FMSD manuscript No.
(will be inserted by the editor)

A Layered Algorithm for Quantifier Elimination from Linear
Modular Constraints

Ajith K/ John - Supratik Chakraborty

Received: date / Accepted: date

Abstract Linear equalities, disequalities and inequalities on fixédth bit-vectors, collec-
tively called linear modular constraints, form an impottaagment of the theory of fixed-
width bit-vectors. We present a practically efficient andgsecise algorithm for quantifier
elimination from conjunctions of linear modular consttairOur algorithm uses a layered
approach, whereby sound but incomplete and cheaper layeirs/aked first, and expensive
but complete layers are called only when required. We théenelxthis algorithm to work
with arbitrary boolean combinations of linear modular deaists as well. Experiments on
an extensive set of benchmarks demonstrate that our te@mgjgnificantly outperform
alternative quantifier elimination techniques based otblaisting and linear integer arith-
metic.

Keywords Quantifier Elimination Linear Modular Arithmetic Bit-precise Verification
Decision Diagrams Layered Algorithm

1 Introduction

Quantifier elimination (QE) is the process of convertinggiddormula containing quanti-
fiers into a semantically equivalent quantifier-free foraaormally, letF be a quantifier-
free formula over a st of free variables in a first-order theofly Consider the quantified
formulaQ1x1 Q22 ... QnXn. F, whereX = {x,...xn} is a subset o¥/, andQ; € {3,V} for
i € {1,...n}. QE involves computing a quantifier-free formu#4 over variables itV \ X

This is an extended version of our earlier works in CAV 2014] @d TACAS 2013 [35].

Ajith K John

Homi Bhabha National Institute, BARC, Mumbai, India
Tel.: +91-22-25591836

Fax: +91-22-25505151

E-mail: ajithkj.barc@gmail.com

Supratik Chakraborty

Dept. of Computer Sc. & Engg., IIT Bombay, India
Tel.: +91-22-25764787

Fax: +91-22-25720290

E-mail: supratik@cse.iitb.ac.in

2 John-Chakraborty

such thaf’ is semantically equivalent Q1x; Q2Xz ... QnXn. F in theoryT. QE has a num-
ber of important applications in formal verification and lyse of hardware and software
systems. Example applications include image computafiéh fomputation of strongest
post-conditions [36] and computation of predicate absitvas [21].

This paper focuses on existential QE from formulas in an irgw fragment of theory
of bit-vectors [38] called linear modular arithmetic. Fartas in linear modular arithmetic
are Boolean combinations of linear equalities, disegealénd inequalities on fixed-width
bit-vectors. Letp be a positive integer constani, . . . , X, be p-bit non-negative integer vari-
ables, andy, .. .,an be integer constants i{0,...,2P — 1}. A linear term oveiy, ..., X iS
a term of the formay - X; + - - - @y - Xn + a9, Where- denotes multiplication moduloP2and -+
denotes addition moduloP2A linear modular equality (LME) is a constraint of the form
tp =t (mod), wheret; andt, are linear terms ovex, ..., X,. Similarly, a linear mod-
ular disequality (LMD) is a constraint of the fortn#t, (mod 2°), and a linear modular
inequality (LMI) is a constraint of the form it (mod 2°), whereie {<, <}. We will
use linear modular constraint (LMC) to refer to an LME, LMDLdvil. Conventionally 2° is
called the modulus of the LMC. Since every variable in an LMi@&wnodulus 2 represents
a p-bit integer, it follows that a set of LMCs sharing a variablast have the same modulus.
Hence we will assume without loss of generality that whenewe consider a conjunction
of LMCs sharing a variable, all the LMCs have the same modulus

The semantics of LMCs differs from that of linear constraiaver integers in two as-
pects:

1. Wrap-around behaviourThe successor of"2- 1 in modular arithmetic is 0. Hence, if
x = 2P —1, thenx+ 1 modulo 2 overflows and wraps to 0. Due to this wrap-around
behaviour, the formulgx = 3)A(x+ 1 < 2) is satisfiable in linear modular arithmetic
with modulus 4 whereas it is unsatisfiable over integers.

2. Finite domain:Domain of variables in modular arithmetic has finite/bouhdardinality
unlike integer arithmetic where the variables are unbodnéfence the formuléx =
3)A(X <) is unsatisfiable in linear modular arithmetic with modulus/dereas it is
satisfiable over integers.

Efficient techniques for QE from LMCs have applications imnfial verification and
analysis of hardware and software systems. Formal veiditand analysis tools reason
about symbolic transition relations of hardware and saféveystems expressed as formulas
in appropriate logic. Symbolic transition relations of wdevel RTL designs and embedded
programs involve constraints in linear modular arithmetMEs arise from the assignment
statements, whereas LMDs and LMIs arise primarily from bheand loop conditions that
compare words/registers. Key operations such as imagewatign [13], computation of
strongest post-conditions [36] and computation of pradiedstractions [21] performed by
formal verification and analysis algorithms essentialjuee to QE from formulas involving
symbolic transition relation. Symbolic transition retats of RTL designs and embedded
programs in general may involve signed variables with sigmgerations and comparisons
on them. There are standard techniques to convert cortstrith signed semantics into
equisatisfiable constraints with unsigned semantics ample, see page 2 of [27]). In the
remainder of this paper, we assume that all variables angpallations, comparisons are
unsigned.

Our primary motivation for studying QE from LMCs arises fremmunded model check-
ing 3] of word-level RTL designs. As an example, consider siynchronous circuit shown
in Fig.[d, with the relevant part of its functionality dedmd in VHDL. The circuit com-
prises a controller and three 8-bit registeks B, andX. The controller switches between

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 3

three states, 0, 1, and 2. In state 0, the values afidB are read from inputthA andInB
respectively, and are stored in corresponding registeraddlition, the value oK is initial-
ized to 0, and the control moves to state 1. State 1 implenthatgerative algorithm: if
X+ A < B, the value ofX is incremented, that of is doubled, and the circuit continues to
iterate in state 1. If, howeveX + A > B, the circuit checks if the value & equalsB + 1. If
so, the control moves to state 0 via state 2. Otherwise, theaanoves directly to state 0
from state 1.

if (clock’event and clock = ’1’) then
+1 case state is
when "00" => A <= InA;
s MUX 0 MUX | e . B <= InB; X <= x"00"; state <= "01";
when "01" => if (X + A <= B) then
X <= X+'1°; A <= x"02"*A;

elsif (X = B+’1’) then state <= "10";

L else state <= "00"; end if;
when others => state <= "00";
4 end case;
(Io(k—-| STATE MACHINE | end if;

Fig. 1 An example circuit

The symbolic transition relatiorR, for this circuit can be obtained by conjoining the
following equality relations, where primed variables refie values of the corresponding
unprimed variables after the next rising edge of the clock.

state’ = ite(state = 0,1, ite(state = 1,ite(X+ A < B, 1,ite(X =B +1,2,0)),0))
A’ = ite(state = 0,InA ite(state = 1,ite(X + A < B,2-A,A),A))
B’ = ite(state = 0,InB,B)
X' = ite(state = 0,0x00, ite(state = 1,ite(X + A < B, X +1,X), X))

In the above equalitiesy, A’,B,B’,InA, InB, X, andX’ are bit-vectors of width 8, whereas
state andstate’ are bit-vectors of width 2. Furthermore, all operations anchparisons
involving A, A’, B, B, InA, InB, X, andX’ are unsigned operations modul®, and those in-
volving state andstate’ are unsigned operations modufd Sincea = ite(b, c,d) represents
(bA(a=c)) Vv (—bA (a=d)), the transition relatiofR above is a Boolean combination of
LMCs.

The above circuit computes the smallest 8-bit non-negattegerx such that 2 - InA +
X > InB, where all the operations are moduld # the smallest value oX thus computed
is InB + 1, the control enters state 2; otherwise it returns to stateobexample, suppose

InA =1 andinB = 150. Inside state 1, the value Afoverflows to zero after 8 iterations and
remains as zero thereafter. The valueXaé incremented in each iteration until it becomes
151. Now thaiX + A < B is false andX = B + 1 istrue, the control moves to state 2. Observe
that 151 is the smallest 8-bit non-negative integesuch that 2 - 1+ X > 150 modulo 2.

This circuit has the property that if it starts in state Otiige value ofA is always less
than 255 X when it visits state 2. The value &f may exceed 255X and even overflow
during the modulo 2 multiplications in state 1. However, when it reaches state i less
than 255 X. To see why this isrue, observe that in state 2, both+ A > BandX =B+ 1 are
true; henceX+ A > X+ 255 istrue, where 255 is the additive inverse of 1 in modufoRote
that sinceA < 255,X+A > X+ 255 impliesX £ 0. Moreover, sincé < 255, if the operation
X+ A overflows, therK+A < X+ 255 holds foixX # 0. But we haveX + A > X+ 255. Hence

4 John-Chakraborty

the operatiorX + A should not overflow. This implies thatis less than the additive inverse
of X modulo 2. Since 255X is the additive inverse of modulo 2, we haveA < 255. X.

Suppose we wish to verify this property for the fikstime steps of operation of the cir-
cuit using bounded model checking. This involves unrollimg transition relatiom times,
conjoining the unrolled relation with the negation of theperty, and feeding the result-
ing formula to an SMT solver. Observe tHatontains primed and unprimed versions of all
variables in the circuit. Hence, unrollifiga large number of times can give a formula with a
very large number of variables. While the number of variglilean SMT formula is not the
sole determinant of performance of SMT solving, formulagwarge numbers of variables
typically lead to performance bottlenecks in SMT solving.

A common approach to circumventing this problem is to uselstract transition re-
lation R that relates values of only a chosen subset of variablesamdo the property
being checked, while abstracting the relation between tiher wariables. In general, the set
of states reached usirg overapproximates the exact set of reachable states. Dneydf
N-step bounded model checking usiRgfails to give a counterexample, then the property
holds inN steps of operation of the circuit.

In our example, an abstract transition relatircan be obtained by computiatp. 3B’.
JinB. R An equivalent quantifier-free version Bf is given below.

((state = 0) A (state’ = 1) A (A’ = InA) A (X' = 0x00)) Vv
((state = 1) A (state’ = 1) A (A" =2-A)A (X' =X +1)) v
((state = 1) A (state’ =2) A (A" = A)A (X = X) A (X+A > X +255)) vV
((state=1) A(state’ =0) A (A" = A)A(X' =X)A¢) V
((state # 0) A (state # 1) A (state’ = 0) A (A" = A) A (X' = X))

whereg is the disjunction of the formulaX + A # 0) A (X # 1) and(X+ A # 0) A (X # 0) A
(X < X+A+255).

It can indeed be verified that bounded model checking uBininstead ofR) suffices
to show that if the circuit starts in state O, then the valué a$ always less than 25X
when it visits state 2. SincR does not contairB, B’ or InB, the number of variables in
N unrollings of R is less than that itN unrollings of R. This is likely to lead to better
performance of SMT solving during bounded model checkiriggi® than during bounded
model checking usin®. In practice, this often translates to a problem being sbivhin
given time constraints, as opposed to timing out. Sincesttian relations of word-level
RTL designs involve Boolean combinations of LMCs, buildargabstract transition relation
requires existentially quantifying variables from Boalezmbinations of LMCs.

The above example illustrates the potential advantagesinfjlan abstract transition
relation obtained by existentially quantifying a subsetafiables from the original transi-
tion relation. However, the effectiveness of this approdepends crucially on the choice
of variables to quantify, on the availability of efficientteniques to obtain a quantifier-free
version of the abstract transition relation, and on theigual the abstract transition relation
obtained.

For ease of computation, formal verification and analygie@hms abstract variables
in the system to be verified as integers, and use QE techniquegegers|[51]. However
the underlying system implementation often uses moduitimaetic, and as mentioned ear-
lier, the semantics of integer arithmetic differs from to&modular arithmetic. Hence, as
observed inl[7], the results of verification and analysis bgteacting variables as integers
and using QE for integers may not be sound or complete if trieiying implementa-
tion uses modular arithmetic. Therefore, develoiitepreciseandpractically efficientQE
techniques for LMCs is an important problem.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 5

1.1 Contributions

There are two key technical contributions of this work.

1. We present a bit-precise and practically efficient atparmifor eliminating quantifiers
from conjunctions of LMCs. Our algorithm is based on a lageapproach, whereby
sound but incomplete and cheaper layers are invoked firdtegpensive but complete
layers are called only when required. While our algorithrasua final layer of model
enumeration for the sake of theoretical completenessnsixt experiments indicate
that we do not need to invoke this layer on a wide range of bmacks arising in prac-
tice. Experiments also demonstrate the effectiveness oélgorithm over alternative
QE techniques based on bit-blasting and conversion torlinegger arithmetic.

2. We present approaches to extend this algorithm to elimigaantifiers from Boolean
combinations of LMCs. We introduce a new decision diagraiteda.inear Modular
Decision Diagram (LMDD) that represents Boolean comboretiof LMCs, and present
algorithms for QE from LMDDs. We then present an SMT solviragéd approach for
QE from Boolean combinations of LMCs, and a hybrid appro&ett tries to combine
the strengths of the LMDD and SMT solving based approachgseritnents demon-
strate the effectiveness of these approaches and utilityese approaches in bounded
model checking of word-level RTL designs.

2 Related Work

Currently, the dominant technique for eliminating quaeatgifrom LMCs involvedlasting
bit-vector variables into individual bits (also called-biasting [38]), followed by elimi-
nation of the blasted bit-level variables using bit-levet @ols [53]. However, blasting
involves a bitwidth-dependent blow-up in the size of thebpem. This can present scaling
problems in the usage of bit-level QE tools, especially wreasoning about wide words.
Similarly, if quantified variables and non-quantified vates appear as arguments of the
same function or predicate, then blasting quantified végimay transitively require blast-
ing non-quantified variables as well. This can cause the tifieareliminated formula to
appear like a propositional formula on blasted bits, irdtefibeing a modular arithmetic
formula. Since reasoning at the level of modular arithmistiaften more efficient in prac-
tice than reasoning at the level of bits, QE using bit-blegstnight not be the best option if
the quantifier-eliminated formula is intended to be usedinthier modular arithmetic level
reasoning.

Another technique for eliminating quantifiers from LMCs isneerting the LMCs to
equivalent constraints in linear integer arithmetic [8]dahen using QE techniques for lin-
ear integer arithmetic such as Omega Test [51]. Similatpmata-theoretic approaches for
eliminating quantifiers from linear integer arithmetic stmaints|[26] can also be used. How-
ever, this approach scales poorly in practice and desth®ysnbdular arithmetic structure
of the problem. The resulting formula is a linear integethamietic formula and converting
this formula back to modular arithmetic is often difficult.

The problem of extending a QE algorithm for conjunctions ofistraints to Boolean
combinations of constraints is encountered in other firdeptheories such as linear real
arithmetic and linear integer arithmetic as well. In thédaing, we first focus on existing
approaches to solve this problem for these theories. Weptwiide a brief account of the
existing complexity results on QE and related problems folQs. Note that the related
works we survey below arise from a range of applications. &ofithese applications such

6 John-Chakraborty

as SMT solving, generation of Craig [17] interpolants eteay not directly require QE.
Nevertheless these works are included here for completesiese there is overlap between
the objectives of QE and what these works achieve.

2.1 Existing Techniques for Extending QE to Boolean Comitona

Cavada et al.'s work [11] addresses the problem of existiytjuantifying out all numeric
variables from formulas involving linear arithmetic camétts and Boolean variables. Their
work uses BDDs|[10] to represent Boolean structure of thentdas. QE is done by re-
cursively traversing the BDD, carrying along each path, lthear arithmetic constraints
encountered on it so far (called the context). Paths withrfrenconsistent contexts are re-
moved. Because of the dependence of the result of a recuaiven the context, if the
same BDD node is encountered following two different paiis results of the calls are not
the same in general. Hence this procedure is not amenabj@émrtdc programming usually
employed in the implementation of BDD operations. In paittc, the number of recursive
calls in the worst-case is linear in the number of paths, aidhe number of nodes, of the
original BDD.

Chaki et al. [[12] present a practically efficient algorithar QE from formulas in the
theory of Octagons (a fragment of linear real arithmeticvitiich Fourier-Motzkin algo-
rithm [20] is sufficient for conjunction-level QE). Their wointroduces decision diagrams
for linear arithmetic called LDDs. QE from LDDs makes use diregle variable elimina-
tion procedure that recursively applies Fourier-Motzkideselimination on the LDD nodes.
This procedure can be implemented with dynamic programmitnich helps in achieving
considerable performance improvement as reported in [12].

Suppose we wish to quantify a set of variabkefrom a formulaF in linear real arith-
metic. A straightforward algorithm to computX.F is All-SMT algorithm (also called
All-SMT loop) that works as follows (versions of this algimin can be found in_[39, 42]).
An SMT solver call is used to check if is satisfiable. IfF is unsatisfiable, theBX.F is
false. Otherwise, the solution df is generalized to a conjunctid@y, of constraints such
thatC; = F. The SMT solver is now called to checkkfA —C; is satisfiable. IfF A —-Cy
is unsatisfiable, theAX.F is equivalent todX.C;. Otherwise, the solution df A —C; is
generalized to a conjunctid® such thatC; = F. This loop is repeated until the formula
given to the SMT solver becomes unsatisfiable. Each iteratbthe loop generates a con-
junctionC; such thatC; = F, for 1< i < n (G is also called implicant). FinallygX.F is
equivalent tadX.Cy Vv --- vV IX.Cy.

