifiers from bit-
vector formulae involves blasting bit-vectors into individual bits (Boolean vari-
ables), followed by quantification of the blasted Boolean variables. This ap-
proach has some undesirable features. For example, blasting involves a bitwidth-
dependent blow-up in the size of the problem. This can present scaling problems
in the usage of Boolean reasoning tools (e.g. BDD based tools), especially when
reasoning about wide words. Similarly, given an instance of the QE problem,
blasting variables that are quantified may transitively require blasting other vari-
ables (that are not quantified) as well. This can cause the quantifier-eliminated

⋆ This work was supported by a research grant from Board of Research in Nuclear
Sciences, India.

formula to appear more like a propositional formula on blasted bits, instead of
being a bit-vector formula. Since reasoning at the level of bit-vectors is often
more efficient in practice than reasoning at the level of blasted bits, QE using
bit-blasting may not be the best option if the quantifier-eliminated formula is
intended to be used in further bit-vector level reasoning. This motivates us to
ask if we can efficiently eliminate quantifiers in the theory of bit-vectors without
resorting to bit-blasting (or model enumeration) in practice. Ideally, we would
have liked to obtain such a QE procedure for the entire theory of bit-vectors.
Unfortunately, we do not have this yet. We therefore focus on a fragment of
the theory, namely Boolean combinations of equations and disequations of bit-
vectors, that we have found useful in word-level verification of RTL designs, and
present a QE procedure for this fragment.

Since bit-vector arithmetic is the same as modular arithmetic on integers, our
algorithm can also be viewed as one for existentially quantifying variables from
a Boolean combination of linear modular integer equations and disequations.

A Linear Modular Equation (LME) is an equation of the form c1 · x1 + · · ·+
cn ·xn = c0 (mod 2p) where p is a positive integer constant, x1, . . . , xn are p-bit
non-negative integer variables, and c0, . . . , cn are integer constants in {1, . . . , 2p−
1}. Similarly, a Linear Modular Disequation (LMD) is a disequation of the form
c1 ·x1 + · · ·+ cn ·xn 6= c0 (mod 2p). Conventionally, 2p is called the modulus of
the LME or LMD. For notational convenience, we will henceforth use “LMC” to
refer to an LME or LMD. Since every variable in an LMC c1 ·x1+· · ·+cn ·xn ⊲⊳ c0
(mod 2p), where ⊲⊳∈ {=, 6=}, represents a p-bit integer, it follows that a set
of LMCs sharing a variable must have the same modulus. However, there are
applications where we need to consider Boolean combinations of LMCs that do
not share any variable, and have different moduli. In such cases, we propose
to appropriately shift the moduli of LMCs, so that all LMCs have the same
modulus. This can always be done since the LMCs λ1 ≡ c1 ·x1+ · · ·+cn ·xn ⊲⊳ c0
(mod 2p) and λ2 ≡ 2q · c1 ·x

′
1 + · · ·+2q · cn ·x

′
n ⊲⊳ 2q · c0 (mod 2p+q) are related

in the following way: every solution of λ1 can be bit-extended to give a solution
for λ2, and every solution of λ2 can be bit-truncated to give a solution for λ1.
Hence, using λ2 in place of λ1 suffices for checking satisfiability and also for
finding solutions of Boolean combinations of LMCs. In the remainder of this
paper, we will assume without loss of generality that whenever we consider a set
of LMCs, all of them have the same modulus.

Our primary motivation comes from bounded model checking (BMC) of
word-level RTL designs. As an example, consider the synchronous circuit shown
in Fig. 1, with the relevant part of its functionality described in VHDL with the
figure. The thick shaded arrows and the thin solid arrows in the figure represent
8-bit words and 1-bit lines respectively.

The circuit comprises a controller and two 8-bit registers, A and B. The
controller switches between two states, 0 and 1, depending on the value of A.
In state 0, A works as a down-counter until it reaches 0x003, in which case A
loads itself with an input value from InA and the controller switches to state

3 We use the 0x prefix to denote hexadecimal values.

....

if (clock’event and clock = ’1’) then

case state is

when ’0’ =>

if (A = x"00") A <= InA; state <= ’1’;

else A <= A-1; state <= ’0’; end if;

if (A = x"ff") B <= B-1;

else B <= A+1; end if;

when others =>

if (A = x"ff") A <= InA; state <= ’0’;

B <= B+1;

else A <= A+1; state <= ’1’; B <= A+1;

end if;

end case;

end if;

....
Fig. 1. An Example Circuit

1. In state 1, A works as an up-counter until it reaches 0xff, in which case it
loads the value from InA and the controller switches to state 0. Register B is
always loaded with the value of A+ 1 except when A has the value 0xff. If this
happens in state 0 (down-counting state), B decrements its previously stored
value; otherwise, B increments its previously stored value.

A word-level transition relation, R, for this circuit can be obtained by con-
joining the following three equality relations, where all operations on A and B
are assumed to be modulo 28.

state
′ = ite(state = 0, ite(A = 0x00, 1, 0), ite(A = 0xff, 0, 1))

A
′ = ite(state = 0, ite(A = 0x00, InA, A − 1), ite(A = 0xff, InA, A + 1))

B
′ = ite(state = 0, ite(A = 0xff, B − 1, A + 1), ite(A = 0xff, B + 1, A + 1))

In the above relations, state′, A′ and B′ refer to values of state, A and B after
the next rising edge of the clock. Note also that A, A′, B and B′ are 8−bit
wide bit-vector variables and state and state′ are propositional variables. Since
R is a conjunction of equalities involving ite, and since a = ite(b, c, d) represents
(b ∧ (a = c)) ∨ (¬b ∧ (a = d)), R is essentially a Boolean combination of LMCs.

The above circuit has the property that once started in state 0, it never
reaches state 1 with 0x00 in register B. Suppose we wish to use BMC to prove
that this property holds for the first N cycles of operation. This can be done
by unrolling the transition relation N times, conjoining the unrolled relation
with the negation of the property, and then checking for satisfiability of the
resulting constraint using an SMT solver that can reason about bit-vectors.
Since R contains all variables (in unprimed and primed versions) that appear in
the RTL description, unrolling R a large number of times gives a constraint with
a large number of variables. This problem is particularly acute for circuits with
a large number of internal state variables. While the number of variables in a
constraint is not the only factor that affects the performance of an SMT solver,
for large enough values of N , the increased variable count indeed has an adverse
effect on the performance of the solver, as indicated by our experiments.

In order to alleviate the above problem, one can use an abstract transition
relation R′ that relates only a chosen subset of variables relevant to the property
being checked, while abstracting the relation between the other variables. In our
example, we can compute such an R′ by existentially quantifying the bit-vector
variables A and A′ from R. This gives R′ as:

((state′ = 1) ∧ (B′ = 0x01)) ∨

((state′ = 0) ∧ (B′ = ite(state = 0, B − 1, B + 1))) ∨

((state′ = state) ∧ (B′

6= 0x00) ∧ (B′

6= 0x01))

On careful examination, it can be seen that if we unroll R′ (instead of R)
during BMC, we can still prove that the circuit never reaches state 1 with B

set to 0x00 if it starts in state 0. Since R′ contains fewer variables than R, the
constraint obtained by unrolling R′ has fewer variables. In general, this can lead
to significantly better performance of the back-end SMT solver, as demonstrated
in our experiments.

The example presented above is representative of a more general scenario. In
general, Boolean combinations of LMCs arise when building transition relations
for RTL designs and/or embedded systems containing conditional statements
that check for equalities of words/registers. Building an abstract transition re-
lation in such cases requires existentially quantifying variables from Boolean
combinations of LMCs. Obtaining the abstract transition relation at the word-
level is particularly appealing since it allows word-level reasoning to be applied
to the abstraction. This motivates us to study the problem of eliminating quan-
tifiers from Boolean combinations of LMCs without resorting to bit-blasting (or
model enumeration) in practice.

Contributions. There are two primary contributions of this paper. First, we
describe a bit-blasting-free algorithm for eliminating quantifiers from conjunc-
tions of LMCs. The algorithm is based on a layered approach, i.e., the cheaper
layers are invoked first and more expensive layers are called only when required.
Later, we extend this to QE algorithm for Boolean combinations of LMCs. While
our algorithm uses a final layer of model enumeration for the sake of theoretical
completeness, extensive experiments indicate that we never need to invoke this
layer in practice. Our second contribution is an extensive set of carefully con-
ducted experiments that not only demonstrate the effectiveness of our approach
over alternative techniques, but also allows us to identify criteria for choosing
the right QE technique for a given problem instance.

Related Work. Several interesting approaches have been proposed earlier
for reasoning about LMEs (e.g., [6, 7]). Although our study indicates that non-
trivial counts of LMDs appear in constraints arising from real verification prob-
lems, LMDs have traditionally received relatively less attention. Jain et al [7]
showed that the satisfiability problem for a conjunction of LMCs is NP-hard.
However, their work subsequently focused on systems of LMEs and Linear Dio-
phantine Equations and Disequations, and discussed algorithms to compute in-
terpolants in such systems. Bit-blasting [3] followed by bit-level QE is arguably
the dominant technique used in practice for eliminating quantifiers from bit-
vector constraints. As discussed earlier, this approach, though simple, destroys
the word-level structure of the problem and does not scale well for LMCs with
large modulus. Since LMEs and LMDs can be expressed as formulae in Pres-
burger Arithmetic (PA) [3], QE techniques for PA (e.g.those in [5]) can also
be used to eliminate quantifiers from Boolean combinations of LMCs. Similarly,
automata-theoretic approaches for eliminating quantifiers from PA formulae [8]
can also be used. However once converted to PA formulae, converting back to

Boolean combinations of LMCs is difficult. Also, empirical studies have shown
that using PA techniques to eliminate quantifiers from Boolean combinations of
LMCs often blows up in practice [3]. The work that is most closely related to our
is that of Ganesh and Dill [6]. The authors of [6] present a technique for reduc-
ing LMEs to a solved form by selecting variables in a specific order. While this
does not directly give us a technique to eliminate a user-specified variable from
a conjunction of LMEs, their work can be extended to achieve this. More impor-
tantly, [6] does not consider the problem of eliminating variables in constraints
involving LMDs. This problem is addressed in our current work.

2 Quantifier Elimination for a Conjunction of LMCs

The problem we wish to solve in this section can be formally stated as follows.
Given a set of LMCs over variables x1, . . . , xn, let A denote the conjunction of
the LMCs. Without loss of generality, we wish to compute A′ ≡ ∃x1 · · · ∃xt. A,
where A′ is a Boolean combination of LMCs. For reasons of succinctness, we
also require that A′ contains no ground terms other than integer constants,
and no ground (sub-)formulas other than true and false. This problem is easily
seen to be NP-hard. This follows from the facts: (i) the satisfiability problem
for a conjunction of LMCs is NP-hard, even when all moduli are a priori fixed
to 4 (see [7]), and (ii) a conjunction of LMCs A over x1, . . . , xn is satisfiable
iff an algorithm for computing A′ ≡ ∃x1 · · · ∃xn. A returns true (due to the
succinctness requirement of A′).

Since an algorithm for computing ∃xi. A can be used in an iterative way to
compute ∃x1 · · · ∃xt. A, we will initially focus on the (seemingly simpler) problem
of computing ∃xi. A in the subsequent discussion. All LMCs considered in the
remainder of this section have modulus 2p, for some positive integer p, unless
stated otherwise. For notational clarity, we will therefore omit mentioning “
(mod 2p)” with LMCs in the following discussion. We have skipped the proofs
of lemmas and the details of some procedures which can be found in a detailed
version of this paper [13].

In the following discussion, we use names starting with “QE1” and “QE” for
procedures to eliminate a single quantifier and multiple quantifiers respectively.

Lemma 1. An LMC c1 · x1 + · · · + cn · xn ⊲⊳ c0 can be equivalently expressed
as 2k1 · x1 ⊲⊳ t1, where ⊲⊳∈ {=, 6=}, t1 is a term free of x1 and k1 is an integer
such that 0 ≤ k1 ≤ p− 1.

Example: All LMCs in this example have modulus 8. Consider the LME 6x+
4y = 0. Rearranging the terms modulo 8, we get 3 · 21x = 4y. Multiplying by 3
(multiplicative inverse of 3 modulo 8) and simplifying gives, 21x = 4y.