The work by Lahiri et al.[39] improves the All-SMT algorithby considering-C; as a
conflicting clause and then performing conflict-driven baakping inside the SMT solver.
Monniaux [42] improves the All-SMT algorithm in the follomy ways. First, instead efC;,
—3X.C; is conjoined with the formula given to the SMT solver. This@dled “interleaving
projection and model enumeration” in_[42]. Secondly, an S8élver based procedure is
used to further generalize the implicatby dropping constraints froi@; wherever possi-
ble, beforedX.C; is computed. It is observed in [42] that these optimizatioaekp in early
termination of the algorithm, and yield significant perf@mece improvements on a wide
range of benchmarks. The later work by Monniaux [43] and tloekvby Phan et al! [50]
improves this algorithm further in handling of quantifieteahations.

Techniques for finding generalized implicants are cruciaddalable application of the
All-SMT algorithm. Many interesting approaches are pragbsecently for deriving such
generalized implicants from a given solution of an SMT folmWe Moura et al. [44]

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 7

present a variation of Boolean constraint propagation deoto identify constraints whose
truth values are not essential for determining the sati$ifiplof a formula. Deharbe et
al. |23] present algorithms for generating prime implicafiom solutions of formulae by
iterative removal of assignments that are not necessaenélz et al.[[47] present a dual
propagation based technique to extract partial solutioos ffull” solutions of SMT for-
mulas. Given a solutiom of a formulaF, the assignments to variablesrimare presented
as assumptions to a dual solver which maintaifts The assumptions that are inconsistent
with —F identify the assignments sufficient to satisfy

Test point based QE algorithms such as Ferrante and Ragladgorithm [[24], Loos
and Wiespfenning’s algorithm [40] for linear real arithimseaind Cooper’s Algorithm [16]
for linear integer arithmetic can be directly applied onitsgby Boolean combinations of
constraints. However, scalability of these algorithmsrectice often depends on underlying
representation of Boolean structure of the formulas andémpntation heuristics used.

LinAIG tool [19] implements Loos and Wiespfenning's algbrn using a data structure
called LinAIG. Boolean structure of the formulas is reprdse using FRAIGs [41], and
Craig interpolants are used to identify and remove reduncdamstraints generated during
application of Loos and Wiespfenning’s algorithm. Bjgraevork in [4] avoids application
of substitutions in the formulation of Loos and Wiespferysralgorithm and Cooper’s al-
gorithm. The effect of substitutions is encoded as an amtiticonstraint calledivotwhich
is conjoined with the input formulk. Satisfying assignments tApivot are generated us-
ing a DPLL(T) framework, which are then generalized to disjuncts in trenfilation of
Loos and Wiespfenning's algorithm or Cooper’s algorithnipkéw’s work [48] provides
implementations of Ferrante and Rackoff’s algorithm, Land Wiespfenning’s algorithm,
and Cooper’s algorithm that are verified in the theorem prisetbelle.

Komuravelli et al.[[3[7] introduce model based projectioattinvolves computing model-
based under-approximations of existentially quantifiediigdas. Their work also gives pro-
cedures for computing such under-approximations for emtlly quantified formulas in
linear arithmetic as disjuncts in the formulation of Looglaifiespfenning’s algorithm or
Cooper’s algorithm. Bjgrner et al.|[5] give an algorithm ttmaakes use of model based
projections for deciding the satisfiability of quantifieddar arithmetic formulas. Their al-
gorithm conceptually works as a two-player satisfiabilignge and can be extended for QE
from linear arithmetic formulas.

The work by Veanes et al. [66] focuses on automatically corthg monadic decom-
positions of formulas in quantifier free fragments of firstler logic. Monadic decompo-
sition involves transforming a given formula into an eqleva Boolean combination of
unary predicates. Veanes et al. give an algorithm for coostrg monadic decompositions
in Disjunctive Normal Form (DNF). Once such a decomposit®oonstructed, QE can be
achieved by distributing the existential quantifiers ousjuhctions in the DNF. This effec-
tively reduces the problem of eliminating quantifiers frogemeral formula to the problem
of eliminating quantifiers from conjunctions involving gninary predicates.

2.2 Complexity Results on LMCs

The satisfiability problem for a conjunction of LMEs is knowmbe polynomial-time [25].
However, the satisfiability problem for conjunctions of ewery limited fragments of LMDs
or LMIs are proved to be NP-hard as discussed below.

Jain et al.[[33] prove that the satisfiability problem for ajemction of LMDs is NP-
hard even when the modulus is fixed to 4. Bjgrner et al's waikifjtroduces Modular

8 John-Chakraborty

Difference Logic (MDL) constraints. MDL constraints areragment of LMIs of the form
x1+ki <x2+kz (modZ2), wherexy,x; are variables, anll, ko are constants. Bjgrner
et al. prove that the satisfiability problem for conjuncgaf MDL constraints of the form
x1+1<x2 (mod2)oroftheformx; <xx+2P—1 (mod 2) with 2P > 4 is NP-hard.

Gange et al.'s work [27] proves that the satisfiability pesblfor conjunctions of LMIs
involving LMIs of the formx; —x2 >1 (mod 2°) andx; —x2 <2 (mod 2°) is NP-hard,
where 2 > 4 and —x; represents additive inverse g modulo 2. Sincex; —x; > 1
(mod 2°) is equivalent tax; # x; (mod 2°), this result also implies that the satisfiabil-
ity problem for conjunctions of LMCs involving LMDs of thefim x; # X, (mod 2°) and
LMiIs of the formx; —x2 <2 (mod 2°) with 2P > 4 is NP-hard.

Since the satisfiability problem is a special case of QE mmhblchecking satisfiability
of a formula is equivalent to existentially quantifying fite variables in the formula), the
above results imply that QE problem for a conjunction of LMEBIP-hard in general.

2.3 Decision Procedures and Interpolation ProceduresNt4.

There are several techniques (see [54, 31]) on solving onotipns of LMES using variants
of Gaussian elimination. Mler-Olm et al. [46] and Huang et al. [32] give Gaussian elim
ination based algorithms for deriving “solved form” for gonctions of LMEs. A solved
form captures all possible solutions of a given conjunctibbhMEs. Ganesh et al. [25] give
a solve-and-substitute algorithm to derive a solved formafoonjunction of LMEs.

Most SMT solvers decide the satisfiability of conjunctiof&Ds and/or LMIs by bit-
blasting followed by SAT solving. However, as mentionediegrbecause of the bitwidth-
dependent blow-up during bit-blasting, this approachesaffrom scaling problems for
problem instances with large moduli. Hadarean etlal. [30ppses an extension of the
congruence closure algorithin [38] for deciding the satidliitg of conjunctions of LMDs.
Their work also proposes an algorithm to decide the satififiabf conjunctions of a spe-
cial class of MDL constraints that do not have the wrap-addughaviour, viz. constraints of
the formxy <ix; (mod 2) where< € {<,<}. Gange et al. [27] propose a sound heuristic
to check the satisfiability of MDL constraints that makes abarapped intervals [28] to
represent over-approximations of the relations betwedahlas.

Modern SMT solvers, such as, 23 [45] and theorem-provers aadVS|[49] use spe-
cialized heuristics [57] to solve quantified bit-vectorrfarlas by Skolemization followed
by use of appropriate choices of Skolem functions. The ugearfic expansions|[1, 15] is
explored in |[2, 55] to solvenon-linear modular equations. Bruttomesso et al. [9] present
a polynomial time algorithm for solving conjunctions of braints in the core bit-vector
theory consisting of only equalities, extractions and etecations. Their algorithm first
generates an equisatisfiable conjunction of equalitiesooraverlapping slices of variables
involved in the constraints. Congruence closure algoriththen used for checking the sat-
isfiability of this conjunction of equalities on non-ovesfaing slices. Similar slicing based
ideas for solving conjunctions of bit-vector constrairas de found inl[18,6].

Jain et al.|[33] give a polynomial-time algorithm for comipgt Craig interpolants for
conjunctions of LMEs. Griggiol [29] presents a layered framek for computing inter-
polants for bit-vector formulas that tries to keep the wiaekl structure of the problem
as much as possible. The cheaper layers use interpolatieldin(equality+ uninterpreted
functions) and interpolation by equality substitutioneThore expensive layers use conver-
sion to linear integer arithmetic and bit-blasting. Thalydred framework has similarity to
our layered approach. However the individual layers usedldferent.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 9

3 QE for Conjunctions of LMCs

The problem we wish to solve in this section can be forma#yest as follows. LeA denote a
conjunction of LMCs over a set of variablés We wish to compute a Boolean combination
of LMCs ¢, such thaty = IX.A, whereX C V. We present a layered algorithm called
Projectto solve this problem. In the following, after the notatiordgreliminaries, we give
an overview of the techniques used in each layer; detaileexfd techniques are presented
in the following subsections.

We will initially focus on the simpler problem of existentiaquantifying a single vari-
able from a conjunction of LMCs. We useto denote the variable to be quantified. For
clarity of exposition, in most of the lemmas and proposgignesented in this section, we
give illustrative examples before presenting the detgiledfs.

3.1 Notation and Preliminaries

We assume that all LMCs have modulusfar some positive integgp, unless stated other-
wise. For notational clarity, we will henceforth omit memting “ (mod 2°)” with LMCs.
We use letters, v, z, X1, X2, ... to denote variables, use aj, a, ..., b, by, by,... to denote
constants, and uses,, S, ..., t, t1, to, ... to denote linear terms. The lettetsd, dy, ... are
used to denote LMD4, 11, I2,... are used to denote LMIs, amxicy, C;,. .. are used to de-
note LMCs. Furthermore, we uk D1, D»,... to denote conjunctions of LMDS, I1, I, ...
to denote conjunctions of LMIs, ar@ C,, Cy, ..., A, Ag, A, ... to denote conjunctions of
LMCs. For a linear term, we use—t to denote the additive inverse bfmodulo 2.

Proposition 1 (t; <t2) is equivalent to botlt; <2P —2) A (t1+1<tp) and(t2 > 1) A (t1 <
to—1).

Proof of Propositiof]l is obvious from the definitiontgpf< t, and the fact that the op-
erations are moduloP2 Propositiori Il implies that there is no loss of generalitgssuming
that LMIs are restricted to be of the forth < t,. However, for clarity of exposition, we
allow LMIs of the formt; < t,, whenever convenient.

Proposition 2 An LME or LMD § < tp, wheree {=,#}, can be equivalently expressed
as2H.xmat, where t is a linear term free of x, andis an integer such thdd < p < p.

Example All LMCs in this example have modulus 8. Consider the LME{74y = X+ z
Rearranging the terms modulo 8, we get—7x = z— 4y. Simplifying modulo 8, we get
6x = 4y +z, which can be written as'23x = 4y -+ z. Multiplying by 3 (multiplicative inverse
of 3 modulo 8) and simplifying gives,'® = 4y + 3z Similarly, the LMD &+ 4y # x+z
with modulus 8 can be equivalently expressed’as24y + 3z

For every linear ternty and variablex, we definex(x,t1) to be an integer iq0, ..., p}
such thatt; is equivalent to p(xt1) . . x+t, wheret is a linear term free ok, andb is
an odd number. Note that if is free ofx, thenk(x,t1) = p. The definition ofk (x,-) can
be extended to (conjunctions of) LMCs as follows. lcdbe an LME/LMD equivalent to
2H.xpat, whereie {=,#} andt is free ofx. We definek(x,c) to be u in this case. If
ty,t are linear terms, ther(x tl < tp) is defined to bemm((x,t1),K(x,t2)). Finally, if

C1,...,Cm are LMCs, therx(x, /\ (ci)) is defined to benln((x,ci)). Observe that i€ is a

conjunction of (possibly one) LMCS and#f(x,C) = k, then only the least significapt— k
bits of x affect the satisfaction &®. We will say thatx is in the support o€ if k(x,C) < p.

10 John-Chakraborty

3.2 Overview of Layers ifProject

The first layer ofProject(Layerl) involves simplification of the given conjunctiohldMCs
using the LMEs present in the conjunction. For example, idenshe problem of computing
. ((6x+y=4) A(2x+z=# 0)) with modulus 8. Note thatex+y = 4) can be equivalently
expressed a@x = 5y +4) in modulo 8 using modular arithmetic operations. The vaeiab
can be eliminated from the conjunction by replacing the aences of & in the conjunction
by 5y + 4. Layerl performs elimination of quantifiers by simplificais as above using
LMEs present in the conjunction.

The second layer (Layer2) makes use of an efficient comhiahtweuristic to identify
unconstraining LMIs and LMDs that can be dropped from thévjenm instance. For exam-
ple, consider the problem of computiag. ((2x = 5y +4) A(x+Yy < 3)) with modulus 8.
Note thatx, y are 3-bit variables herg¢2x = 5y + 4) is independent of the most significant
bit of x, denoted ax([2]. It can be observed that every solution (@ = 5y + 4) can be
“adapted” by possibly modifying the value gff2] to become a solution q@2x = 5y+4) A
(x+y < 3). This means thaix. ((2x=5y+4)) = 3x. ((2x=5y+4) A(x+y < 3)). The con-
verse, i.e3x. ((2x=5y+4) A(x+Yy < 3)) = 3x.((2x = 5y+4)) obviously holds. Hence
(x+y < 3) is unconstraining irgx. ((2x = 5y +4) A(x+Yy < 3)) and it can be dropped.
Layer2 computes sufficient and polynomial time computabled@ions that identify such
unconstraining LMDs and LMIs and drops them.

The cases that are not computed by the application of theeadmwputationally cheap
layers are handled by expensive but more complete techsmiguée third layer (Layer3).
Layer3 primarily involves a variant of Fourier-Motzkin algthm adapted to work for LMIs.
First the LMIs in the problem instance are converted to affadent-matched” forma.- x <
t, whereexe {<,>}, andt is a linear term free of. Then a Fourier-Motzkin style variable
elimination algorithm is applied on the coefficient-matdhéls to eliminate the quantified
variable. For example, consider the problem of compulirg (y < 4x) A (4x < z)) with
modulus 163x. ((y < 4x) A (4x < z)) expresses the condition under which there exists a
multiple of 4 betweety andz, wherey < z. Our algorithm computesx. ((y < 4x) A (4x<z))
as(y < z) A ¢, where¢ is the disjunction ofz>y+3) A (y < 12), (z<y+3) A (dy=0),
and(z<y+3)A(dy > 4z).

Finally Layer3 uses model enumeration as the last resortledMenumeration involves
elimination of the quantified variable by enumerating ofpalbssible values of the variable.
Our experiments however indicate that we do not need to ewo&del enumeration on a
wide range of benchmarks arising in practice.

Techniques in Layerl and Layer2 can be considered as pessiog or simplification
steps that preprocess or simplify the given conjunctionMfds and eliminate quantifiers if
possible. However inside Layer3, converting LMIs to coéfit-matched form, in general
generates a Boolean combination of LMCs. Elimination ofrgifi@rs from this Boolean
combination of LMCs results in new recursifgoject calls. Because of this feedback, the
control flow insideProjectis not linear. Hence we choose to call Layerl and Layer2 as
layers, not as preprocessing or simplification steps.

Itis well known that order of elimination of variables crally affect the running time of
QE algorithms in general. Inside the layers, when there adépte variables to eliminate,
any ordering heuristic can be used. However the focus ofatbi& does not include finding
the best possible order of elimination. The specific ordediafination of variables we have
used inside the layers is elaborated in Sedtich 5.1.

Time Complexities of Layersayerl and Layer2 have polynomial worst-case time com-
plexities. Letn be the number of constraints in the conjunction given astjnyee the num-

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 11

ber of variables in the conjunction, and Ebe the number of variables to be eliminated.
Assuming that additions, multiplications, and finding riplicative inverses orp-bit num-
bers take timeéO(Q(p)) in the worst-case, whei®(p) is a polynomial onp such thatp <
Q(p) < p?, Layerl has a worst-case time complexityQie-n-v-Q(p)), and Layer2 has a
worst-case time complexity @(e-n?-Q(p) +n- p-v). Layer3 resorts to model enumeration
as the last resort, and has a worst-case time complex@rfQ(p) - 2¢+1P 4-n. p.v. 28P),
Recall that algorithms for QE from linear real arithmetiwdaoubly exponential complex-
ities |24, 40].

3.3 Layerl: Simplification using LMEs

Layerl involves simplification of the given conjunction dMICs using the LMEs present
in the conjunction. It is an extension of the work by Ganeslaktin [25]. The following
Proposition and Lemmas form the crux of Layer1.

Proposition 3 Let ¢ be an LME2¢-x = t, where k denoteg(x,c). Thendx.c = (2P %.t =
0).

Example All LMCs in this example have modulus 8x. (2'x = 5y +2) = (22~1(5y+2) =
0) = (4y = 0).

Proof Let ¢1 and ¢, denote the formuladx. (2¢-x =t) and 2.t = 0 respectively. To
see thatp; = ¢, we simply multiply both sides of2x =t by 2P~%, and simplify modulo
2P, To see whyp, = ¢1, note thatp, implies that the least significaktbits of t evaluate
to zero. Also recall that is free ofx. Given any value of variables insuch that the least
significantk bits oft evaluate to zero, we can always find a valuexsfich that ®-x =1t.
This can be done by choosing the least signifigantk bits of x to be the same as the most
significantp — k bits oft. Hence ¢, = ¢1, and thereforg; = ¢». a

Lemma 1 Let A be a conjunction of LMEs. Thél. A can be equivalently expressed as a
conjunction of LMEs each of which is free of x.