For brevity, henceforth whenever we express LMCs as 2ki · x1 ⊲⊳ ti where
⊲⊳∈ {=, 6=}, we will omit mentioning “ti is a term free of x1 and ki is an integer
such that 0 ≤ ki ≤ p− 1”.

Lemma 2. ∃x1. (2
k1 · x1 = t1) ≡ (2p−k1 · t1 = 0)

Example: All LMCs in this example have modulus 8. ∃y. (21.y = 5.x + 2) ≡
(23−1.(5.x+ 2) = 0) ≡ (4.x = 0)

Lemma 3. Let A be the conjunction of m LMEs of the form 2ki · x1 = ti,
where i ranges from 1 through m. Then ∃x1. A can be equivalently expressed as
a conjunction of LMEs each of which is free of x1.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing ∃y. ((21y = 5x + 2) ∧(22y = 5x + 6z) ∧(21y = 2x + 4)). This
can be equivalently expressed as ∃y. ((2y = 5x + 2) ∧(2 · (5x + 2) = 5x + 6z)
∧(5x + 2 = 2x + 4)). Simplifying modulo 8, we get ∃y. ((2y = 5x + 2)) ∧(5x +
2z = 4) ∧ (3x = 2). Using Lemma 2, we obtain the final result as (4x = 0)
∧(5x+ 2z = 4) ∧ (3x = 2).

Lemma 4. Let A be the conjunction of r LMCs of the form 2ki ·x1 ⊲⊳ ti, where
⊲⊳∈ {=, 6=} and i ranges from 1 through r. Let 2k1 · x1 = t1 be the LME with
the minimum ki among all LMEs in A. Then ∃x1. A ≡ ψ1 ∧ ∃x1. ψ2, where ψ1

is a conjunction of LMCs independent of x1, and ψ2 is a conjunction of LMCs
with at most one LME 2k1 · x1 = t1. In addition, ψ2 contains only those LMDs
in A in which the coefficient of x1 is of the form 2ki , where ki < k1.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing ∃y. ((21y = 5x + 2) ∧(22y = 5x + 6z) ∧(21y 6= 2x + 4) ∧(20y 6=
6x+7z)). This can be equivalently expressed as ∃y. ((2y = 5x+2) ∧(2·(5x+2) =
5x + 6z) ∧(5x + 2 6= 2x + 4) ∧(y 6= 6x + 7z)). Simplifying modulo 8, we get
(5x+ 2z = 4)∧ (3x 6= 2) ∧∃y. ((2y = 5x+ 2)∧ (y 6= 6x+ 7z)). Note that ψ1 and
∃x1. ψ2 here are (5x+2z = 4)∧ (3x 6= 2) and ∃y. ((2y = 5x+2)∧ (y 6= 6x+7z))
respectively.

The above results immediately yield two simple algorithms: (a) QE1 1LME
that takes an LME and a variable to quantify out, and returns the equivalent
quantifier-free formula (based on Lemma 2), and (b)QE1 Layer1 that takes a
conjunction of LMCs and a variable x1 to quantify out and returns the equivalent
conjunction of ψ1 and ∃x1.ψ2 (as given by Lemma 4).

If the ki’s of all LMDs in A are such that k1 ≤ ki, then ∃x1. ψ2 reduces
to ∃x1. (2

k1 · x1 = t1). According to Lemma 2, this is equivalent to 2p−k1 ·
t1 = 0. Hence, in this case, algorithms QE1 Layer1 and QE1 1LME suffice to
compute ∃x1. A. In general, however, ∃x1. ψ2 may contain LMDs containing x1

that require further processing before x1 is eliminated. We describe techniques
for doing this in the following subsections.

2.1 Dropping Unconstraining LMDs

We now consider the problem of simplifying ∃x1. ψ2 obtained above, when ∃x1. ψ2

contains LMDs. Let ψ2 ≡ ξ ∧ λ, where λ is an LMD and ξ is a conjunction of
LMCs. We say that λ is unconstraining in ∃x1. ψ2 iff ∃x1. (ξ ∧ λ) ≡ ∃x1. ξ. Un-
constraining LMDs can simply be dropped from ∃x1. ψ2, thereby simplifying the
task of QE. Unfortunately, identifying all unconstraining LMDs from ψ2 involves
invoking an SMT solver for quantified bit-vector formulas. In this subsection, we
present a sound technique for identifying a subset of unconstraining LMDs in
∃x1. ψ2. Our approach exploits the fact that an LMD is satisfied even if a single
bit in the left-hand side of the LMD differs from the corresponding bit in the

right-hand side. We therefore propose to identify LMDs in ∃x1. ψ2 that can be
satisfied by selectively assigning values to specific bits of x1, without causing
any other LME or LMD in ∃x1. ψ2 to be violated. Since x1 is existentially quan-
tified, these LMDs are effectively unconstraining in ∃x1. ψ2. We illustrate this
idea below through an example.

Consider the problem ∃x. (ξ∧λ) where ξ ≡ (4x = 6y+2z)∧ (2x 6= 2y+4z)∧
(2x 6= 6y + 6z) and λ ≡ (x 6= y + z), and all LMCs have modulus 8. For clarity
of exposition, we use the notation x[i] to denote the ith bit of a bit-vector x, and
adopt the convention that x[0] denotes the least significant bit of x. We claim
that any solution of ξ can be “engineered” by possibly modifying the value of x[2]
to give a solution of ξ ∧ λ, and vice versa. In order to see why this is true, note
that the LME 4x = 6y + 2z constrains only x[0] and the LMDs (2x 6= 2y + 4z),
(2x 6= 6y+6z) constrain only x[0] and x[1]. Therefore, the value of x[2] does not
affect satisfaction of ξ. Any solution of ξ can therefore be engineered to a solution
of ξ∧λ by ensuring that x[2] differs from the most-significant bit of y+z. Hence,
∃x. (ξ) ⇒ ∃x. (ξ ∧ λ). The converse, i.e. ∃x. (ξ ∧ λ) ⇒ ∃x. (ξ) obviously holds.
Hence in this example, (x 6= y + z) is an unconstraining LMD in ∃x. (ξ ∧ λ).

DropLMDSimple(E, D, x1)
core ← E;
while(core 6= E ∪ D)

if (isExt(core, E ∪ D, x1))
return core;

else
d ← getLstCnstr(D\core);
core ← core ∪ d;

return core;

DropLMDWithSMT(E, D, x1)
while(true)
impl ← NULL;
for each LMD d ∈ D

if (E ∪ (D\d) ⇒d)
impl ← d; break;

if (impl = NULL)
break;

D ← D\impl;
return E∪D;

Fig. 2. Algorithms to drop unconstraining LMDs

The above idea leads to a simple algorithm, called DropLMDSimple, shown
in Fig. 2. This algorithm takes as inputs a set of LMEs E, a set of LMDs D,
and a variable x1 to be quantified from the conjunction of all LMCs in E ∪D.
Algorithm DropLMDSimple returns a subset of LMCs in E ∪ D such that the
result of quantifying x1 from the conjunction of LMCs in this subset is equivalent
to the result of quantifying x1 from the conjunction of LMCs in E ∪D.

Algorithm DropLMDSimple computes the desired subset in a variable core
that is initialized to E. Subsequently, it determines if any solution to the con-
junction of LMCs in core can be engineered by modifying specific bits of x1 to
give a solution to the conjunction of LMCs in E∪D. This is achieved by invoking
a function isExt. If such an engineering is indeed possible, then all LMDs not
in core are unconstraining, and algorithm DropLMDSimple returns core. Other-
wise we identify the LMDs in D \ core whose truth depends on the least number
of bits of x1 using a function getLstCnstr. Intuitively, these LMDs are the most
difficult ones to satisfy among the LMDs in D \ core. These LMDs are then
included in core and the process repeats. Clearly, algorithm DropLMDSimple
terminates since core cannot have more LMCs than those in E ∪D.

Since each LMD is of the form 2ki ·x1 6= ti, the LMD with the largest ki is the
one whose truth depends on the least number of bits of x1. This gives a simple
implementation of function getLstCnstr. One possible implementation of isExt
is through the use of an SMT solver that checks if one quantified formula implies
another quantified formula. However, this is inefficient in general. Instead, we
propose an implementation of isExt based on the following Lemma.

Lemma 5. Let kcore be the smallest among the ki’s of all LMCs in core. Let
D \ core be expressed as {(2k1 · x1 6= t1), . . . , (2

kn · x1 6= tn)}. If η = 2kcore −
n
∑

i=1

2ki ≥ 1, any solution to the conjunction of LMCs in core can be engineered

to give a solution to the conjunction of LMCs in E ∪D.

We give a sketch of the proof of Lemma 5 here. Let C1 and C2 be the conjunction
of LMCs in core and the conjunction of LMDs outside core respectively. Let π
be any solution to C1. π constrains only the bits x[0] through x[p − kcore − 1].
Hence there are 2kcore ways in which bits x[p − 1] through x[p − kcore] can be
assigned values such that π remains as a solution to C1. It can be shown that

η = 2kcore−
n
∑

i=1

2ki under-approximates the number of ways in which bits x[p−1]

through x[p − kcore] can be assigned values such that π becomes a solution to
C2 and remains as a solution to C1. Therefore if η ≥ 1, there exists at least one
assignment of values to bits x[p− 1] through x[p− kcore] such that π becomes a
solution to the conjunction of LMCs in E ∪D.

DropLMDSimple may not be able to identify all the unconstraining LMDs
in ∃x1. ψ2. For example, consider the problem ∃x. ((2x = y) ∧ (x 6= 2y) ∧ (x 6=
y)), where all LMCs have modulus 8. We have, core = {2x = y}, kcore = 1,
k1 = k2 = 0. Therefore, η = 0 and DropLMDSimple identifies that it is not
possible in general to engineer a solution of (2x = y) to give a solution of
(2x = y) ∧ (x 6= 2y) ∧ (x 6= y) by assigning values to specific bits of x. Hence,
DropLMDSimple cannot identify any LMD to drop. However, it can be seen that
(2x = y) ∧ (x 6= 2y) ⇒ (x 6= y). Hence ∃x. ((2x = y) ∧ (x 6= 2y) ∧ (x 6= y)) ≡
∃x. ((2x = y) ∧ (x 6= 2y)). Once x 6= y is dropped, DropLMDSimple can further
reduce ∃x. ((2x = y) ∧ (x 6= 2y)) to ∃x. (2x = y). Based on this idea, we present
an algorithm to drop implied LMDs called DropLMDWithSMT (see Fig. 2). The
notation used in this algorithm is the same as used in algorithm DropLMDSimple.
The implication check in DropLMDWithSMT requires invoking an SMT solver,
in general.

We now present an algorithm QE1 Layer3 which drops LMDs from ∃x1. ψ2

using DropLMDSimple and DropLMDWithSMT. Given ∃x1. ψ2, QE1 Layer3 ini-
tially employs DropLMDSimple to drop unconstraining LMDs. If there still exist
LMDs, DropLMDWithSMT is applied to identify the implied LMDs and drop
them. If there exist LMDs in the output of DropLMDWithSMT, it is given to
DropLMDSimple. Thus finally, we are left with a conjunction of LMCs ψ′2 with
possibly fewer LMDs compared to ψ2, while guaranteeing that ∃x1. ψ2 ≡ ∃x1. ψ

′
2.

The algorithms QE1 Layer1, DropLMDSimple and QE1 Layer3 form the
first three layers of our layered QE algorithm. We present in Fig. 3, a proce-

dure QE1 Layers1To3 which tries to compute ∃x1. A using these layers. Ini-
tially QE1 Layer1 is called to reduce ∃x1. A to ψ1 ∧ ∃x1. ψ2. If ψ2 is free of
LMDs, QE1 1LME is called to compute ∃x1. ψ2 and hence ∃x1. A is computed
by the first layer itself. If ψ2 is not free of LMDs, QE1 Layers1To3 initially calls
DropLMDSimple and later on QE1 Layer3 (if required) to drop the LMDs. If
all the LMDs in ∃x1. ψ2 are dropped by DropLMDSimple (QE1 Layer3), ∃x1. A
gets computed in the second (third) layer. Otherwise, QE1 Layers1To3 returns
ψ1 ∧ ∃x1. ψ

′
2 such that ψ1 ∧ ∃x1. ψ

′
2 ≡ ∃x1. A. The techniques to compute such

(harder) instances of ∃x1. A are presented in the following subsection.