Example All LMCs in this example have modulus 8. Consider the probte#nsomputing
3x. ((2x = By + 2) A(22x = By + 62) A(21x = 2y+4)). This can be equivalently expressed
as3ax. ((2x="5y+2) A(2- (By+2) = by+62) A(By+2 = 2y+4)). Simplifying modulo 8,
we get3Ix. ((2x = 5y+2)) A(By+ 2z= 4) A (3y = 2). Using Propositiofi]3, we obtain the
final result ag4y = 0) A(By+2z=4) A (3y=2).

Proof Let A be /\ (a), where eacly; is an LME. Let each LMEy be of the form # . x =

ti, wherek; = K(x gi) and 1<i < m. Without loss of generality, let; be the minimum
of ky,...,km. It can be observed that the LME22x = t; can be used to eliminate the
occurrences of in other LMEs by expressing each LME 2x =t for2<i<mas 24 -t; =

ti, where eachy; = ki — k;. Hence 3x. A can be equivalently expressed@s\ 3x. (24 - x =
t1), whereC; is the conjunction of the LMESH-t; =t;. Using Propositiof]3, it follows that
C1A3x (24 .x=t;) is equivalent t&C; A (2P~ -t; = 0).]

Lemma 2 Let A be a conjunction of LMCs containing at least one LME.2¥etx = t; be
the LME with the minimum (X, -) value among the LMEs in A. Thélx. A= C; A 3x.Cy,
where G is a conjunction of LMCs free of x, andb@ a conjunction ok .x =t; and
(possibly zero) LMIs and LMDs, each of which hgs, -) less than k.

12 John-Chakraborty

Example All LMCs in this example have modulus 8. Consider the probte#rsomputing
3x. ((2'x = By +2) A(2%% # By +72) A (20-5x+2z2 < 21x) A (21 - 3x < y +2)). Substituting
the occurrences of'® in the LMIs (2°-5x+z < 2!x) and(2! - 3x < y-+z) by 5y+2, we have
I ((2x=5y+2)A (x#6y+T7z) A (5x+2< 5y+2) A (3- (By+2) < y+2)). Simplifying
modulo 8, we get7y+ 6 <y+2) A 3X. ((2x=5y+2) A (X # 6y + 72) A (Bx+z2< By + 2)).
Note that the result is of the for@y A 3x.Cy, as specified in Lemnid 2.

Proof LetAbe equivalentt& AD A, whereE is a conjunction of LMESD is a conjunction
m

of LMDs, andl is a conjunction of LMIs. LeE be A (q;), where eacly; is an LME,D be
i=1

n r
A (di), where eacld; is an LMD, andl be A (i), where eacth is an LMI.
i=m+1 i=n+1

Suppose each LME; is of the form % - x = t;, wherek; = K(x,qi) and 1<i<m.
Suppose each LM is of the form % - x # t;, wherek = k(x, d)andm+1<i<n.
In addition, suppose each LM is of the form(a - x+ u; < b -x+V;), wherea;, b are
constants such thés # 0) v (b # 0), u;, v; are linear terms free of andn+1 <i <r. Let
us express each - x appearing in the LMIs such thag # 0 in the equivalent form'®- g - x,
wherek; = k (X, a; - X) ande is an odd number. Similarly, let us express ebchx appearing
in the LMIs such thab; # 0 in the equivalent form'¢- & - x, wherek! = k (x,b; - x) ande/ is
an odd number.

Without loss of generality, ldt; be the minimum ok, ..., km. It can be observed that
the LME 2 .x=t; can be used to eliminate the occurrencesiofother LMEs, and in the
LMDs and the LMIs withk (x,.) at least as large dg in the following way.

— Each LME % .x=t; for 2 < i < mcan be equivalently expressed #s.2; = t; where
eachy; = ki — k.

— Each LMD & .x #t; form+ 1 <i < n, such thak; <k; can be equivalently expressed
as 24 -t # tj where eachy; = ki —k;.

— Each occurrence ofof the form % - g - xin the LMIs forn+1 < i < r such thak; <k;
can be equivalently expressed &s-2; - where eachy = ki —k;.

— Each occurrence ofof the form % - € -xin the LMIs forn+1 <i <r such thak; <k
can be equivalently expressed &5-2; - € where eachy/ = K —kj.

Hence, it can be observed th&t A can be equivalently expressed@sh 3x.C,, where
C; is a conjunction of LMCs free af, andC; is a conjunction of the LME .x=t; and
those LMIs and LMDs fronA with k (X, .) less thark;, after substitution of the occurrences
of 24 . x byt;. O

Proposition B, LemmAl1, and Lemrh 2 yield us a simple hear@E1Layerl that
forms the core of Layerl. Given a conjunction of LME&snd a variable to be quantified,
QE1lLayerlcomputesix.A asC; A 3x.C; based on Lemmid 2. If the(x,) of all LMDs
and LMIs in A are at least as large &g (as in LemmdR), the@; consists of the single
LME 2K . x = t;. In this case3x.C, simplifies to 2K .t; = 0 (see Proposition]3), and
QE1Layerl suffices to computélx. A. However, in generalC, may contain LMDs and
LMIs with k(x,-) values less thak;. We describe techniques to address such cases in the
following subsections.

Analysis of ComplexityConsider a conjunction of LMCs with a subset of variableitsin
support to be eliminated. Letbe the number of LMCs in the conjunctionbe the number
of variables its support, arebe the number of variables to be eliminated. It can be obderve
that for a variablex to be eliminated, Layerl perforn@(n- v) multiplications and additions

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 13

in the worst-case. Assuming that arithmetic operationp-tit numbers take tim®(Q(p))

in the worst-case, wher@(p) is a polynomial orp such thaip < Q(p) < p?, elimination of

a variable hence has a worst-case time complexi@(of v- Q(p)). Observe that eliminating
a variable does not increase the number of LMCs in the cotipmdHence eliminating
variables has a worst-case time complexitp¢é- n-v-Q(p)). Note that reading and writing
an LMC withv variables in support také3(v- p) time. Hence reading LMCs as input and
writing them back after eliminating the variables tak¥ - v- p) time. Hence Layerl has a
worst-case time complexity @(e-n-v-Q(p) +n-v- p). Sincep < Q(p) < p°, this reduces
toO(e-n-v-Q(p).

3.4 Layer2: Dropping Unconstraining LMIs and LMDs

Formally, our goal in this subsection is to expr€ssobtained after application GJE1 Layer],
asCADAI, where (i)D is a conjunction of (zero or more) LMDs (B, (ii) | is a conjunc-
tion of (zero or more) LMIs irCy, (iii) C is the conjunction of the remaining LMCs @y,
and (iv)3x. (C) = Ix. (CADAI). Sincedx. (CAD Al) = 3x. (C) always holds, this would
allow us to computélx.Cy, or equivalentlydx. (CAD Al), as3x.C. We say thaD andl| are
unconstraining-MDs and LMIs, respectively, in such cases.

GivenC, D andl satisfying conditions (i), (ii) and (iii) above, checkinfgcondition (iv)
holds requires solving a quantified bit-vector formula imgel. This can be done by using
an SMT solver such as Z3 that supports quantified bit-vedondlae. Alternatively bit-
blasting followed by QBF solving or bit-level QE can be usddwever applying such tech-
nigues can be expensive, as demonstrated in our experinienite following discussion,
we focus on finding sufficient and polynomial time computatdaditions for condition (iv)
to hold.

Letx[i] denote the'" bit of a bit-vectorx, wherex|0] denotes its least significant bit. For
i <j, letx[i: j] denote the slice of bit-vector consisting of bits«[i] throughx(j]. Given
slicex[i : j], its value is the natural number encoded by the bits in tleesh key notion
used in the subsequent discussion is that of “adapting”@&ieal of a constraint to make it
satisfy another constraint. Formally, we say that a satuipof a conjunctionp of LMCs
can be adapted with respect to slide: j] to satisfy a (possibly different) conjunctia of
LMCs if there exists a solutiofl, of ¢ that matche®; except possibly in the bits of slice
X[i : j]. For example, consider the LMGg=y+2z) (mod8 and(4y+z<x) (mod8).
Let 8; be the solutioox=1,y=1,z=00f (x=y+2) (mod 8, and let6, be the solution
x=5,y=1,z=00f (dy+z<x) (mod §. Note thatf, matches; except in the bits of
slicex[2 : 2. Hence we can say théi can be adapted with respect to sli¢2 : 2] to satisfy
(dy+z<x) (modS8$).

The central idea in the second layer is to efficiently computender-approximation
of the number of ways in which arbitrary solution ofC can be adapted to satiSsBAD Al.

It is easy to see that if > 1, then3x. (C) = 3Ix. (CADAI). We illustrate this idea below
through an example. We will use this as a running exampleauitrout this subsection.

Consider the problem of computiritx. (CADAI), whereC = (z=4x+Yy), D= (x #
z+7), andl = (6x+y < 4) and all LMCs have modulus 8. We claim that an arbitrary
solution ofC can be adapted to satisB/A D Al. Note thatC constrains only slice[0 : 0],
wheread constrains slic[0 : 1] andD constrains slice|0 : 2). Therefore, the value of
slicex[1 : 2] does not affect satisfaction @f and the value of slicg2 : 2] does not affect
satisfaction oC Al. It can be observed thahy solutionof C can be adapted with respect to
slicex|1 : 1] to satisfyl by choosing value of slicg[1 : 1] such that & lies between-y and

14 John-Chakraborty

4 —y. Sincex|0 : 0 is unchanged, each such adapted solution must also s@tisfy For
example, the solutior =1,y = 0,z= 4 of C can be adapted with respect to slié : 1
to obtain the solutiox = 3,y =0, z= 4 of CAl. Moreover, notice thaany solutionof

C Al can be adapted with respect to slije : 2] to satisfyD by choosing value for slice
X[2 : 2 that differs from the most significant bit @af 7. Sincex[0 : 1] is unchanged, each
such adapted solution also satisfiesD Al. For example, the solution= 3,y =0,z=4 of

C A can be adapted with respect to sli¢2 : 2] to obtain the solutiox =7,y =0, z= 4 of
CADAI. In this case, Layer2 computes the under-approximagiof the number of ways
in which an arbitrary solution d can be adapted to satisB/AD Al as> 1, thus inferring
that3x. (C) = 3Ix. (CADAI).

We now present proceduf@E1 Layer2 that applies the technique described above to
problem instances of the formix.C,, obtained after invokingQE1 Layerl QE1 Layer2
initially expressesix.C; as3x. (CAD Al), whereC denotes B .x=t; andD Al denotes
the conjunction of LMDs and LMIs i©,. If n (as defined above) is at least 1, tHam |
is dropped fronC,. Otherwise, the LMCs iD A | with the largesk (x, -) value (i.e. LMCs
whose satisfaction depends on the least number of bit} afe identified and included in
C, and the above process repeats. If all the LMIs and LMD3XIC, are dropped in this
manner, therx.C, reduces taix. (24 - x =t;), andQE1 Layer2can return the equivalent
form 2P~k .t; = 0. Otherwise QE1 Layer2returns3x.Cs, whereCs is a conjunction of
possibly fewer LMCs compared &, such thaBix.Cz = 3x.C,.

Before presenting the details of computipgwe present the following proposition.

Proposition 4 Let x, ..., X, be r-bit numbers and b be an r-bit odd number such thagb
... ,b-x, take distinct consecutive values. I/die a number such thdt< ¢ <r. If n < 2/,
then the values off0: ¢ —1], ... ,x,[0 : £ — 1] are distinct. Otherwise, if & 2¢, then the
values of X[0: ¢ —1], ... ,%,[0: ¢ — 1] span the entire rang®, 1,...,2 — 1.

Example Let x1, X2, X3, X4, X5 respectively be 61, 4, 7, 2, which are 3-bit numbers. Here
n =5 andr = 3. Supposeéb = 3. Note thatb-x3, b-x2, b-x3, b- x4, b- x5 take distinct
consecutive values 3,4,5, 6 respectively.

— Case 1: Let be 3. Hencen < 2. The values 0k [0 : £ — 1], x2[0: £ — 1], x3[0: £ — 1],
x4[0:¢—1],x5[0:¢—1] are § 1, 4, 7, 2 respectively, which are distinct.

— Case 2: Let be 2. Hencer > 2¢. The values ok;[0: £ — 1], x[0: ¢ — 1], x3[0: £ — 1],
xa[0:¢—1], x5[0: ¢ —1] are 2 1, 0, 3, 2 respectively, which span the entire range
0,1,...,20 —1.

Proof The proof is based on the following observations:

1. The values ofb-x1)[0:¢—1],...,(b-X)[0: ¢ — 1] are consecutive.

2. (b-x)[0:¢—1]is equivalenttd[0:¢—1]-x[0: /-1 for1<i<n.

3. b[0:¢—1]is odd.

Sinceb|0 : ¢ — 1] is odd, it has a multiplicative invers@[0 : ¢ — 1])’ modulo 2. Note that
(b[0: ¢—1]) is also odd. Sincéb-x;)[0: ¢ —1] is equivalent tdb[0 : ¢ — 1] -x[0 : £ — 1]
for 1 <i<n, we get values oki[0: ¢ —1], ... ,xa[0 : £ — 1] by multiplying the values of
(b-x1)[0:4—1],...,(b-%))[0:¢—1] by (b[0: ¢ —1])’ modulo 2.

Observe that for K i <nand 1< j < nsuch that # j, x[0:¢—1] = x;[0: ¢ — 1] iff
(b-%)[0:4—1] = (b-x;)[0:£—1]. Since the values db-x1)[0:£—1], ... ,(b-Xn)[0: £ —1]
are consecutive, it follows that, if< 2¢, then the values 0§[0: ¢ —1], ... ,x,[0: ¢ —1] are
distinct. If n > 2, then the values dfo-x1)[0:¢—1], ..., (b-%,)[0: £ — 1] are consecutive
and they span the rangel0..., 2’ — 1. Hence it is obvious that the values»af0 : ¢ — 1],

..,%n[0:¢—1] also span the range D ..., 2 — 1. O

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 15

Letl be A4 (i), where each is an LMI of the forms«t, the operatoais in {<, >},
sis a linear term with in its support, and is a linear term free of. Note that this implies
some loss of generality, since we disallow LMIs of the fosmx t, where boths andt
havex in their support. However, our experiments indicate theti$not very restrictive in
practice. Lets,...,s be the distinct linear terms inwith x in their support. We partition
linto ly,...,I;, where eacHij is the conjunction of only those LMIs inthat contain the
linear terms;. We assume without loss of generality that egcbontains the trivial LMIs
sj > 0 ands; < 2P — 1. Suppose eadh hasn; LMIs, of which the firstm; (< n;) are of the
forms; > tg, where 1< g < m;. Let the remaining LMIs iflj be of the forms; < tg, where
mj+1<qg<n;.

Consider the inequality; : u; <s; <vj, whereu; denotes ma?il(tq) andv; denotes
ming":mﬁl(tq). AlthoughZ; is not a LMI, it is semantically equivalent 1. For notational

convenience, let us denokgX, sj) by kj. Clearly, the value of slic&[p—k; : p— 1] does
not affect the satisfaction &;. We wish to compute the number of ways, $4y in which
an arbitrary solution o€ can be adapted with respect to slx® : p— k; — 1] to satisfy
Z;. Towards this end, we compute an integgin {0,...,2P — 1} such thatd; < max(v; —

uj + 1,0) for every combination of values of other variables. Intgly, J; represents the
minimum number otonsecutiveralues thas; can take for every combination of values of
other variables, if we were to tregtas a frestp-bit variable and iZ; were to be satisfied.

In our running example, whe@= (z=4x+Yy), D = (x# z+7), andl = (6x+y < 4),
we haves; = 6x+yandl; = (6x+y > 0) A(BX+Yy < 4) A(Bx+Yy < 7). HenceZ; is (0 <
6x+Yy < 4) and thuai; = 0 andv; = 4. Note thatp = 3, k; = 1, and the value of slicg2 : 2|
does not affect the satisfaction(@ < 6x+y < 4). We are trying to computl;, the number
of ways in which an arbitrary solution ¢ = 4x+y) can be adapted with respect to slice
x[0: 1] to satisfy(0 < 6x+y < 4). Treating &+ Y as a fresh variablé gives us0 < f <4).

As f can take fiveeonsecutiveralues in(0 < f < 4), & is 5.

Let s be a linear term withx in its support. Lek be k(x,s). Let u, v respectively be
arbitrary terms free ok which serve as lower and upper boundssoEet 6 be the mini-
mum number otonsecutiveralues thast can take for every combination of values of other
variables, if we were to treat as a freshp-bit variable and ifZ : u < s < v were to be
satisfied. The following Lemma gives a lower bound for the banof distinct values that
X[0: p—k— 1] can take while satisfying.

Lemma 3 For every combination of values of variables other than rrehexist at least
|8/2%] distinct values that[0 : p— k — 1] can take while satisfying Z.

Example Let Z beZ; : (0 < 6x+Yy < 4) from our running example. We haye= 3, k=1
andd = 5. Note that, for every value of, there are at leagid /2| = |5/2'] = 2 distinct
values thak[0 : 1] can take while satisfying0 < 6x+y < 4).

Proof 9 is the minimum number afonsecutivealues thas can take for every combination
of values of other variables, if we were to treats a freshp-bit variable and iZ :u<s<v
were to be satisfied. However, in genesiis of the form ¥-b-x+w, wherew is a linear
term free ofx, andb is an odd number.

There are at leag /24| multiples of * amongd consecutive values. Hence, for every
combination of values of other variables, there exist attled/2%| values that ®-b-x can
take while satisfyingZ. The least significarkt bits of these values are all zeros. Moreover,
the values of the most significapt— k bits, i.e., the values of slicg*-b-x)[k: p— 1] are
consecutive. Note that sliq@-b-x)[k : p— 1] is the same as slicgh-x)[0 : p—k —1].

16 John-Chakraborty

Also (b-x)[0: p—k—1] is equivalent tdb[0 : p—k— 1] -x[0 : p— k— 1]. Therefore, for
every combination of values of variables other tkathere exist at leass /2¥| consecutive
values thab[0 : p—k— 1] - x[0 : p— k— 1] can take while satisfying.

Sinceb is odd,b[0 : p— k— 1] is odd. Let us apply Propositiéd 4 on thesmsecutive
values ob[0: p—k—1]-x[0: p—k— 1 withn=|5/2%|,r =¢=p—kando=b[0: p—k—
1]. Note thain = L6/2'<J < 2! = 2P~k here, sinced < 2P. Therefore, using Propositioh 4, we
have: for every combination of values of variables othenthahere exist at least= | /2|
distinctvalues thak[0 : p— k— 1] can take while satisfying. O

Lemmd3 indicates that there are at leagy 2 | ways in which an arbitrary solution of
C can be adapted with respect to slid8 : p— k; — 1] to satisfyZ;. HenceN; > [8;/24 .
For notational convenience, we denotg/2 i | by I/\l\J

To understand how; is computed in general, recall that for everin {1...m;} and for
everyhin {m;+1...n;}, we haveg <s; <ty. For every such pair of indicggandh, let y
be an integer i{0, ...,2° — 1} such thayy, < maxt, —tg+ 1,0) for every combination of
values oft, andty. The value ofd; can then be obtained as the minimum ofdglh values.
For reasons of simplicity and efficiency, we compute theeslofdyn, conservatively using
the following Proposition.

Proposition 5 1. Iftg and t, are constants ang,t> tg, thendyh =th —tg+ 1.

2. Ifty is a constant,d can be expressed &S - t, wheret is an integer such thad < 1 <
p—1andt > 2P -2, thendyh =t — (2P - 2") +1.

3. If t is a constant,f can be expressed & -t +a, wheret is an integer such that
0<1t<p-1 andamod Z > tg, thendyn =amod X —tg+ 1.

4. Otherwisedyp = 0.

Example

1. Supposty = 1 andt, = 6. Therefore, maf, —tg+1,0) = th —tg+ 1 = 6. Sincedyp <
max(th —tg+1,0), we can seyp to 6.

2. Supposéy =4y, t, = 14, andp = 4. Herety is of the form Z -t, wheret =2 andt =y.
Observe that the maximum possible value pfvth modulus 16 is 2— 27 = 12, i.e.,
4y < 12. Thereforet, —tg+1=14—4y+1> 14— 12+1=3. Hence maft, —tg+1,0)
> 3. Therefore 3 can be used ag,.

3. Supposey =0, ty = 4y+ 7, andp = 4. Heret;, is of the form Z -t 4 a, wheret =2,
t =y, anda= 7. Observe that the minimum possible value gft47 with modulus 16
isamod Z =7 mod 4= 3, i.e., 447 > 3. Thereforeth —ty+1 = (4y+7)—-0+1>
3—0+1=4. Hence magh —ty+1,0) > 4. Therefore 4 can be used &g.

4. Supposéy =Y, th = z In such cases we séjh to 0.

Proof &yp is an integer in{0,...,2° — 1} such thatdyn < maxth —tg+ 1,0) for every
combination of values df, andty.

1. If tg andt, are constants ant > tg, then maxt, —tg+ 1,0) reduces td, —tg+ 1.
Therefore, it is obvious thag —ty 4 1 can be used ag;p.

2. Consider the case whepis a constantty can be expressed a$ -2, wheret is an
integer such that & 1 < p—1, andt, > 2P — 2. Sincetg is a multiple of Z, the
possible values dfy are 027,...,2P — 27. Hence the maximum possible valuetgfis
2P —27, i.e.,tg < 2P —27. This implies thaty, —ty+1 > ty — (2P — 27) 4 1. Therefore
max(th —tg+1,0) > th — (2P — 27) + 1. Hencet, — (2° — 27) + 1 can be used & .

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 17

0 Bits of x p1

k

- — = — —0— — — —]

la— r—=n]

slice slice jslicey .- i
| o (sticeslicey Islice |

Fig. 2 Slicing of bits ofx by ko, ..., ki

3. Consider the case whejis a constanty, can be expressed a§-2 +a, wherer is an
integer such that & 1 < p—1, andamod Z > tg. Leta= 2" - a; + ap, wherea, =
amod Z anda; > 0. Hencet, can be expressed a5-2t +a;) +ay. Since 2 - (t +a;)
is a multiple of Z, the possible values of 2(t+a;) are 927,...,2P — 2. Hence the
possible values df, areap, 2" +ay, ..., 2P — 2T + a,. Therefore, the minimum possible
value ofty, is ap, i.e.,th > ap, which implies that, —ty+1 > a, —tg + 1. Therefore
max(th —tg+1,0) > a —tg+ 1. Hencea, —tg+1, i.e.,amod Z —tg+ 1 can be used
asdg.

4. Consider the case when none of the above conditions isSinee 0< max(t, —tq+

1,0), we can uséyp, as 0 in this case.
|

Let D be A, (di), where eachd; is an LMD of the form Z%) . x o ty, wheretg,
is a linear term free ok. Let kg denotek(x,C), and letC be such thakg is greater than
both maxX', k(x,di) and mak_, k; (recall thatk; = k(x,s;j)). To simplify the exposition,
suppose further thd; > ... > k.. We partition the bits ok into r + 2 slices as shown in
Fig.[2, whereslicep represent[0 : p— ko — 1], slicej represent(p—kj_1 : p—k; — 1] for
1< j <r, andslice,;; representx[p—k; : p—1]. Note that the value dflicep potentially
affects the satisfaction & as well as that oZ; throughZ;, the value oflice; potentially
affects the satisfaction & throughZ, for 1 < j <r, and the value oflice,.; does not affect
the satisfaction of ang; or C. Recall that similar slicing schemes were usedlin [9. 1806] f
converting conjunctions of bit-vector constraints intaiesqtisfiable constraints on slices of
variables. However such slicing schemes were used for erdift objective of simplifying
constraints and solving them.

Let Zy denoteTrue. Let 8 be a solution o€ A Zg A ... A Zj, where 0< i < r. Note that
bits inslice;; throughslice,,; do not affect satisfaction @ A Zo A ... A Z;. LetY; j denote
the number of ways in whicB can be adapted with respect to bitsliae; 1 throughslice;,
to satisfyZ;, wherei < j <r. Sincesliceg throughslice; are unchanged, each such adapted
solution must also satisf@ A Zp A ... A Z.

18 John-Chakraborty

Lemma 4 An arbitrary solution of CA Zg A ... A Z for 0<i < r can be adgpted with
respect to bits irslicej1; throughslice;, to satisfy Z for i < j <rin at least [Nj /2P |
ways. Moreover, if we focus only elice; 1, then there are at leasnin(|N; /2P~ |, 26—K-1)
distinct values oflice;, 1 in the corresponding adapted solutions.

Exampleln our running example, singe= 3, ko = 2, k; = 1, the bits o are partitioned into
three slicessliceg is x[0 : 0], slice; is X[1 : 1] andslice, is x[2 : 2]. Clearly, the value ofliceg
potentially affects the satisfaction 6f: (z= 4x+y) as well as that oZ; : (0 < 6x+y < 4).

The value oklice; potentially affects the satisfaction &, but not that ofC, and the value

of slice, does not affect the satisfaction®@fr Z;. Let 6 be a solution o€. Using Lemmal,
there exists at leagNy /2P| = [2/23-2| = 1 way in which6 can be adapted with respect
to bits inslice; to satisfyZ;. Sincesliceg is unchanged, the adapted solution must satisfy
CANZ;.

Proof Recall from Proof of Lemmal3 that for every combination ofues of variables
other tharx, there exist at lead; consecutiveralues thab;[0: p—kj —1]-x[0: p—k;j — 1]
can take while satisfying;, whereb;[0 : p—kj — 1] is odd. Note that < j, k > k; and
p—ki < p—Kkj. We make use of the following claims.

Claim 1 For every combination of values of variables other than)(if(NAj < 2P K then
there exist at Ieaslﬁ,— distinct values that [0 : p—k; — 1] can take while satisfying;Zand
(ii) if /N\J > 2P~k the values that[® : p— ki — 1] can take while satisfyingjZpan the entire
range0,1,...,2P K —1.

Claim 2 For every combination of values of variables other than)xif(ﬁTj < 2P~k+1 then
there exist at Ieasﬁl\j distinct values that[0 : p— ki1 — 1] can take while satisfying;Zand
(ii) if NA, > 2P-ki1 the values that[0 : p— ki1 — 1] can take while satisfyingjzspan the
entire range0, 1,...,2P ki1 — 1,

Claim[1 can be proved by applying Proposit[dn 4 on toasecutivevalues ofb;[0 :
p—k —1-x[0: p—kj—1 withn=Nj,r = p—kj, £ = p—k andb=b;[0: p—kj — 1].
Similarly, Claim[2 can be proved by applying Propositidn 4tba consecutivesalues of
bj[0:p—kj—1]-x[0:p—kj—1 withn=N;j, r = p—kj, £ = p—ki;1 andb = b;[0:
p—kj—1].

UJsing Lemm@ive know that, for every combination of valuegasiables other than
X, there exist at least; distinctvalues that can be assigned{o : p—k; — 1] (i.e. bits in
sliceg throughslicej) while satisfyingZ;. Lemmd B and Clairl1 together imply that for every
combination of values of variables other thaand for any arbitrary value of0 : p—k — 1]
(i.e. bits inslicep throughslice;), there exist at Ieas[ﬂ/\l\j/zp*kij distinct values that can be
assigned ta[p—k; : p—kj —1] (i.e. bits inslice;+1 throughslice;) while satisfyingZ;. Hence,
an arbitrary solution o€ A Zo A ... A Z for 0 <i <r can be adapted with respect to bits in
slice; 1 throughslice;, to satisfyZ; fori < j <r in at least|N; /2P~ | ways.

In order to prove our claim on values slicej;; in the corresponding adapted solu-
tions, note that, from Clairi 2 we know that, for every comkimaof values of variables
other tharx, there exist at least m@NAj,ZP"‘Hl) distinctvalues thax[0 : p—ki+1 — 1] can
take while satisfyingZ;. Hence Claini L and Claill 2 together imply that, for every com-
bination of values of variables other tharand for any arbitrary value off0 : p—k — 1]
(i.e. bits inslicep throughslice;), there exist at least miN; /2P || |2P—ki+1 /2K |) —
min(|N; /2P~k |, 2k-k+1) distinctvalues that can be assigneddp — ki : p— ki1 — 1] (i.e.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 19

bits inslicei;1) while satisfyingZ;. Therefore, if we focus only oslice,; in the aforemen-
tioned adapted solutions, then there are at least|jn2P—k |, 24—k+1) distinctvalues of
slicejtg. O

Using Lemmd#, we have ; > |N;/2P~%|. For notational convenience, let us denote
min(|N; /2K | 2k -ki1) by o ;.

Lemme[4 indicates that a solutighof C A Zg A ... A Z; for 0 <i < r can be adapted
to satisfyC A Zo A ... A Z A Zj for i < j <r by using at leasty; j different values of
slicej;1. Let the corresponding set of valuesstie;; be denoted’,, ;. If N} .1 S\, is
non-empty, there exists a common valuelak; . ; that permits us to adaptwith respect to
slicej11 throughslice, to satisfyZ; .1 throughZ,, respectively. It is therefore desirable to have
|Nf=i+1§%1| > 1. Using the Inclusion-Exclusion principle, we find tHalj_i,1 S, |
> (¥ i4a0ij) — (r—i—1)-247K+1, Note that the lower bound is independentgofFor
notational convenience, let us denote the lower boundihy.

If W1 > 1 for alli € {O,...r — 1}, an arbitrary solutiorf of C can be adapted to
satisfyC A Zp A ... A Z; as follows. SincaM;, > 1, we choose a value @fice;, sayvs,
from ﬂjzl ﬁj Let 6, denoteB with slice; (possibly) changed to have valwg Then6;

satisfiesC A Z;. SinceW, > 1, we can now choose a valuediite,, sayv,, from ﬂﬁzz §1
and repeat the procedure until we have chosen valuetider throughslice,. Finally, since
slice,1 does not affect the satisfaction@br of anyZ;, we can choose an arbitrary value for
slicer.1. Clearly, there are at Ieaﬁt]i’:‘g W, 1]) - 2¢ ways in which values of different slices
can be chosen, so as to ad@b satisfyC A Z A ... A Z;. Let us denoté[]/—3 Wi 1]) - 2%

by 1.

In our running example, we havig; > [N;/2P*| = 1. Also apy = min (| Ny /
2p-ko | 2oki) = min(1,22°1) = 1. HenceWy = (33 a01) — (1-0—1)- 20k = @p;
= 1. Note that there is at least one way of adapting an arbigaltion of(z= 4x+y) with
respect talice; to satisfy(z= 4x+y) A(0 < 6x+Yy < 4). Moreover, there are at least two
ways of adapting an arbitrary solution @= 4x+Y) with respect talice; through toslicep
to satisfy(z = 4x+y) A(0 < 6x+y < 4) as indicated by =W, -2 =1.21 =2,

Let us now consider each LMB in D. Recall that eact; is of the form Z*%) . x £ tq..
Note thatd;, constrains only slice(0 : p— k(x,di) — 1]. It can be observed that for every
combination of values of variables other thathe only way to violatel; is to choose value
of slicex[0: p— k(x,d;) — 1] to be the same as the valuetgfx(x,d;) : p— 1]. Hence, for
every combination of values of variables other tixathere is at most one way of choosing
value for slicex[0 : p— k(x,d;) — 1] such that; is violated. Since slicg[p— k(x,d) : p—1]
is not constrained by, this means that for every combination of values of varialoigner
thanx, there are at most®*%) ways of choosing values faticey throughslice,; such
that d; is violated. Therefore, for every combination of values afiables other tham,
yM, (2¢x%)) is an over-approximation of the number ways of choosingeglior sliceg
throughslice,; 1 such thaD is violated. Let us denotg™; (2¢*%)) by up. We have already
seen that there are at leagtways of adapting an arbitrary solutighof C to satisfyC A
Zo A ... N Zr. As Up is an over-approximation of the number of such adaptedisolsithat
can violateD, there are at leagt, — up ways of adaptind to satisfyC A Zo A ... A Z; A
D. We denotey; — pp by n.

In the running example, we hawey, = (X # z+7) andk (x,d1) = 0. Note that for every
value ofz+ 7, there is at most one way of choosing value for skffe: 2] such thatd; is
violated. Hergup = 2¥*%) = 1, and henceg = i — pp = 1. Thus there is at least one way

20 John-Chakraborty

of adapting an arbitrary solution §f = 4x+y) to satisfy(z=4x+y) A(0 < 6x+Yy < 4)
ANX#2Z+T7).

The above reasoning can be extended to the generakcase. > k. Let g for0<i <
r be the number aoZ;’s with kj < k; fori < j <r. Using the Inclusion-Exclusion principle,
W1 above then changes (§'|_;,; aij) — (75 — 1) - 24 K+1,

Theorem 1 If n > 1, then3ax. (CADAI) =3x.(C)

Proof There are at leas} ways of adapting an arbitrary solution Gfto satisfyC A Zg A
... NZ AD.If n > 1, then an arbitrary solution & can be adapted to satis§/A Zp A
...NZy A D, and hencélx. (C) = 3x.(CADAI). Sincedx.(CADAl) = 3x.(C) always
holds, we havélx. (CADAI)=3x.(C)if n > 1. O

It can be observed that is computable in polynomial time. The difficult step is com-
putation of . Let r be the number of distinct linear terms linwith x in their support.
Computingy requiresO(r?) arithmetic operations in the worst-case.

As mentioned earlier, the procedugi1 Layer2applies this technique to problem in-
stances of the forrx. C,, obtained after invokin@E1 Layer1to find unconstraining LMDs
and LMis. If all the LMIs and LMDs in3x.C, are unconstraining, thefx.C, reduces to
Ix. (24 .x=t;), andQE1 Layer2returns the equivalent formP2k .t; = 0.

In the running exampleQE1 Layer2drops the LMI(6x+Yy < 4) and the LMD (x #
z+7) as they are unconstraining #x. ((z= 4x+Yy) A(6x+Yy < 4) A(X# 2+ 7)). The
problem instance thus reducesir. (z = 4x+Yy), which is equivalent tq4y + 4z = 0).
Hence the final result iy + 4z = 0).

In general,QE1 Layer2 returns3x.Cg, whereCz is a conjunction of possibly fewer
LMCs compared t&,, such thatix. C3 = 3x.C,. The next subsection describes techniques
to eliminate quantifiers from such problem instances.