2.2 Splitting and Model Enumeration

Let us have a closer look at the instances of ∃x1. A which cannot be computed
by QE1 Layers1To3. The difficulty in QE in such cases arises from the fact that
there are no LMEs constraining some of the bits of x1 constrained by the LMDs.
For example, consider the problem of computing ∃x. ((2x = a)∧(x 6= b)∧(x 6= c))
where all the LMCs have modulus 8. The LME (2x = a) constrains only the
bits x[1] and x[0] whereas the LMDs constrain the bits x[0], x[1] and x[2]. It
can be observed that in this example, QE cannot be performed by the proce-
dure QE1 Layers1To3. We describe two techniques to compute such instances
of ∃x1. A - Splitting and Model Enumeration4.

Splitting is based on the observation that each LMD 2ki · x1 6= ti in A
can be equivalently expressed as the disjunction of two constraints - an LMD
(2k ·x1 6= 2k−ki ·ti) and a conjunction ((2k ·x1 = 2k−ki ·ti)∧(2ki ·x1 6= ti)) where
ki < k. This converts A into A1 ∨ . . . ∨ An where each Ai is a conjunction of
LMCs. ∃x1. A is thus equivalent to ∃x1. A1∨. . .∨∃x1. An where each subproblem
∃x1. Ai is potentially simpler to compute than the original problem ∃x1. A. For
example, in the previous problem, the LMD (x 6= b) can be split into (2x 6=
2b) ∨ ((2x = 2b) ∧ (x 6= b)) converting the problem into ∃x. ((2x = a) ∧ (2x 6=
2b) ∧ (x 6= c)) ∨ ∃x. ((2x = a) ∧ (2x = 2b) ∧ (x 6= b) ∧ (x 6= c)).

Model Enumeration is based on the observation that ∃x1. A can be equiva-
lently expressed as A|x1←0 ∨ . . . ∨ A|x1←2p−1 (where A|x1←i denotes A with x1

replaced by constant i).
We call (i) the procedure which makes use of Splitting and Model Enumera-

tion to compute ∃x1. A as QE1 Layer4 and (ii) the procedure which makes use
of QE1 Layer4 to compute ∃x1 · · · ∃xt. A as QE Layer4.

We present in Fig. 3 the algorithm QE LMC which computes ∃x1 · · · ∃xt. A
using QE1 Layers1To3 and QE Layer4. QE LMC initially tries to eliminate
the quantified variables x1, . . . , xt one by one by applying the cheaper procedure
QE1 Layers1To3. The variables which cannot be eliminated by QE1 Layers1To3
are collected in a set Y. It can be observed that after the for loop in QE LMC,
∃x1 · · · ∃xt. A can be equivalently expressed as ϕ1 ∧ ∃Y. ϕ2 where ϕ1 and ϕ2

are conjunctions of LMCs (using a procedure scopeReduce in Fig. 3). ∃Y. ϕ2 is
computed by QE Layer4 which is conjoined with ϕ1 to obtain the final result.

4 For all the benchmarks we have experimented with, Splitting and Model Enumeration
were never required to eliminate quantifiers. Hence they are only briefly described
here.

QE Layer4 computes the result as a disjunction of conjunctions of LMCs. Hence
the result here is, in general a Boolean combination of LMCs.

QE1 Layers1To3(A, x1)
ψ1 ∧ ∃x1. ψ2 ← QE1 Layer1 (A, x1);
if (ψ2 is free of LMDs)

return (ψ1∧ QE1 1LME (ψ2, x1));
else
e ← LME in ψ2;
ψD,2 ← set of LMDs in ψ2;
if(DropLMDSimple({e}, ψD,2, x1) = {e})

return (ψ1∧ QE1 1LME (e, x1));
else
ψ′2 ← QE1 Layer3 ({e}, ψD,2, x1);
if(ψ′2 = e)

return (ψ1∧ QE1 1LME (e, x1));
else return (ψ1 ∧ ∃x1. ψ

′
2);

QE LMC(A, {x1, . . . , xt})
Y ← {};
for each xi ∈ {x1, . . . , xt}
A′ ← QE1 Layers1To3 (A, xi);
if(A′ is free of xi)
A ← A′;

else /*A′ ≡ ψ1 ∧ ∃x1. ψ
′
2*/

A ← ψ1 ∧ ψ
′
2;

Y ← Y ∪ {xi};
ϕ1 ∧ ∃Y. ϕ2 ← scopeReduce(A, Y);
ϕ′2 ← QE Layer4 (ϕ2, Y);
return ϕ1∧ ϕ

′
2;

Fig. 3. Procedures QE1 Layers1To3 and QE LMC

3 Boolean Combinations of LMCs

The QE algorithm QE LMC accepts a conjunction of LMCs. In this section,
we explore two approaches for extending QE LMC to Boolean combinations of
LMCs: Decision Diagram (DD) based approach and DAG based (SMT solving
based) approach.

3.1 Quantifier Elimination by DD Based Approach

We introduce a data structure called Linear Modular Decision Diagram (LMDD)
which represents Boolean combinations of LMCs. They are BDDs [4] with nodes
labeled with LMEs. The problem we wish to solve in this subsection can be for-
mally stated as follows. Given an LMDD f representing a Boolean combination
of LMCs over a set of variables X, we wish to compute an LMDD g ≡ ∃V. f
where V ⊆ X.

The algorithms presented in this subsection use the following procedures. a)
createLMDD : Creates an LMDD from a DAG representing a Boolean combina-
tion of LMCs, b) isUnsat : Returns true if the conjunction of LMCs in the given
set is unsatisfiable and false otherwise, d) getConjunct : Given a set of LMCs ϕ,
returns the conjunction of LMCs in ϕ, e) AND, OR, NOT, ITE : Perform the
basic operations on LMDDs indicated by their names. We denote a non-terminal
LMDD node f as (P (f),H(f), L(f)) where P (f) is an LME, and H(f), L(f)
are the high child and low child respectively as defined in [4].

A straightforward procedure to compute ∃V. f is to apply QE LMC to each
path in f similar to Black-box QE on Linear Decision Diagrams described in
[1]. However, as observed in [1], this technique is not amenable to dynamic
programming and the number of recursive calls to the procedure is linear in the
number of paths in f (which is bad).