Analysis of ComplexityConsider a conjunction of LMCs with a subset of variableitsin
support to be eliminated. Letbe the number of LMCs in the conjunctionbe the number
of variables in its support, arelbe the number of variables to be eliminated. Consider the
elimination of a variable inside Layer2. Recall that Layer2 can be applied only whén al
LMIs involving x are of the formsi<t, wherexie {<,>}, sis a linear term withx in its
support, and is a linear term free ok. Letr be the number of distinct linear terms with
x in the support appearing in the LMIs. As observed above, cgimgn requiresO(r?)
arithmetic operations in the worst-case. Note that n. Assuming that each arithmetic
operation onp-bit numbers take tim&©(Q(p)) in the worst-case, wherp < Q(p) < p°,
elimination of a variable hence has a worst-case time coxitplef O(n? - Q(p)). Observe
that eliminating a variable does not increase the numbeM&& in the conjunction. Hence
eliminatinge variables has a worst-case time complexityQge- n? - Q(p)). Since reading
n LMCs as input and writing the result tak€gn-v- p) time, Layer2 has a worst-case time
complexity ofO(e-n?-Q(p) +n- p-Vv).

3.5 Layer3: Fourier-Motzkin Elimination for LMIs

In this subsection, we present a Fourier-Motzkin (FM) sl algorithm for computing
Ix.C3 obtained above. Recall th& obtained above, in general, contains LMDs, LMIs,
and a single LME. We propose converting the LMDs and the LMEgmo LMIs using the
equivalencest; =t2) = (1 >t2) A (t1 <t2) and(t1 # t2) = —(t1 =t2). This, in general,
convertsCs to a Boolean combination of LMIs. However, as we will see ict®m[4, a

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 21

QE algorithm for conjunctions of LMIs can be extended to a Qdo@thm for Boolean
combinations of LMIs. Hence, in the remainder of this subieac we will focus on QE
from conjunctions of LMIs

There are two fundamental problems when trying to apply Fimiahtion for reals|[20]
to a conjunction of LMIs:

1. Wrap-around behaviourRecall that FM elimination normalizes each inequality.r.t.
the variablexbeing quantified by expressihgn an equivalent formxext, whereie {<
,>} andt is a term free ok. However, due to wrap-around behaviour, the equivalences
() (t1 <tp) = (1 +t3 <ty +t3) and (ii) (t1 <t2) = (a-t1 < a-tp) used for normalizing
inequalities do not hold for LMIs in general. For examg2< 3 (mod 4), but(2+
1>3+1 (mod4). Similarly,(1<2 (mod4),but(1-2>2-2 (mod4). Hence,
normalizing an LMI w.r.t. a variable is much more difficultaifh normalizing in the
case of reals. Moreover, unlike in the case of reals and énsegpresence of equalities
does not always simplify QE in modular arithmetic. For exémpx. ((2x = 3y + 2)

A (3x > 4z+ 3)) can be simplified taix. ((6x = 9y+6) A (6x > 8z+ 6)) on integers.
However this simplification cannot be done in modular argtimin general.

2. Lack of densityEven if we could normalize LMIs w.r.t. the variable being qgtified,
due to the lack of density of integers, FM elimination canpetdirectly lifted to nor-
malized LMIs. For exampléx. ((y < 4x) A (4x < 2)) is equivalent taly < z) in reals,
whereas this is not true in modular arithmetic in general.

This motivates us to (i) define a (weak) normal form for LMIsddii) adapt FM elim-
ination to achieve QE from normalized LMIs. Recall that Omdgst [51] also defines a
normal form for inequalities over integers, and adapts Fivhiektion over reals for QE
from normalized inequalities over integers. However, Oanégst cannot be directly used
for QE from LMIs — using Omega Test for QE from LMIs requiresieerting the LMIs
to equivalent constraints in linear integer arithmeti@ tksulting formula is in linear in-
teger arithmetic, and converting the resulting formulakbcmodular arithmetic is diffi-
cult. Moreover our experiments in Sectigh 5 indicate thaingi Omega Test for QE from
the linear integer arithmetic constraints arising from IsNHcurs considerable performance
overhead.

3.5.1 A (weak) normal form for LMIs

We say that an LMI with xin its support immormalized w.r.t. xf it is of the forma-xi<t, or
of the forma-xib-x, wherexie {<, >}, andt is a linear term free of. We will henceforth
useNFL1 to refer to the first normal forma(x>at) andNF2 to refer to the second normal
form (a- x> b-x). A Boolean combination of LMC# is said to be normalized w.rx.if
every LMI in ¢ with xin its support is normalized w.rx.

We will now show that every LMI withx in its support can be equivalently expressed
as a Boolean combination of LMCs normalized wx.tBefore going into the details of
normalizing LMIs, it would be useful to introduce some nitat We defined(t1,t2) as the
condition under whiclt; + t> overflows ap-bit representation, i.et; 4+t interpreted as an
integer exceedsP2- 1. Note thatO(t1,tp) is equivalent to botht, # 0) A (t1 > —t) and
(tl #* 0) A (tz > —t]_).

Suppose we wish to normalize the L+ 2 <y) modulo 8 w.r.tx. Adding the additive
inverse of 2 modulo 8, i.e, 6 to both sides of the LMI, the lediRd sidex+ 2 changes ta
and the right-hand sidgchanges ty + 6. However, note thatx+ 2 <) is not equivalent
to (x<y+6). If ©(x+2,6) = O(y,6), then(x+2 <y) = (x < y+6) holds; otherwise

22 John-Chakraborty

(x+2<y) = (x>y+6) holds. Note tha® (x+2,6) = O(y, 6) can be equivalently expressed
as(x < 5) = (y > 2). Hence,(x+ 2 < y) can be equivalently expressed in the normalized
formite(¢, (x <y+6),(x>y+6)), wheregp denotegx < 5) = (y > 2), andite(a,f3,y) is
a shorthand fofa AB) V (—a Ay).

In this example, th® predicate allowed us to perform a case-split and normatzé e
branch. The following Lemma generalizes this idea.

Lemmab Letl : (a-x+1t; <b-x+t;) be an LMI, whereitand ¢ are linear terms without
x in their supports. Theny I= ite(¢,l2,—l2), where b = (a-x—b-x<t,—t;),and¢ is a
Boolean combination of LMCs normalized w.r.t. X.

Before we present the proof of Lemiiia 5, it would be useful &sent a proposition.

Proposition 6 Let I; be an LMI § < tp, and let § be a linear term. ThemI|= ite(¢1 A
(¢2@ ¢3), (t1+t3 > 1o -‘rtg), (tl +1t3 <t +t3)), where¢1 = (t3 #+ 0), ¢2 = (—tg < tl),
$3 = (—t3 <tp) and ¢, ® ¢3 denotes exclusive-or ¢f, and @s.

Proof Note that(ty <tp) = 1V YV 3V Y, where

- = (1<) AO(t1,13) AO(tz,t3)

= (t1 <t2) AO(t1,t3) A—O(t2,13)
- yYn = (t]_ < tz) /\—\@(tl,tg) /\Q(tg,tg)
- s = (1 <o) A—O(ty,13) A —O(t2,13)

It can be seen that,

- (i +13 <t2+13) AO(ty,13) A O(t2,t3)

- Up false, since@(t1,t3) A O (t2,t3) = (t1 > t2). However, we can writghp as(t; +
t3 > to +1t3) A O(t1,t3) A =O(to,t3) as well, which is equivalent tfalse, since@(ty,t3) A
ﬂ@(tg,tg) = (t]_ +t3 <ty +t3).

— Yz = (t1+t3>tr+13) A-O(t1,t3) AO(to,t3)

— Ys = (t1+1t3 <tr+13) A0O(t1,13) A—O(to,t3)

Expressingpy V Y V Y3 V Yy in terms ofites, we have,

(tg <t2) = ite(O(t1,t3) ® O(to,t3), (t1 + 13 > ta +13), (t1 + 13 <t +13))

Expanding the’s using the formul®(a,) = (B # 0) A(a > —f), wherea, 3 are linear
terms, we have,

(1 <tz) = ite(p1 A ($2© P3), (t1 +13 > o +13), (1 +13 <t +13))
where,¢1 = (t3#0), ¢2 = (—t3 <t1), anddz = (~t3 <tp). o
We can now prove Lemnid 5.

Proof (Proof of Lemmal5Tonsider an LMIl; : a-x+t; < b-x+tp, wheret; andt, are
linear terms withouk in their supports. Using Propositiéh 6, with x+t; in place ofts,
b-x+t;, in place oft, and—b-x—t; in place ofts,

l1 = ite(¢p1A (P2 @3),(a-x—b-x>1tr—t1),(a-x—b-x <ty —t1))

where,¢1 = (b-X+1t1 #0), ¢ = (b-X+1t; <a-x+1t1), andgz = (b-x+t; < b-x+1tp).
Note that the LMISa-x—b-x >ty —t1) and(a-x—b-x <t —t;) are normalized w.r.t.
X, whereasp, and@s are not. Hence, let us try to normalige and @z w.r.t. x.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 23

Considerg, = (b-x+1t; < a-x+t;1). Using Propositiofil6, with- x+t; in place ofts,
a-x+ty in place oft, and—t; in place ofts,

¢ =ite((th ZO)A((t1 <a-x+1t1)® (1 <b-X+t1)),(b-x>a-x),(b-x<a-x))
Using the observation3 < a + B) = -O(a,B) andO(a,B) = (B # 0) A (a > —p) for
linear termsa and B3, and simplifying,(t1 Z O) A ((t1 < a-x+1t1) ® (t1 <b-x+1t1)) is
equivalent talt; # 0) A ((—t1 < a-x) @ (—t1 < b-x)). Hence,
pr=ite(L #O)A((—t1 <a-X)® (—t1 <b-X)),(b-x>a-x),(b-x<a-x))

Similarly, considergs = (b-x+t; < b-x+t2). Using Propositiofl6, with- x+t; in
place ofty, b-x+1; in place oft, and—b- x in place ofts,

p3 =ite((b-xZO0)A((b-x<b-x+11) B (b-x<b-x+1t2)),(t1 > t2), (11 <t2))
= ite((b-x;é 0)/\((—b-XStl)@(—b-xgtz)),(tl >t2),(t1 Stz))

Putting everything together,

l1 =ite(p1 A (¢2D d3), (a-Xx—b-Xx>tr—t1),(a-x—b-x<tp —11)),where

¢1 = (b-x+t1 #0)
po=ite(1 Z0)A((—t1 <a-x) @ (—t1 <b-x)),(b-x>a-x),(b-x<a-x))
p3 =ite((b-x£0)A((—b-x<t1)® (—b-x<1tp)), (t1 > t2), (11 <tp))

Hencel; can be equivalently expressed &s(@,l2,—l2), wherel, = (a-x—b-x <
top—t1), and¢ = —d1V (¢2 = ¢3). Note thatp here is a Boolean combination of LMCs
normalized w.r.tx. a

3.5.2 Modified FM for normalized LMIs

We begin by illustrating the primary idea through an examglensider the problem of
computing3x.C, whereC = (y < 4x) A (4x < z) with modulus 16. Note thaix.C is “the
condition under which there exists a multiple of 4 betwg@mdz, wherey < Z'. Note that
if x,y,zwere reals, then we would have obtaingd z) for 3x.C. However, as in the case
of integers, this would over-approximai®. C in the case of fixed width bit-vectors.

If (y<12)A(z>y+3) holds, then the difference betwegandzis > 3. In this case,
existence of a multiple of 4 betwegrandz is guaranteed. Thuy < z) A (y < 12) A (z>
y+3) = 3x.C.

It can be seen that {fy > 12), then there does not exist arguch thafy < 4x). Hence,
if (y>12), then3x.C is false. If (z< y+ 3), then3x.C is true iff one of the following
conditions holds: (iYy < z) andy is a multiple of 4, i.e.(y < z) A (4y = 0), (ii) (y < z) and
(y>z (mod4),i.e.,(y<z Ady>4z).

Hencedx.Cis equivalent tqy < z) A ¢, whereg is the disjunction of the following three
formulas: (i)(z>y+3) A (y<12), (ii) (z<y+3)A(dy=0), (iii) (z<y+3)A(dy > 42).

The following Lemma generalizes this idea.

Lemma6 Leth: (t1 <a-x)andb: (a-x<tp) be LMIsin NF1 w.r.t. x. Let k bg(x,a-X).
Then,3x. (I1Al2) = (t1 <t2) A ¢, whereg is the disjunction of the formulas: (()Zp*kml =
0), (i) (t2 >t1+ 2= D)A(ty < 2P —2X), and (i) (tp <t +2¢— 1)A(2P K.t > 2P K. 1p).

24 John-Chakraborty

Proof Note that3x. (I3 Alz) = 3x. (I} AlL), wherel; = (t; <2K-x) andl, = (2¢-x<
to), since the multiples of'2and X - e are the same modulo®Zor any odd numbee €
{1,...,2°P—1}.

Now 3x. (11 A1) = 3Ix. 1 V 3X. oV 3X. Y3 V 3IX. Pa, Where

— 1 = JALLA (2P Ky =0)

— P = LALLAP Ky £0)A (2 >t + 25— 1) A (g < 2P —2K)
— Y3 = LALLAP K #£O0) A (2 <tg+25-1)

— s = IAIGA (PR £ 0) A (t > 2P — 2F)

Consider3x. r. This is equivalent tax. (1 A (t1 < t2)), since(ty < tp) is an LMI
implied by 1. It can be seen thax. (gx A (t; <tp)) is equivalent tg2P%-t; = 0) A (t; <
t), since given any solution t@PK-t; = 0) A (t; <tp), we can satisfy; Al by setting 2-x
to t;. Note that setting'2 x to t; is always possible, since®2¢-t; = 0= 3x. (2¢-x=1t;)
(see Propositiofl] 3). Hencéx. Yy = (2P X-t; = 0) A (t; < tp).

Consider3x. Y. Note that the difference betwee¢nandt, here is> 2k 1, which
implies that there exists a multiple of Betweert; andt,. Hence it can be seen that <
) A(2P7K.tg £ 0) A (tp > tg +2— 1) A (t; < 2P — 2K) = 3x. (k. Implication in the other
directikon is obvious. Hencéx. ¢, = (1 <t) A (2P X1 Z0) A (e >t + 2K — 1) A (tg <
2P — 2Ky,

Considedx. Y. This implies(2PK-t; > 2PK.t,). Hencedx. 3 = Ix. (s A (2P K 11 >
2P-K.t,)). This is equivalent tdt; <t) A (2P -t ZO) A (tp <tg + 2= 1) A (2P K-t >
2P-K.1,), as the existence of a multiple of Betweert; andt, is implied by (t; < tz) A
(2P Kty £0) A (tp <tg + 2= 1) A (2P K.t > 2P K ty).

Consider3x. Y. This is equivalent tdalse, since given(t; > 2P — 2), there exists nt
such that] A5 holds.

Putting everything together, it can be seen thatl; Al2) = (t1 <t2) A ¢, whereg is
the disjunction of the formulas: ((RP -ty = 0), (ii) (t2 > t; + 2~ 1)A(ty < 2P — 2¥), and
(i) (o <ty +2K—1)A(2P K- t; > 2P K 1p). 0

Suppose we wish to compuf. |, wherel is a conjunction of LMIs normalized w.r.t.
X. Let| =11 Al,, wherel; is the conjunction of LMIs inl that are inNF1, andl; is the
conjunction of LMIs inl that are inNF2. In addition, letay, ..., a, be the distinct non-zero
coefficients ofkin LMIs in 11, and letl; ; denote the conjunction of LMIs ih in which the
coefficient ofx is &. Finally, letA(ty,t>,k) denote the result of computirgx. ((tp < a-x) A
(a-x<tp)) using Lemmalb, wheredenotesc(x,a-x). It is easy to see that Lemrhh 6 can be
used to computéx. |y ;, for everyi € {1,...n}. Similar to FM elimination, we partition the
LMIs | j : @ - xpatj in I into two setsA< andA>, whereA,, = {l; j | I; j is of the forma; -
xxatj}, fore {<,>}. We assume without loss of generality that the trivial LMjsx <
2P —1 anda; - x > 0 are present i< andA> respectively. We can now compuie. 11 as
/\(a X<tp)EA<, (g-X>tg)EN> (A (tq7tpa K (X>a4' X)))

Each conjunction of LMIs such ag; above, where all LMIs are iNF1w.r.t.x, and have
the same coefficient of are said to be “coefficient-matched” w.it. Similarly, a Boolean
combination of LMCsp is said to be coefficient-matched w.xtif all LMIs in ¢ with x in
their support are iNF1 w.r.t. x and have the same coefficientofin the special case when
I, =true andn =1, i.e., when is a conjunction of LMIs coefficient-matched w.pg.3x. |
reduces tax. Iy 1.

Unfortunately, converting to coefficient-matched form w.r.t. a variable is inefficient
in general. Hence we propose converting coefficient-matched form w.rx only in the
following cases, where it can be done without much loss ofiefficy: (a)l> = true, n=2

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 25

anday = —ay1, and (b)l2 = true and everyg is of the form ¥ . e whereeis an odd number
in{1,...,2° — 1} independent of.

In case (a) abovd, can be equivalently expressed as a Boolean combination @4.M
coefficient-matched w.r.k by using the following Proposition.

Proposition 7 (—t; < —tp) is equivalent tqt; = 0) V ((t2 # 0) A (t1 > t2)).

Example Consider the problem of computingx.|, wherel = (y < 2x) A (6x < z) with
modulus 8. Using Propositidn 76x < z) is equivalent tq2x=0) V ((z# 0) A (2x > —2)).
Thus3x.| can be equivalently expressed=s¢, where¢ is the disjunction ofy < 2x) A
(2x=10) and(y < 2x) A (z#0) A (2x> —2). Note thatg is coefficient-matched w.rx.

We explain the idea behind case (b) with an example beforgidering the general case.
Consider the problem of computiagy. |, wherel = (y < 2x) A(x < z) with modulus 8. It can
be shown thax < zcan be equivalently expressed as the disjunction @ (¥, x) A ©(z,2) A
(2x < 22), (ii) ~O(x,X) A—~O(z,2) A (2x < 22), and (iil) O (x,X) A ©O(z,z). Hence .| can
be equivalently expressedas ¢’, whereg’ is the disjunction of (iP (x,X) A@(z,2) A (2x <
22) A (y < 2x), (i) ~O(x,X) A—O(z,2) A (2x < 22) A (Y < 2x), and (jii) ~O(X,X) AO(zZ,2) A
(y < 2x). Note that®(x,x) and©(z,z) can be equivalently expressedras 4 andz > 4
respectively. However, on closer inspection, it can be ghahoccurrences of > 4 in
Ix. ¢’ arising fromO(x,x) are unconstraining, and can therefore be dropped. BRuf'
can be equivalently expresseds @, where¢ is the disjunction of2x < 2z) A (y < 2X)
and(z> 4) A (y < 2x). Note thatdx. ¢ is equivalent tadx. | and is coefficient-matched w.r.t.
X.

In general, giverix.| such thatl, = true and everyg; is of the form % . e (as defined
above), we have the following Lemma.

Lemma 7 Letl; be a conjunction of LMIs ilNF1w.r.t. x. Let a,...,a, be the distinct non-
zero coefficients of x in LMIs in | Let each g for 1 <i < n, be of the forn2 - e, where
e is an odd number if1,...,2P — 1} independent of i. Thergx.l; can be equivalently
expressed asx. ¢, where¢ is a Boolean combination of LMCs coefficient-matched w.r.t. x

Proof Our proof makes use of the following claims.

Claim 3 An LMl a-x <t in NF1can be equivalently expressed as the disjunction of formu-
las: (i) ©(a-x,a-x) AO(t,t) A (2a-x < 2t), (i) =O(a-x,a-x) A—O(t,t) A (2a-x < 2t), and

(i) —©(a-x,a-x) AO(t,1).

Claim 4 An LMl a-x>tin NF1can be equivalently expressed as the disjunction of formu-
las: (i) ©(a-x,a-x) AO(t,t) A (2a-x > 2t), (i) =O(a-x,a-x) A—O(t,t) A (2a-x> 2t), and

(iii) ©(a-x,a-x) A—=O(t,1).

To see why ClaimiI3 is true, note thi@-x <t) = ¢n V yr V 3V Y4, where

- = (a-x<t)AO(a-xa-x) AO(t,t)
- = (a-x<t)AO(a-x,a-x) A—O(t,1)
- Y5 = (a-x<t)A-O(a-x,a-x) AO(t,t)

- P = (a-x<t)A-O(a-xa-x) A—=0(t,1)

It can be seen that,

— Y1 = Oaxax) A0t t)A(2a-x< 2t)
— Y = false, since@(a-x,a-x) A-O(t,t) = (a-x>1)
- Yz = —O(a-x,a-x)AO(t,t), since—O(a-x,a-x) AO(t,t) = (a-x<t)

26 John-Chakraborty

—Yp = —O(a-xax)A=0O(t,t)A(2a-x< 2t)

Claim[4 can be proved in a similar manner.

Without loss of generality, lety; > a, > ... > an, i.e., X -e>2%.e> ... > 2%.e This
implies that (i)ky > ko > ... > ks, and (i)a; = 2K . g for2 <i <n.

Now consider each LM& - x<tj in |1, where 2<i < nande {<,>}. It can be seen
that the above Claims can be used to expagsstj as an equivalent Boolean combination
of LMCs, involving (i) the LMI (2&; - x> 2tj), (i) ©(a; - X, & -x), and (iii) O(t;, t;). Moreover,
the above claims can be used repeatedly to exmgess>a t; as an equivalent Boolean
combination of LMCs, involving (i) the LM[2K~kig; - x> 2kikit;) j.e., (ag - X 2607 Kit;),
(i) Oa -x,a -X), O(28 - X,28 - X),..., O(2k~ki~1g . x 2a—k~1g . x), and (i) O(t;,t;),
O(2t},2t)),..., O(2a—ki-1g; 2kaki-ly;),

It can be seen th&@(a; - X, & - x), ©(24; - X, 28 -X),..., @(2a*i~1g . x 2ka—ki—1g . x) can
be equivalently expressed & -x > 2P 1), (2g;-x > 2P 1), ..., (24 ki~1g . x> 2P 1) re-
spectively. Similarlyo(t;,tj), ©(2t},2t),..., ©(2k~*~1t; 2k—ki~1t;) can be equivalently
expressed af; > 2P~1), (2; > 271y, .., (2a—ki—lt; > 2P-1) respectively. Hence can
be equivalently expressed as a Boolean combination of LMCsnvolving (i) LMIs of
the form (ay - x> 247K - t;), (i) LMIs of the form (g -x > 2P~1), (2a -x > 2P71), ...
(2ka—k~1g.x > 2P-1), and (iii) LMIs of the form(t; > 2P-1), (2t; > 2P-1), .., (2a-k-1 >
21,

r
We can expresg’ equivalently as\/ C,;, where eaclC, is a conjunction of LMCs.
(=1

Hencedx. ¢’ is equivalent to\/ (3Ix.Cy). Observe that eady involves three kinds of LMIs:

(i) LMIs of the form (a; - x> 2k1 ki.t;), (ii) LMIs of the form (a; - x > 2P~1), (2g -x > 2P~1),

, (2aki~1g.x > 2P~1) and/or their negations, and (i) LMIs of the forgy > 2P~1),
(2t,- >2P~1), ., (2ak~1t; > 2P~1) and/or their negations. L&y 1 be the conjunction of
the first kind of LMIs inC,. Similarly, letC,» andC, 3 respectively be the conjunctions of
the second and the third kinds of LMIs@. Hence we hav€, = C;1 AC;2 ACy 3.

Thereforedx.C, = (3x. (Cr 1 ACy2)) ACy 3, SiNceCy 3 is free ofx. Moreover, by applying
Theorent L orix. (C; 1 ACy2), it can be proved tha, ; is unconstraining i@x. (C, 1 ACy 2).
Hence3dx.C, can be equivalently expressed=s(C, 1) ACy 3. Note that the coefficient of

r
inCy 1 isa;. This implies that\/ C, can be equivalently expressed as a Boolean combination
1

(=
of LMCs coefficient-matched w.r.x, with coefficient ofx asa;. O

Note that normalizing a given conjunction of LMIs w.r.t. aiedole and then converting
it to coefficient-matched form transforms it to a Boolean bamation of LMCs in general.
We make use of techniques in Secfidn 4 for eliminating qgfiargifrom such Boolean com-
binations of LMCs.

In cases other than those covered in cases (a) and (b) abeveropose computing
3x.1 usingmodel enumeratiani.e., by expressingx.| in the equivalent forni |y, oV ...V
I|xc_2p_1 Wherel |y, ; denoted with x replaced by the constant

The procedure that computés.Cs (whereCs is obtained fromQELLayer? using
techniques mentioned in this subsection is call Layer3(see Algorithn{ll). Initially,
the LMDs and the single LME in the conjunction are convert@dMIs using the equiv-
alences(ty =tp) = (t1 > t2) A (t1 < tp) and(t; # tp) = —(t1 = t2). This in general yields
a Boolean combination of LMC#;. If ¢1 is a conjunction of LMIs coefficient-matched
w.r.t. X, thendx. ¢ is computed using the modified FM elimination in Leninha 6. Qtlise,

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 27

Ix. ¢1 is computed either by convertinfy to coefficient-matched form w.rx, followed by
QE from the resulting Boolean combination of LMCs, or by miagleuimeration.

Algorithm 1: QE1 Layer3

Input: Conjunction of LMCSC, Variable to eliminate
Output: Boolean combination of LMCg equivalent taix.C

1 ¢1 := convertToLMI{C); // convert LMEs and LMDs to LMIs
2 if ¢ is a coefficient-matched conjunction w.r.then
3 L Y := modifiedFM¢1, X); // Apply modified FM based on Lemma
4 else
5 if model enumeration is selected to comptiep, then
6 L := modelEnumeratgi, x); // Apply model enumeration
7 else
8 ¢, := coefficientMatcly1, X);
9 ;= QEFromBooleanCombinati§fy, x);
// Eliminate X from Boolean combination ¢p; this recursively
// calls Project
10 return y;

Analysis of ComplexityConsider a conjunction of LMCs with a subset of variables in
its support to be eliminated. L&t be the number of LMCs in the conjunction,be the
number of variables in its support, ardbe the number of variables to be eliminated. Note
that Layer3 resorts to model enumeration in the worst cagesi@er the elimination of the
first quantified variable, say; by model enumeration.

Elimination ofx; by model enumeration involves creating@pies of the conjunction,
and then replacing; by a constant in each copy. Replacixgby constant and then sim-
plifying takesO(n) arithmetic operations in the worst-case for each copy. Aésg that
each arithmetic operation optbit numbers take tim&®(Q(p)) in the worst-case, where
p < Q(p) < p?, elimination ofx; from each copy hence has a worst-case time complex-
ity of O(n-Q(p)). Since there areP2such copies, elimination of, has a worst-case time
complexity ofO(n-Q(p) - 2P).

Elimination ofx; generates a formula withPalisjuncts, where each disjunct can have
LMCs. In a similar manner as above, it can be seen that elimimaf the second quantified
variable, sayx, has a worst-case time complexity@fn- Q(p) - 22P). Proceeding like this,
it can be seen that elimination efjuantified variables has a worst-case time complexity of
O(n-Q(p)- (2P +2%P+...2%P)), which reduces t®(n- Q(p) - 2(¢+1)P),

After elimination of e variables, we have a formula wittf 2 disjuncts, where each
disjunct can have LMCs. Writing each disjunct involving LMCs takesO(n-v- p) time.
Hence writing the result také3(n-v- p- 2¢P) time. Therefore Layer3 has a worst-case time
complexity ofO(n-Q(p) - 2¢+*YP - n.v. p.28P),

3.6 Project Combining Layers

Recall thatQE1 Layerl, QE1 Layer2 andQE1 Layer3try to eliminate a single quantifier
from a conjunction of LMCs. These procedures can be extetmeliminate multiple quan-
tifiers by invoking them iteratively. Thus we have procedilrayerl, Layer2 andLayer3-

28 John-Chakraborty

extensions oQE1 Layer], QE1 Layer2 andQE1 Layer3respectively, to eliminate multi-
ple quantifiers.

Algorithm 2: Project
Input: Conjunction of LMCSA, Set of variables to eliminaté
Output: Boolean combination of LMCg equivalent ta3X. A

¢1 := Layer)(A, X); // for each x € X, Apply QE1_Layeri
if ¢1 has no quantifiershen

| w=¢u

else

A WNPE

// Let ¢1 = ALATY.B

¢, := LayerdB,Y); // for each X € Y, Apply QE1_Layer2
if ¢ has no quantifiershen

| wi=ALA ¢

else

L // Let ¢ = ApATZ.C

0 ~NoOo O

9
10

¢3:= Layer3C, 2); // for each X € Z, Apply QE1_Layer3
Yi=AL AR A B3

11 return y;

We now present the overall QE algorithBroject (see Algorithm2) for computing
3X. A, whereA is a conjunction of LMCs over a set of variabMsuch thaX C V. Initially
Projecttries to computedX. A usingLayerl This reducesiX. A to an equivalent conjunc-
tion of LMCs ¢,. If all variables inX are eliminated by ayerl, theng; is free of quantifiers.
In this casedX.Ais equivalent tap;, andProjectreturnsg:. Otherwise g, is equivalent to
the conjunction oy and3Y. B, whereA;, B are conjunctions of LMCsyY C X, andX \ Y
is the subset of variables X that are eliminated bizayerl Projectthen tries to compute
3Y.B usingLayer2

Layer2reducesdY.B to an equivalent conjunction of LMCg,. If all variables inY
are eliminated by.ayer2 theng- is free of quantifiers. In this caséX. A is equivalent to
A1 A @2, andProjectreturnsA; A ¢,. Otherwise @, is equivalent to the conjunction @6
and3Z.C, whereA;, C are conjunctions of LMC<Z C Y, andY \ Z is the subset of variables
inY that are eliminated blyayer2 ProjectcallsLayer3to computedZ.C. Layer3computes
¢3, a Boolean combination of LMCs equivalent3d@.C, andProjectreturnsAy A Az A @3.

Letx be the variable being eliminated. Line-8@E1 Layer3generates a Boolean com-
bination of LMCs ¢, coefficient-matched w.r.tx. Line-9 of QE1 Layer3then callsQE-
FromBooleanCombinatiom order to eliminatex from ¢». This eventually gets reduced to
eliminatingx from a bunch of conjunctions of LMCs. Eliminatixgrom each such conjunc-
tion of LMCs results in a new recursiroject call. Because of this feedback, the control
flow insideProjectis not linear.

Note that each new recursirojectcall may in turn callQE1 Layer3 However it can
be observed that this mutual recursion betw@éil Layer3andProjectdoes not result in
infinite recursion. To see this, note that in each of the eeProject calls, all LMIs in-
volving x are coefficient-matched w.rx. Hencex will be certainly eliminated by ayer],
Layer2 or modifiedFMinside these recursivierojectcalls. This guarantees that the recur-
sion terminates.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 29

4 Extending QE to Boolean Combinations

Algorithm Project described above eliminates a set of variables from a cotigmof
LMCs. In this section, we explore approaches for extendirgiectto Boolean combina-
tions of LMCs.

As mentioned in Sectidd 2, the problem of extending a QE #lguorfor conjunctions
of constraints to Boolean combinations of constraints antered in other theories such
as linear real arithmetic and linear integer arithmetic a.vdmong the techniques to solve
this problem for these theories (see Subsedtioh 2.1), thk yoChaki et. al. in[[12] pro-
poses a decision diagram based algorithm for QE from forsnulghe theory of Octagons
and the work by Monniaux in [42] proposes an SMT solving badgdrithm for extending
Fourier-Motzkin to arbitrary Boolean combinations of cwasts in linear real arithmetic.
The approaches for extendifgojectto Boolean combinations of LMCs described in this
section are motivated by the ideas introduced in these works

4.1 Decision Diagram Based Approach

We introduce a data structure called Linear Modular Denigdtagram (LMDD) that rep-
resents Boolean combinations of LMCs. LMDDs are BDDs [10hwiodes labeled with
LMEs or LMIs. The problem we wish to solve in this subsecti@m de formally stated
as follows. Given an LMDDf representing a Boolean combination of LMCs over a set of
variablesV, we wish to compute an LMDI@ equivalent tadX. f, whereX C V.

The algorithms presented in this subsection use the faligwelper functions: a&yars
returns the set of variables in an LMC,dgtConjunctcomputes the conjunction of LMCs in
a given set, cisUnsat determines if the conjunction of LMCs in a given set is uiss@ible,
d) createLMDD creates an LMDD from a Boolean combination of LMCs,AND, OR,
NOT, ITE: performs the basic operations on LMDDs indicated by thamas. We denote
a non-terminal LMDD nodd as(P(f),H(f),L(f)), whereP(f) is the LME/LMI labeling
the node, andli (f) andL(f) are the high child and low child respectively as defined.ilj.[10

A straightforward algorithm to compufeX. f is to applyProjectto each path originat-
ing from the root off . We call this algorithmAll_Path QElim (see Algorithni.B). To compute
3IX.f, we callAll_Path. QElim with argumentsf, { } andX. All_Path.QElim performs a re-
cursive traversal of collecting the set of LMCS$ containing any of the variables X that
it encountered along the path from the rootfoff the path leads to a 1-terminal and if the
conjunctionCs of LMCs in Sis theory-consistent, theProjectis called to computeX. Cs.