In the following text, we present a more efficient procedure QuaLMoDE
to compute ∃V. f . QuaLMoDE makes use of a procedure QE1 LMDD which

eliminates a single variable v from f (see Fig. 4). To compute ∃v. f , we call
QE1 LMDD with arguments f , { }, { }, v. QE1 LMDD performs recursive traver-
sal of f carrying along each path, the set of LMEs E and the set of LMDs D
containing v, encountered on the path so far (called the context). However, it
tries to simplify f using E in the following way.

When QE1 LMDD is called with arguments f , E, D, v, we wish to com-
pute ∃v. (f ∧ CE ∧ CD), where CE and CD denote the conjunctions of LMEs
in E and LMDs in D respectively. Using Lemma 1, E can be expressed as
{(2k1 · v = t1), . . . , (2

kn · v = tn)}. Without loss of generality, let k1 be the mini-
mum among k1, . . . , kn. Let g be an internal non-terminal node of f denoted as
(P (g),H(g), L(g)) with P (g) expressed as (2k · v = t) such that k ≥ k1. It can
be observed that g can be simplified to

(

(2k−k1 · t1 = t),H(g), L(g)
)

using the
LME (2k1 · v = t1). The procedures selectLME and simplifyLMDD (see Fig. 4)
respectively perform the selection of LME with the minimum k among the LMEs
in E and simplification of f using the selected LME e1 as described above. The
procedure applyL1 in Fig. 4 returns an LME equivalent to the argument LME
using Lemma 1.

It can be observed that simplifyLMDD does not require propagation of the
context. If the same LMDD node is encountered with the same LME following
two different paths, the results of the calls are the same. Hence simplifyLMDD
can be implemented with dynamic programming.

Note that if simplifyLMDD is successful in eliminating all occurrences of
variable v using the LME selected, QE1 LMDD returns without any further re-
cursive calls. The procedure QE1 LMDD can be repeatedly invoked to compute
∃V. f . This is implemented in the procedure QuaLMoDE.

3.2 Quantifier Elimination by DAG Based Approach

The problem we wish to solve in this subsection is the following. Given a DAG f
representing a Boolean combination of LMCs over a set of variables X, we wish
to compute a DAG g ≡ ∃V. f where V ⊆ X.

We present an algorithm Monniaux to compute ∃V. f which is a simple exten-
sion of the algorithm EXISTELIM in [2]. EXISTELIM as given in [2] computes
∃V. f where f is a Boolean combination of linear inequalities over reals. A naive
way of computing this is by converting f to DNF by enumerating all satisfying
assignments, and by using a QE technique for conjunctions of linear inequal-
ities. EXISTELIM improves upon this by generalizing a satisfying assignment
to obtain a cube of satisfying assignments, and by projecting the cube on the
remaining variables (not in V) before its complement is conjoined with f and
further satisfying assignments are found.

Our algorithm Monniaux is an extension of the algorithm EXISTELIM with
the following changes. a) The predicates are LMCs, not linear inequalities over
reals, b) the projection algorithm PROJECT [2] is replaced by QE LMC, and c)
the algorithm GENERALIZE2 [2] for generalization of conjunctions is replaced
by an algorithm GENERALIZE2 LMC.

Given a formula G and a conjunction M of literals of G such that M ⇒ ¬G,
the algorithm GENERALIZE2 removes unnecessary literals from M and returns

QE1 LMDD(f, E, D, v)
if (f = 0 ∨ isUnsat(E ∪ D))
return 0;

if (f = 1)
return createLMDD(QE LMC
(getConjunct(E ∪ D), {v}));

if (E 6= φ)
e1 ← selectLME (E);
f’ ← simplifyLMDD(f, v, e1);
if (f’ is free of v)

return AND(f’, createLMDD
(QE LMC (getConjunct(E ∪ D), {v})));

else
f’ ← f;

e ← P(f’);
if (e is free of v)

return ITE (e, QE1 LMDD(H(f’), E, D, v),
QE1 LMDD(L(f’), E, D, v));

else
return OR
(QE1 LMDD(H(f’), E ∪ {e}, D, v),
QE1 LMDD(L(f’), E, D ∪{¬e}, v));

simplifyLMDD(f, v, e1)
if (f = 1 or f = 0)
return f;

e ← P(f);
if (e is free of v)

return ITE (e,
simplifyLMDD(H(f), v, e1),
simplifyLMDD(L(f), v, e1));

else
(2k · v = t)← applyL1 (e, v);
(2k1 · v = t1)← applyL1 (e1, v);
if (k ≥ k1)

return ITE (2k−k1 · t1 = t,
simplifyLMDD(H(f), v, e1),
simplifyLMDD(L(f), v, e1));

else
return ITE (e,
simplifyLMDD(H(f), v, e1),
simplifyLMDD(L(f), v, e1));

Fig. 4. Algorithms QE1 LMDD and simplifyLMDD

M ′ such that M ⇒ M ′ and M ′ ⇒ ¬G. However, in our experiments, we have
found that GENERALIZE2 is prohibitively time consuming as it involves SMT
solver calls equal to the number of literals in M .

Our algorithm GENERALIZE2 LMC works in the following way. Note that
M assigns a Boolean value to each atomic predicate of the formula ¬G. We
evaluate the propositional skeleton (DAG representation of the propositional
structure) P of ¬G using these Boolean values assigned to the atomic predicates.
This assigns a Boolean value bn to each node n in P . We now find the subset Sn

of literals in M which is sufficient to evaluate n to bn. Let Sr be the set of literals
found in this way for the root r of P . Let M ′ be the conjunction of literals in
Sr. It is easy to see that M ⇒ M ′ and M ′ ⇒ ¬G. We illustrate this idea with
the help of an example. Let ¬G be the formula ite(A,B,C) ∨ ite(D,E, F) and
let M be A∧B ∧¬C ∧¬D ∧¬E ∧F where A, B, C, D, E and F are LMCs. It
is easy to see that the set of literals {A,B} is sufficient to evaluate ite(A,B,C)
to true. Similarly {¬D,F} is sufficient to evaluate ite(D,E, F) to true. Hence,
it follows that {A,B} (or {¬D,F}) is sufficient to evaluate ¬G to true. Hence
GENERALIZE2 LMC returns A ∧B (or ¬D ∧ F) as M ′.