As observed in[11, 12], because of the dependence of thé oésurecursive call on
the contextS, if the same LMDD node is encountered following two differgaths, then
the results of the calls are not the same in general. HAicBath QElim is not amenable
to dynamic programming, and the number of recursive callaésr in the number of paths
in f, which can be exponential in the number of nodes.in

In the following discussion we present a more efficient athar QE_LMDD to compute
3X. f. QE.LMDD makes use of an algorithm call€@E1 LMDD that eliminates a single
variablex from f (see Algorithni#). To computex. f, we callQELLMDD with arguments
f, {} andx. QELLMDD performs a recursive traversal of the LMDiDcollecting the set
of LMCs S, containingx that it encountered along the path frdm

In general, QELLMDD (f, S, X) computes an LMDD for3x. (f ACs,), whereCs,
denotes the conjunction of LMCs . Let Ex be the set of LMEs ir§;. Let each LMEg
in Ex be of the form & .x =t;, wherek; = k(x,q) and 1< i < n (recall the definition ok

30 John-Chakraborty

Algorithm 3: All_Path.-QEIlim

Input: LMDD f, Set of LMCsS, Set of variables to eliminaté
Output: LMDD for 3X. (f ACs), whereCs is the conjunction of LMCs irs

1 if f =0orisUnsafS)then
2 | retun O;
3 if f=1then // f is theory-consistent l-terminal
4 Cs := getConjunas);
5 mt:= Projec(Cs, X);// m = 3X.Cs
6 return createLMDO(m);// m = 3IX.(f ACs)
// traverse down
7 c:=P(f);
8 if Vargc)N X == { } then // C is free of variables to eliminate
9 | return ITE(c, All_Path QElim(H(f), S, X), All_Path QElim(L(f), S X));
10 else // C contains variables to eliminate
11 L return OR(AIl_Path.QEIim(H(f), SU {c}, X), All_Path.QElIim(L(f), SU{—c}, X));

Algorithm 4: QELLMDD

Input: LMDD f, Set of LMCsS;, Variable to eliminate
Output: LMDD for 3x. (f ACs,), whereCsg, is the conjunction of LMCs irg,

if f =0orisUnsa(S,) then
| return O;
if f=21then // theory-consistent l-terminal

m:= Project(Cs,, {x});// m = 3x.Cs,
return createLMDO();// m = 3. (f ACs,)

// simplification using LMEs
7 Ex:=setof LMEsinS;
8 if Ex # { } then
9 e := selectLMEEy);
10 f’ := simplifyLMDIXf, ey, X);
11 if f’is free of xthen

o0 h W NP

L Cs, := getConjuncfSy);

12 Cs, := getConjundtS);
13 mt:= ProjectCs,, {x});// m = 3x.Cs,
14 return AND(f’, createLMDO(m));// f'Am = 3x.(f ACg,)
15 else
16 | =1
// traverse down
17 c:=P(f');

18 if cis free of xthen
19 | return ITE(c, QELLMDD(H(f'), S, X), QELLMDD(L(f'), S, X));

20 else
21 L return ORQQELLMDD(H (f’), Sc U {c}, X), QELLMDD(L(f"), SU{—c}, X);

from Sectior 3.11). Without loss of generality, latbe the minimum ok, ..., k,. Letg be
any internal non-terminal node dfrepresented ad(g),H(g),L(g)). Let us denotd>(g)
by c. It can be observed that ifhasx in its support, thert can be simplified by replacing
the occurrences of2- x in it by t;. Letc’ be the simplified LMC. Note that i (x,c) > ki,
thenc’ we get, is free ok. Thus, ifk (x,c) > k;, theng can be simplified t¢c’,H(g),L(g)),
wherec' is free ofx.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 31

We call the procedure that performs the selection of LME \wlith minimumk among
the LMEs inEy asselectLME The ProcedursimplifyLMDD (see Algorithn{b) performs
simplification of f using the selected LME as described above. The proceitamifyLMC
in Algorithm[H simplifiesc to ¢’ using the selected LME.

Algorithm 5: simplifyLMDD
Input: LMDD f, LME e : 2 . x = t;, Variable to eliminate
Output: LMDD f simplified usinge;
1 if f=0o0r f=1then
2 | return f;
3 c:=P(f);
4 if cis free of xXhen
5
6
7
8

L return ITE(c, simplifyLMDD(H (f), x, e1), simplifyLMDD(L(f), X, e1));
else
¢ = simplifyLMQ(c, e1, X);// if K(X,c) > ki, then ¢ is free of X
return ITE(C, simplifyLMDD(H (f), X, €1), simplifyLMDD(L(f), X, &1));

If simplifyLMDDis successful in eliminating all occurrences of variablesing the se-
lected LME, then it returns a simplified LMDD' such thaBx. (f ACs,) is equivalent to
f’ A 3x.(Cs,). Note that3x. (Cs,) can be computed biroject In this case QELLMDD
returns without any further recursive calls.simplifyLMDD is unable to eliminate all oc-
currences of variable, thenQE1LMDD proceeds by recursively traversing the simplified
LMDD f’.

Example All LMCs in this example have modulus 8. Létbe the LMDD shown on the
left in Fig.[3. Suppose we wish to compute. f usingQE1LMDD. Note thatQE1 LMDD
callssimplifyLMDDwith argumentd (), (3x+ 2y = 0) andx. The LME (3x+2y=0) is
equivalent tqx = 2y). simplifyLMDDeliminates all occurrences »fn H () using(x = 2y),
and thus simplifie$d (f) as shown on the right in Figl 3. Letbe the simplified LMDD,
which is free ofx (shown in different colour in Fig.13). Notice thak. (H(f) A (x=2y)) is
equivalent tay A Ix. (X = 2y). Sincedx. (x = 2y) is true, Ix. (H(f) A (x = 2y)) is equivalent
to g. HoweverL(f) cannot be simplified in this manner, as there are no LMEs Winglx in
its context.QELLMDD performs traversal df(f), and callsProjectto computedx. ((3x+
2y #0) A (2x+n=0)). Projectcomputesix. ((3x+2y # 0) A (2x+n=0)) as(4n=0).
Hence the final result is LMDD fog Vv (4n = 0).

It can be observed that if the same LMDD node is encounteréd tve same LME
following two different paths, then the results of the catissimplifyLMDD must be the
same. HencsimplifyLMDD can be implemented with dynamic programming. Moreover,
although the result of each recursive call@&1LMDD depends on the contes;, the
number of LMCs inS; is usually very small, as only the LMCs containixgre collected in
Si. HenceQE1 LMDD is still amenable to dynamic programming.

QE1LMDD can be repeatedly invoked to comptté. f. This is implemented in the al-
gorithmQE_LMDD. The order in which variables are selected for eliminatioQ E.LMDD
has a crucial impact on the sizes of the intermediate and fikldDs. In our ordering
scheme, we selected the variable occurring in the least auofbMDD nodes as the next
variable to be eliminated. Intuitively, this ordering sofeusually results in smaller contexts
(i.e., smalleiS;'s), and more opportunities for dynamic programming.

32 John-Chakraborty

f
3x+2y =0 mod 8

H(f)
4x+m <2 mod 8 K
. L
' ' \2x+n=0mod 8

LMDD g free of x by
simplification using
(3x+2y=0)mod 8,

0y

.
0y
0y

0y 0y
LY DY
DR N

Fig. 3 Example forQELLMDD

In practice, the strategy of eliminating one variable atraetiand simplification of
LMDDs using the LMEs in the context provide significant optpoities for reuse of re-
sults through dynamic programming. As a result of th&3E,LMDD in practice clearly
outperformsAll_Path QElim, as also demonstrated by our experiments.

4.2 SMT Solving Based Approach

In this subsection, we present an algoritQa SMT (see AlgorithniB) which is an extension
of the algorithm proposed in_[42]. Given a Boolean comboratf LMCs ¢ over a set of
variablesvV, QE_SMT computes a Boolean combination of LM@sequivalent to3X. ¢,
whereX C V. Notice thatQE_SMT involves All-SMT loop with optimizations as suggested
in [42].

Algorithm 6: QE.SMT

Input: Boolean combination of LMCg, Set of variables to eliminaté
Output: Boolean combination of LMCg/ equivalent tadX. ¢

1 H:=9¢;

2) = false;

3 while H is satisfiabledo

4 m:= a solution ofH;// m=H and mf=¢

5 C:= Generalizel¢, m);// C=¢

6 C':= Generalizepp,C);// C=C’ and C'=¢
7 m:= Projeci(C’, X);// m = 3X.C/

8 Y=YV

9 H:=HA-m,

10 return ¢;// ¢ = 3IX. ¢

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 33

Algorithm 7: Generalizel

Input: Boolean combination of LMCg, A solutionm of ¢
Output: A conjunctionC of LMCs such tha€C = ¢
S:=set of LMCs in¢;
C = true;
for c € Sdo
if m= cthen
| C:=CAg

else
L C:=CA -

~No b~ WNRE

8 return C;

Each iteration of the All-SMT loop in Algorithial 6 finds a sdlu mof H. Note thatm
is also a solution ofy. Generalizel(see Algorithni¥, originally proposed in_[42]) is then
used for generalizinghto a conjunction of LMCE such thaC = ¢. Generalizelcomputes
C as follows. FirstC is initialized totrue. Each LMCc in ¢ is then evaluated with values
given to variables in its support as per If ¢ evaluates tarue underm, i.e.,m}= ¢, then
c is conjoined withC. Otherwise, ifc evaluates tdalse underm, i.e., m = —c, then—c is
conjoined withC. It is easy to see that the conjuncti@meturned impliesp.

Generalize2s used for further generalizir@by dropping unnecessary constraints from
C. HenceC' computed byGeneralizeds such tha€ = C’ andC’ = ¢. The implementation
of Generalize2in [42] works as follows. For each constrainin C, it is checked to see
if C = ¢ remains valid even after droppirgfrom C. If C = ¢ remains valid even after
droppingc fromC, thencis unnecessary and is dropped frGnOtherwise if the implication
C = ¢ becomes invalid after droppirgfrom C, thenc is not dropped fron€. Checking the
validity of C = ¢ involves an SMT solver call. However, in our experimentdmMiMCs, we
have found that this implementation Generalizeds prohibitively time consuming as the
number of SMT solver calls is equal to the number of constsamC. Our implementation
of GeneralizeZnakes use of a cheaper technique to achieve generalization.

The technique is based on analysis of the Boolean skeletdredbrmula¢. Boolean
skeletonP of ¢ is the representation of Boolean structureads a Directed Acyclic Graph
(DAG), with leaves representing LMCs i and internal nodes as, A, andV. As every
LMC in ¢ appears irC in its original or negated forng; effectively gives an assignment of
Boolean values to the leaves Bf We now perform a bottom-up traversal Bfto evaluate
P using the values assigned to the leaves.R(f) be the value assigned to a nodé P
during the evaluation. For each nadeve find a subse®(n) of LMCs inC that are sufficient
to evaluaten to B(n). Table[l shows howB(n) andS(n) are computed for the different nodes
in P under different conditions. Le&k(r) be the set of LMCs found in this way for the raot
of P. ThenC' is computed as the conjunction of LMCs$). Itis easy to see th& = C’
andC’' = ¢.

ExampleAll LMCs in this example have modulus 8. Léthe (y = 4x) A((X#£ 2) V (X £ W)).
Suppose we wish to compulX. ¢ usingQE_SMT, whereX = {x}. Letm: x=1,y =4,
z=1, w= 0 be the solution ofp from SMT solver in the first iteration of the loop in
QE_SMT. Note thatGeneralizelgeneralizesn to the conjunctiorC : (y =4x) A (x=2) A
(x# w). Generalizezhen generalize€ to C' : (y = 4x) A (X # w). To see howGeneralize2
works, observe that the Boolean skeleBof ¢ is ny A (n2 V n3), whereng, np, nz denote
(y=4x), (x# z), (x#£ w) respectively. From Tablg 1, we has&(n;) = true, B(ny) = false,
andB(nz) = true. Also S(n1) = {m}, S(n2) = {—n2}, andS(n3) = {n3}. Letn, be the node

34 John-Chakraborty

Table 1 Computation oB(n) andS(n) insideGeneralize2

noden Condition B(n) S(n)
cappears IiiC true {c}
LMC ¢ —C appears irC false {—c}
n B(n1) =true false S(n1)
o B(n;) = false true S(ny)
B(n1) =true A B(nz) =true true S(np) US(ny)
AR B(n1) =true A B(np) = false | false S(ng)
1772 | B(ny) = falsen B(ny) =true | false S(ny)
B(n;) = falseA B(np) = false | false | smaller among(n;) andS(ny)
B(n1) =true A B(nz) =true true | smaller among(n;) andS(ny)
- B(ny) =true A B(np) = false | true S(ng)
Y72 | B(ny) = falsen B(np) =true | true S(ny)
B(n;) = falseA B(np) = false | false S(ny) US(ny)

(n2 V ng). SinceB(ny) = false, B(ng) = true, andny is (N2 V n3), we haveB(ns) = true.
Note thatB(n3) = true is sufficient to makdd(ns) = true. We haveS(ns) = S(n3) = {nz}
as per Tablgll. Letbe the root node d®, i.e., the node; A ng. SinceB(ny) = true, B(ny)
= true, we haveB(r) = true. Sincer is ny A ng, bothB(n;) andB(n4) should betrue for
B(r) to betrue. We haveS(r) = S(n1) US(ns) = {n1,ns}. FinallyC’ isny Ang, i.e., (y = 4x)
A (X # w). Projectcomputesix.C’ asm: (2y = 0). Note thatp A —7is unsatisfiable, and
the algorithm terminates. The result of QE is tfigg = 0).

4.3 Hybrid Approach

The factors that contribute to the success of the LMDD bagedoach are the presence of
large shared sub-LMDDs and the strategy of eliminating @r@ble at a time. Both factors
contribute to significant opportunities for reuse of restifirough dynamic programming.
The success of the SMT solving based approach is attriufabharily to pruning of the
solution space achieved by interleaving of projection andehenumeration. In the follow-
ing discussion, we present a hybrid approach that triesrittbate the strengths of these two
approaches.

We illustrate the idea with the help of an example. All LMCsttis example have
modulus 8. Letf be the LMDD shown in Fid. 4. Lefy, f,, f3, andf4 be the internal nodes
of the LMDD as shown in Fid.]4. Suppose we wish to compixef. Note thatix. f is the
disjunction of three sub-problems: @x. (fz3 A (y =4x) A (X 2)), (i) Ix.(f2 A (y=4X)

A (x=2)), and (iii) 3x. (fa A (y # 4x)). Also, notice thatx. f is actually equivalent to
(2y = 0), the result of the first sub-probleax. (f3 A (y =4x) A (X # 2)). Hence it is
not necessary to compute the sub-problelgf, A (y=4x) A (x=2)) and3x.(fs A
(y # 4x)). We call such sub-problems whose computation is not negeasdredundant”
sub-problems. We can infer that the sub-probléing f, A (y=4x) A (x=2)) and3x. (f4
A (y # 4x)) are redundant, from the fact thgt A (y=4x) A (Xx=12) A (2y #0) and f4 A
(y # 4x) A (2y # 0) are unsatisfiable.

In general, suppose we wish to compd f, wheref denotes an LMDD representing
a Boolean combination of LMCs over a set of variablesind X C V. We can derive a
set of sub-problems of the for@X. (fi AC;), for 1 <i < n, wheref; denotes an LMDD
andC; denotes a conjunction of LMCs, such thg. f is equivalent ta/{; (3X. (fiAG)).
Let g denote\/"; (3X.(fi ACi)), where 1< m < n. A sub-problem2X. (f; AC;), where
m+1< j <n, is redundant iffj ACj A —gis unsatisfiable.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 35

Fig. 4 Example for hybrid approach

Our hybrid algorithmQE_Combinedsee Algorithnf 8) makes use of this idea to identify
redundant sub-problems. InitiallgE_Combinedselects a satisfiable pathin the LMDD
f using a functiorselectPathSubsequently, the algorithsimplify (see Algorithni®) is in-
voked, which traverses the pathin order to splitf into an equivalent disjunctiogi_; (f A
Ci), where f; denotes an LMDD an€; denotes a conjunction of LMCs. In Algorithinh 9,
(finGi) is represented as a paif;, C;).

Algorithm 8: QE_.Combined

Input: LMDD f, Set of variables to eliminaté

Output: Boolean combination of LMCg equivalent tadX. f
1 m:= selectPatfif);
2 S:={},// set of sub-problems
3 C:=true;
4 simplif(f, m, C, 9);
5 g:= false;
6 for each(f;,C;) € Sdo
7 if fi ACj A —g is satisfiableéhen
8
9 \>

h:= QE_LMDD_Mod(f;, G, X);
gi=gvh

10 return g;

In order to split LMDD f, simplifyis called with arguments$, 71, C andS. Note thatC
is initialized totrue andSinitialized to{ }. simplifycollects(f; AG;), for 1 <i <nin the set
Sin the following way. The pathris traversed recursively starting from the root nodd of
conjoining withC all LMCs encountered om. In each recursive call, if is a terminal, then
(f, C) is inserted inS. Otherwise iff is a non-terminal and node(f) appears ir, then
(L(f),CA=P(f)) isinserted irS. Similarly if f is a non-terminal and nodg f) appears in
T, then(H(f), CAP(f)) is inserted irS. Fig.[3 illustrates the splitting scheme followed by

36 John-Chakraborty

Algorithm 9: Simplify
Input: LMDD f, Satisfiable pattr,
ConjunctionC of LMCs encountered along
Output: Set of sub-problemS
if f=21then
| si=su{(f,.C)}
else
if node H f) is in rthen
S:=SU{ (L(f),CA=P(f)) };
simplif(H (f), T, CAP(f));
else

L S:=SU{ (H(f),CAP(f)) };
simplif(L(f), T, CA=P(f));

© oo ~N O0hwWw NP

simplify. For example, in the case of LMDD in F{g. 4, using the path- 4x) — (x #2) —
1 asm, splits the LMDD into (i)(fz, (y=4x) A (X# 2)), (i) (f2, (y=4x) A (x=2)), and
(il (fa, (y # 4%)).