4 Experimental Results

We conducted three sets of experiments a) to evaluate QuaLMoDE, Monniaux
and QE LMC, b) to compare the performance of QE LMC with alternative QE
techniques and c) to evaluate the utility of our QE algorithms in verification.

The experiments are performed on a 1.83 GHz Intel(R) Core 2 Duo machine
with 2GB memory running Ubuntu 8.04. We have implemented our own LMDD

package for carrying out the QE experiments by DD based approach. In our
implementation, we convert LMDs with modulus 2 to equivalent LMEs as a
simplification step. Hence, in this section “LMD” refers to LMD with modulus
greater than 2.
Evaluation of QuaLMoDE, Monniaux and QE LMC : In order to eval-
uate QuaLMoDE and Monniaux, we used a benchmark suite consisting of 210
real benchmarks and 212 artificial benchmarks. The real benchmarks are derived
from real word-level VHDL designs. We created these benchmarks by obtaining
the transition relations (R) of these designs and then (i) computing abstract
transition relation by quantifying out the internal variables of the design from
R, (ii) computing the set of states reachable in 2i steps using iterative squaring.

We observed a significant number of LMDs in these benchmarks when ex-
pressed in Negation Normal Form (NNF) (see Fig. 5(a)). In order to generate
the artificial benchmarks, we selected some of the real benchmarks and some
SMTLib benchmarks from the category QF BV/bruttomesso/simple processor/
of the SMTLib fixed size bit-vector benchmarks [10] and used different random
choices for the set of variables to be eliminated5. The number of variables (N),
number of variables to be eliminated (E) and the number of bits to be eliminated
in the benchmarks range from 3 to 175, 1 to 170 and 1 to 1265 respectively.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

N
um

be
r

of
 L

M
D

s
in

 N
N

F

Benchmark

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

M
on

ni
au

x
T

im
e

(S
ec

on
ds

)

QuaLMoDE Time (Seconds)

TO

TO

75 <= N - E
N-E < 75 & E/N <= 0.5

N-E < 75 & E/N > 0.5

Fig. 5. Plots showing (a) significant number of LMDs in the real benchmarks. (b)
QuaLMoDE Time Vs Monniaux Time (TO : > 900 seconds)

We measured the QE time by QuaLMoDE and Monniaux for each bench-
mark (For QuaLMoDE, this includes the time taken to build the LMDD also). It
is observed that (see Fig. 5(b)), for the benchmarks with N −E below a certain
threshold t1 and E/N above a certain threshold t2, Monniaux performs better
than QuaLMoDE in most of the cases (For our benchmark suite, t1 and t2 were
empirically estimated as 75 and 0.5 respectively). For the other benchmarks,
QuaLMoDE outperforms Monniaux. It is also observed that, for the bench-
marks with t1 ≤ N − E, Monniaux times out irrespective of E/N . We figured
out that this is due to the following reasons. (i) For the benchmarks with low
N − E and high E/N , the interleaving of projection inside model enumeration

5 The SMTLib benchmarks contain bit-vector operators like selection and concatena-
tion which our work does not address. We introduced a fresh variable to denote the
result of each such operator.

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250

C
al

ls
 to

 L
ay

er
s

in
 M

on
ni

au
x

+
 1

Benchmark

Layer 1
Layer 2

 1

 10

 100

 1000

 0 50 100 150 200 250

C
al

ls
 to

 L
ay

er
s

in
 Q

ua
LM

oD
E

 +
 1

Benchmark

Layer 1
Layer 2

Fig. 6. Contribution of the layers in QE LMC

in Monniaux simplifies the problem considerably whereas for the other bench-
marks this simplification is not substantial. (ii) The single variable elimination
strategy in QuaLMoDE results in more calls to QE1 LMDD from QuaLMoDE
for benchmarks with low N − E and high E/N .

The number of calls to QE LMC from QuaLMoDE and Monniaux while
performing QE from the real benchmarks ranges from 1 to 205 and 1 to 3842 re-
spectively. We observed that a considerable number of these calls contain LMDs.
The average number of LMDs in these QE LMC calls from QuaLMoDE and
Monniaux ranges from 0 to 12.2 and 0 to 18.8 respectively and the average of
the ratio of the number of LMEs to the number of LMDs ranges from 0 to 1 and
0.19 to 23.4 respectively.

We evaluated the contribution of different layers of QE LMC in performing
QE from the real benchmarks. It was observed that all the quantifiers were
eliminated by the first two layers - without even a single call to QE1 Layer3 or
QE Layer4. A large fraction of the calls to QE1 Layers1To3 were solved by the
first layer itself and the remaining by the second layer (see Fig. 6)6.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1 10 100 1000 10000

B
V

_S
ol

ve
 T

im
e

(S
ec

on
ds

)

QE_LMC Time (Seconds)

TO

TO

Odd
Even

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

O
m

eg
a

T
es

t T
im

e
(S

ec
on

ds
)

QE_LMC Time (Seconds)

TO

TO

Fig. 7. Plots comparing (a) QE LMC with BV Solve (b) QE LMC with Omega Test
(TO : > 900 seconds)

Comparison of QE LMC with alternative QE techniques : We com-
pared the performance of QE LMC with QE based on Presburger Arithmetic
using Omega Test and QE based on bit-blasting (see Fig. 7). In the latter case,
we have used a procedure BV Solve which performs the elimination of quanti-

6 Note that the y-axis of both the plots are in log-scale. One is added to the y-values
to include the points with no calls to the second layer.

fied variables appearing with odd coefficients in LMEs using the ideas described
in [6] followed by bit-blasting and bit-level QE using [11]. We used a set of
405 benchmarks which are instances of the QE problem at conjunction level -
371 of them arise from QuaLMoDE/Monniaux when QE is performed on the
real benchmarks and 34 are randomly generated. Our results clearly demon-
strate that QE LMC outperforms these alternative QE techniques. In Fig. 7(a),
a benchmark is labeled “Odd” if each quantified variable in it appears with odd
coefficient in at least one LME and “Even” otherwise. Our results demonstrate
that BV Solve performs comparable to QE LMC for the “Odd” benchmarks,
but not for the “Even” ones. This is not surprising; since BV Solve uses the
technique from [6] to eliminate variables whenever possible before bit-blasting,
it is able to eliminate variables without any bit-blasting for all “Odd” bench-
marks. In contrast, BV Solve has to bit-blast for “Even” benchmarks, thereby
performing poorly.
Utility of our QE algorithms in verification : In order to evaluate the
utility of our QE algorithms, we used QuaLMoDE to compute abstract tran-
sition relations when doing BMC of word-level VHDL designs. We derive the
transition relation R of the design and then for each BMC frame i, we obtain a
slice Ri of R containing only relevant part of R for this frame. Next we elimi-
nate a chosen subset of variables (subset of internal variables) from Ri to obtain
R′i using QuaLMoDE as well as QBV Solve (an extension of BV Solve using
the DD based approach). The final unrolled constraint is a conjunction of the
different R′is computed by QuaLMoDE/QBV Solve which after conjoining with
the negation of the property is given to an SMT solver for proving/refuting.
The SMT solver used is simplifyingSTP [12]7. Table 1 gives a summary of these
results. The designs machine 1 to machine 12 are modified versions of publicly
available benchmarks obtained from [9]. The remaining designs are proprietary
and were obtained from safety critical applications used in nuclear reactors. They
are control-oriented designs with wide data paths. Our results clearly demon-
strate (i) the significant performance benefit of using abstract transition relations
computed by QuaLMoDE in these verification exercises and (ii) the performance
upper hand of QuaLMoDE over QBV Solve in computing the abstract transi-
tion relations particularly for designs involving constant multiplications with
even coefficients and large bit widths.

Our QE algorithms can be used for solving Boolean combinations of LMCs
by quantifying out all the variables. However our preliminary experiments sug-
gest that this approach is not competitive with DPLL-style SMT solvers or
bit-blasting followed by QBF solving.

5 Conclusion

In this paper, we tackled the QE problem for LMCs. Our main contributions are
: (i) A bit-blasting-free QE algorithm for conjunctions of LMCs which is later
extended to QE algorithm for Boolean combination of LMCs, (ii) comparison of

7 We selected simplifyingSTP because (i) it is the winner of SMT-COMP 2010 bit-
vector category and (ii) it has a variable eliminator implemented as per [6].

Table 1. Experimental Results on VHDL Programs

Design LOC SS TR
UNR=500

NA QL QB

machine 1 363 8 (371, 20, 547) TO(TO) 98(4, 27) TO(TO, -)
machine 2 373 6 (371, 19, 341) TO(TO) 70(2, 0) TO(TO, -)
machine 3 383 7 (395, 22, 344) TO(TO) 75(3, 3) TO(TO, -)
machine 4 253 4 (235, 19, 515) 1497(1418) 79(1, 0) TO(TO, -)
machine 5 253 4 (235, 19, 387) 1527(1451) 76(1, 0) TO(TO, -)
machine 6 363 4 (242, 15, 56) 122(80) 41(0, 0) 52(2, 3)
machine 7 379 5 (270, 20, 61) 206(152) 52(3, 1) 66(3, 5)
machine 8 251 2 (170, 13, 83) 225(195) 30(1, 1) 35(4, 1)
machine 9 251 3 (170, 13, 323) TO(TO) 30(1, 1) 53(28, 1)
machine 10 363 5 (242, 15, 356) TO(TO) 40(1, 0) 63(13, 3)
machine 11 363 6 (352, 22, 96) TO(TO) 97(1, 7) 98(2, 24)
machine 12 363 5 (242, 15, 356) TO(TO) 478(8, 427) TO(TO, -)

board 1 404 4 (265, 13, 163) 1455(1426) 51(24, 0) TO(TO, -)
board 2 373 3 (283, 13, 163) TO(TO) 66(49, 0) TO(TO, -)
board 3 503 4 (284, 13, 190) TO(TO) 67(44, 0) TO(TO, -)
board 4 415 3 (272, 11, 31) 362(229) 111(10, 3) 215(104, 13)

All times are in seconds. TO : > 1800 seconds, LOC : Lines of code, SS : Symbolic simulation
time, TR : Transition relation details (dag size, number of variables, number of bits), NA :

Without abstraction : total time (simplifyingSTP time), QL : With QuaLMoDE for abstraction :
total time (QuaLMoDE time, simplifyingSTP time), QB : With QBV Solve for abstraction : total
time (QBV Solve time, simplifyingSTP time) (for NA, QL and QB most of the remaining time is

spent in slicing - we use a naive implementation of slicer), UNR : Number of BMC unrollings

our approach with alternative techniques and the identification of a simple-to-
use criteria for choosing the right QE approach for a given problem instance. We
propose to study QE from linear modular inequalities as part of future work.
Acknowledgements : We would like to thank Trevor Hansen and Vijay Ganesh
for providing us with the latest version of simplifyingSTP. We also thank Mukesh
Sharma, Ashutosh Kulkarni, Rajkumar Gajavelly and Nachiket Vaidya for their
valuable support. We convey our special acknowledgement to Anup Bhattachar-
jee and S.D.Dhodapkar for their indispensable help and support.

References

1. S. Chaki, A. Gurfinkel, O. Strichman. Decision diagrams for linear arithmetic, In
FMCAD 2009

2. D. Monniaux. A quantifier elimination algorithm for linear real arithmetic, In
LPAR 2008

3. D. Kroening, O. Strichman. Decision procedures : an algorithmic point of view,
Texts In Theoretical Computer Science, Springer 2008

4. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, 1986

5. W. Pugh. The Omega Test : a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM, Pages 102-114, 1992

6. V. Ganesh, D. Dill. A decision procedure for bit-vectors and arrays, In CAV 2007
7. H. Jain, E. M. Clarke, O. Grumberg. Efficient Craig interpolation for linear dio-

phantine (dis)equations and linear modular equations, In CAV 2008
8. V. Ganesh, S. Berezin, D. Dill. Deciding Presburger arithmetic by model checking

and comparisons with other methods, In FMCAD 2002
9. ITC’99 benchmarks, http://www.cad.polito.it/downloads/tools/itc99.html

10. SMTLib website, http://goedel.cs.uiowa.edu/smtlib/
11. CUDD release 2.4.2 website, vlsi.colorado.edu/∼fabio/CUDD
12. STP website, http://sites.google.com/site/stpfastprover/
13. http://www.cse.iitb.ac.in/∼supratik/software/qualmode