Fig. 5 Splitting scheme irsimplify

The functionselectPattselects the patitin the following way. First, a solutiomof f is
generated using an SMT solver call. The root nodé isfselected as the first nodeim The
LMC P(f) labeling the root node of is then evaluated with values given to variables in its
support as pem. If P(f) evaluates terue underm, thenH(f) is selected as the next node in
7. Otherwise ifP(f) evaluates tdalse underm, thenL(f) is selected as the next noderin
The LMC labeling the child of thus selected as the next nodeiis then evaluated under
m. These steps are iteratively repeated until 1-terminaté®entered, each iteration adding
a new node tat. Note that encountering 1-terminal is guaranteed singea solution off.

QE_Combinechow computeg = 3X. f asV/|; (IX. (fi AG)) in the following manner.
In order to computéX. (f; AC;), QE.Combinednakes use of an algorith@E_LMDD_Mod.
QE.LMDD_Modis a variant ofQE_LMDD that eliminates a set of variables from an LMDD
conjoined with a set of LMCSQE_Combinedinitially setsg to false. In the first iteration
of the loop, the satisfiability of; A C; is checked. Iffy AC; is satisfiable, theg is set to
3IX. (fy ACy). Otherwise if f1 ACy is unsatisfiable, then the sub-probletd. (f; ACy) is

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 37

redundant and is not computed. In the second iteration,atigfiability of fo ACo A g is
checked. Iff ACy A —g is satisfiable, thedX. (f ACy) is computed and is disjoined with
g. Otherwise iffo ACy A =g is unsatisfiable, theBX. (f AC,) is redundant and is not com-
puted. This loop is repeated until all the sub-problems ansicered. It can be observed that
gis equivalenttd/|_; (3X. (f; AC))) after the'" iteration of the loop. Henogis equivalent
to VT:l (3X.(f; ACj)) when the loop is terminated.
In our example, in the first iteration of the loop, the satlsfiey of f3 A (y = 4x) A
(x# 2z) is checked. Sincés A (y = 4X) A (X # 2) is satisfiableg is set to(2y = 0), the result
of Ix. (f3 A (y=4x) A (X# 2)). In the second iteration, the satisfiability &f A (y = 4X)
A (x=12) A (2y # 0) is checkedfa A (y=4x) A (x=12) A (2y # 0) is unsatisfiable, and
hencex. (fa A (y=4x) A (X=2)) is not computed. Similarly, in the third iteration of the
loop, the satisfiability off4 A (y # 4x) A (2y # 0) is checkedfs A (y # 4x) A (2y #0) is
unsatisfiable, angx. (f4 A (y # 4x)) is also not computed. The final result of QE2y = 0).
Note that unlikeQE_SMT, QE_.Combineddoes not explicitly interleave projections in-
side model enumeration. However disjoining the resulBXf (f; A C;) with g, and com-
puting 3X. (fi AG;) only if fi AC; A —g is satisfiable, helps in avoiding the computation of
redundant sub-problems. This enables pruning the solgsgiace of the problem, as achieved
in QE.SMT.

5 Experimental Results

We performed experiments to evaluate the performance dedtigéness of our QE algo-
rithms, compare their performance with alternative QE mémres, and evaluate their utility
in formal verification.

5.1 Experimental Methodology and Benchmarks

All the experiments were performed on a 1.83 GHz Intel(R)eCBrDuo machine with
2GB memory running Linux, with a timeout of 1800 seconds. Wiplemented our own
LMDD package for carrying out QE experiments involving LMBDn LMDDs the follow-
ing heuristic was used to order the LMCs. We performed démhtraversal of the DAG
representations of formulae from which the LMDDs were @daEach new LMC encoun-
tered in the traversal was placed at the end of the curreetr.ofdsimilar variable ordering
heuristic was used in the experiments involving BDDsPIject, inside the layers, when
there were multiple variables to eliminate, we used a sirfeleographic variable elimi-
nation order. Moreover, insideayer3 the variables with constraints in coefficient-matched
form were eliminated before the variables which requiragigformation to Boolean com-
bination. In all experiments, we used simplifyingSTP as $MT solver. simplifyingSTP
was selected, because it has a variable eliminator [25]ideres] as suitable for solving
bit-vector formulas involving LMEs. In experiments invalg Omega Test, we used Pugh
et al.'s implementation of Omega Test from|[52].

The following simplification heuristics were used in the igmpentation. (i) The LMDs
with modulus 2 were converted to equivalent LMEs. For exanfie LMD x+y # 1
(mod 2 was converted tad+y =0 (mod 2. We observed that this helps in easy elim-
ination of existentially quantified variables involved iMICs with modulus 2. (ii) In a non-
terminal LMDD nodey, if P(u) is an LME, then itis kept in a normal formk 2 =t, wherex
is the variable appearing first in lexicographical ordetegween the names of variables in

38 John-Chakraborty

the support oP(u), andk = k (x,P(u)) (recall the definition ok from Subsection311). This
allows identification of equivalent LMEs during LMDD creati and hence more compact
LMDDs.

We used a benchmark suite consisting of i88d benchmarks [12] and 3ghdlbench-
marks. Each of these benchmarks is a Boolean combinatioM@fd with a subset of the
variables in their support existentially quantified.

The lindd benchmarks reported in_[12] are Boolean combinations ciigmrial con-
straints over integers, i.e., constraints of the fanx+b-y < k wherex, y are integer
variablesk is an integer constant, aradb € {—1,1}. We converted these benchmarks to
Boolean combinations of LMCs by assuming the size of integet6 bits. Although these
benchmarks had no LMEs explicitly, they contained LMESs eletbas conjunctions of the
form (x—y <Kk) A—=(x—y < k—1). We converted each such conjunction to an LMEy =k
as a preprocessing step. The total number of variables,utmber of variables to be elim-
inated, and the number of bits to be eliminated inlthédd benchmarks ranged from 30 to
259, 23 to 207, and 368 to 3312 respectively.

The vhdl benchmarks were obtained in the following manner. We tooktatword-
level VHDL designs. Some of these are designs taken from 9l&chmark suite [22], and
the remaining are proprietary. We derived the symbolicditaon relations of these VHDL
designs. Therhdl benchmarks were obtained by quantifying out a subset ofriateari-
ables (i.e. neither input nor output of the top-level modifilem these symbolic transition
relations. Effectively this gives abstract transitiorat&ins of the designs. The coefficients
of the variables in these benchmarks were largely odd. Thesehmarks contained a sig-
nificant number of LMEs (arising from assignment statementise VHDL programs). The
total number of variables, the number of variables to beiakited, and the number of bits
to be eliminated in thehdl benchmarks ranged from 8 to 50, 2 to 21, and 10 to 672 respec-
tively.

Overview of Experiment¥Ve performed experimental evaluation of our QE techniques
in three different ways.

1. Experimental evaluation at the level of conjunctions of LMUss involved evaluation
of performance and effectiveness of layersPimject and comparison of the perfor-
mance ofProjectwith alternative QE techniques based on bit-blasting amexsion
to linear integer arithmetic.

2. Experimental evaluation at the level of Boolean combimretiof of LMCsThis involved
evaluation of performance of the algorith & SMT, QE_.LMDD, andQE_Combined
for QE from Boolean combinations of LMCs. We then compares gbrformance of
QE_SMT with alternative QE techniques based on bit-blasting amyesion to linear
integer arithmetic.

3. Evaluation of utility of our techniques in verificatioWe selected a set of word-level
VHDL designs, and derived their symbolic transition redat. We use@E_LMDD to
compute abstract transition relations of these designsuaytifying out a subset of
internal variables from the symbolic transition relatiové& then compared the perfor-
mance of bounded model checking using these abstractttoan=lations with that of
bounded model checking using the original transition refet We also evaluated the
utility of our QE techniques in solving conjunctions of LM@sd for computing Craig
interpolants for Boolean combinations of LMCs.

All benchmarks, implementations, and experimental datebesaccessed fromtps://
github.com/ajithkjohn123/QuantifierElimination.git.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 39

5.2 Evaluation of QE Techniques for Conjunctions of LMCs
5.2.1 Evaluation of Layers in Project

We performed QE from the benchmarks using the algorit@&sSMT, QE_.LMDD, and
QE_Combinedand analyzed thBrojectcalls that were generated during this process. Re-
call thatLayer3involves transforming a conjunction of LMCs to a Boolean timation

of LMCs and QE from this Boolean combination. As mentionedsaction[3.5, this re-
sults in new recursiverojectcalls. Hence two kinds dProjectcalls were generated while
performing QE from the benchmarks: (i) the initial/oridirRroject calls, and the (ii) re-
cursiveProjectcalls. In our analysis, we focussed only on the initial/ovéd Project calls.
The recursivéProjectcalls were considered as partlafyer3 In the subsequent discussion,
whenever we mentionProject calls”, it refers to the initial/originaProject calls, unless
stated otherwise.

Table 2 Details ofProjectcalls (figures are peProjectcall)

Contr Time

L1 |2 | L3 |L1]L2] L3 | Pr
[lindd | 39.9 [38.1] (88,0,18.9)] (60,0,10.1)[(35,0,81)[51 [44 [5 [3 [5 [13149[674 |
[vhdl | 86 | 72 | (40,03) | (16,0,58) [(31,0,20)[95 [45| 05| 2 [6 | 161 [3 |
Vars : Average number of variable®nt : Average number of quantifiersMIs : (Maximum, minimum,
average) number of LMI$,MEs : (Maximum, minimum, average) number of LMHSVIDs : (Maximum,
minimum, average) number of LMDEontr : Average contribution of a layek,1 : Layerl, L2 : Layer2 L3

: Layer3 Pr : Project Time : Average time spent per quantifier eliminated in milliseconds

‘ Type ‘ Vars ‘ Qnt ‘ LMls ‘ LMEs ‘ LMDs ‘

The total number oProject calls generated from tHendd andvhdl benchmarks were
52,836 and 8027 respectively. Statistics of theBeoject calls are shown in Tablg 2. The
contribution of a layer is measured as the ratio of the nurobguantifiers eliminated by
the layer to the number of quantifiers to be eliminated inRkgectcall multiplied by 100.
The time spent per quantifier eliminated for a layer is mesas the ratio of the time spent
inside the layer to the number of quantifiers eliminated lgyl#yer. The contributions of
the layers and the times spent by the layers per quantifiairgied for individuaProject
calls fromlindd benchmarks are shown in Fid. 6, Hig). 7 and Eig. 10, and thesedividual
Projectcalls fromvhdlbenchmarks are shown in Fig. 8, Hi¢). 9 and Eid. 11. Plugectcalls
here are sorted in increasing order of contribution filcagerl

c 120t c 120t

o o

g 100 | — g 100 | —

2 2

g 80 %- 80

O 60} 8 60!

— N

’q;.:‘ 40 t E‘>)‘ 40 ¢

S 20t 3 20¢

0 : : 0 :
0 20000 40000 60000 0 20000 40000 60000
Project Call Project Call

Fig. 6 Contribution of (a)Layerland (b)Layer2for lindd benchmarks

40

John-Chakraborty

Layer3 Contribution

120
100 =
80
60 -
40

0

Fig. 7 Contribution ofLayer3for lindd benchmarks

100
80
60
40

Layerl Contribution

120

20

Vs
£

0
0

2000 4000 6000 8000 10000

Project Call

20 iiﬁ 1
0

20000 40000 60000
Project Call

- 120

2

5 100 »

k=3

% 80

(@] 60

o A

& 40 |

> A

©

4 20 1A

0 A
0 2000 4000 6000 8000 10000
Project Call

Fig. 8 Contribution of (a)Layerland (b)Layer2for vhdl benchmarks

Layer3 Contribution

120
100 &~
80
60
40
20 r 2

0
0

2000 4000 6000 8000 10000

Project Call

Fig. 9 Contribution ofLayer3for vhdl benchmarks

Layerl and Layer2were cheap and eliminated a large fraction of quantifiersoith b
lindd andvhdl benchmarks. This underlines the importance of our layaedéwork. The
relatively large contribution dfayerlin theProjectcalls fromvhdlbenchmarks was due to
significant number of LMESs in these problem instandssyer3was found to be the most
expensive layer. Most of the time spentlinyer3was consumed in the recursifoject
calls. NoLayer3call in our experiments required model enumeration. Thgelgap in the

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 41

time per quantifier irLayer2and that inLayer3for both sets of benchmarks points to the
need for developing additional cheap layers betweayer2 andLayer3as part of future
work.

le+07
1le+06
100000
10000
1000

Time Per Quantifier (milli secs)

100 #2
10
1 ; ‘
0 20000 40000 60000
Project Call
Fig. 10 Cost of layers folindd benchmarks
19000 Layer 1
Layer 2
Layer 3

1000 &

100 2 ©

Time Per Quantifier (milli secs)

1
0 2000 4000 6000 8000 10000
Project Call

Fig. 11 Cost of layers fowhdlbenchmarks

5.2.2 Comparison with Alternative QE Techniques

We compared the performanceRiojectwith QE based on linear integer arithmetic using
Omega Test |8, 51], and also with QE based on bit-blasting$38 We implemented the
following algorithms for this purpose: (layerlBlast this procedure first quantifies out
the variables usingtayerl (recall thatLayerlis a simple extension of the work in_|25]),
and then uses bit-blasting and BDD based bit-level QE [58fHe remaining variables. (ii)
Layerl OT, Layer2OT: Layer1 OT first quantifies out the variables usihgyerl, and then
uses conversion to linear integer arithmetic and Omegafdeshe remaining variables.
Layer2 OT first quantifies out the variables usihgyerl followed by Layer2 and then
uses conversion to linear integer arithmetic and Omegaféeshe remaining variables.
Layer2OT helps us to compare the performance.afer3with that of Omega Test.

42 John-Chakraborty

We collected 100 instances of QE problem for conjunction&MCs arising from
QE_SMTwhen QE is performed on the benchmarks. We performed QE fiesetconjunction-
level problem instances usiijoject, Layerl Blast Layerl OT, andLayer2 OT. Fig.[12(a)
and [12(b) compare the QE times takenfgjectagainst those taken lyayerl Blastand
Layer1 OT for each of these conjunction-level problem instances.

Projectcould successfully eliminate quantifiers in all of the 10&t&mcesLayerl Blast
was unsuccessful in in 68 cases dayerl OT were unsuccessful in 65 cases. These cases
are indicated by the topmost points in Figl 12(a) 12@peetively. In most cases where
LayerlBlastandLayerl OT were successful, the times taken by all the three algorithms
were comparable. However there were a few cases wiasrerl BlastandLayerl OT per-
formed better thaProject We found that these cases involMealyer3 and most of the time
consumed byProjectwas spent insideayer3

We compared the times consumedlayer3in Projectwith those consumed by Omega
Test inLayer2 OT (see Fig[LIB). There were 51 problem instances which redjumger3
Omega Test timed out in 37 of them. In 13 of the remaining 14sa8mega Test performed
better tharLayer3 Our analysis revealed that these cases were simpler is tfmumber of
LMCs and number of variables to be eliminated. Howehagrer3incurred several recursive
Projectcalls in these cases.

Aa A amums M smus A Al ams i smus
le+06 q 1e+06
i
£ g
= [~
@ 10000 = 10000 |
= o]
ml ‘—|I
o u!
: : :
g 100t 3 10t "
N 7%
1 . . . 1 . . .
1 100 10000 1e+06 1 100 10000 1e+06
Project Time Project Time

Fig. 12 Plots comparing (alProjectandLayerlBlastand (b)ProjectandLayer1.OT (All times are in milli
seconds)

1le+06

10000 |

a

Omega Test Time

100 f
N

1 100 10000 1e+06
Layer3 Time

Fig. 13 Plot comparind-ayer3and Omega Test (All times are in milli seconds)

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 43

Recall that giverdx. (CAD Al), whereC is a conjunction of LMCsD is a conjunction
of LMDs andl is a conjunction of LMIsLayer2checks ifax. (C) = 3x. (CADAI) holds.
Layer2performs this check by computing an efficiently computalnidar-approximation of
the number of ways in which an arbitrary solutiorG¢an be engineered to satiSy\D Al.
We compared the performance lodiyer2with a BDD based alternative technique to per-
form this check. We implemented a proced8ddBasedLayerfor this purposeBddBas-
edLayer2computes BDDs fox. (C) and3x. (CAD Al), and then checks if these BDDs
are the sameéix. (C) = 3x. (CAD Al) holds iff the BDDs fordx. (C) and3x. (CADAI) are
the same. We then implemented procedergectWithBddBasedLayeshich is a variant
of Projectthat use8BddBasedLayerkh place ofLayer2

1e+06

W

10000 |

100 |

BDDBasedLayer2 Time

» >

1 100 10000 1e+06
Layer2 Time

Fig. 14 Plot comparind-ayer2andBddBasedLayerpAll times are in milli seconds)

We performed QE from the 100 conjunction-level problemanses usingrojectWithB-
ddBasedLayerZor each problem instance, we then compared the time catshyhayer2
in Project with that consumed byddBasedLayer2n ProjectWithBddBasedLayer@ee
Fig.[14).Layer2outperformed the BDD based alternative technique in allls@ problem
instances.

5.3 Evaluation of QE Techniques for Boolean CombinationsM€s
5.3.1 Evaluation of QESMT, QELMDD, and QECombined

We measured the time taken QFE SMT, QE_LMDD, andQE_Combinedor QE from each
benchmark. FOQE_LMDD and QE_Combined this included the time to build the initial
LMDD. We observed that each approach performed better theothers for some bench-
marks (see Fig. 15 and F[g.]16). Note that the points iNElgré&cattered, while the points
in Fig.[13(a) and_15(b) are more clustered near thelih&. This shows thabD andSMT
based approaches are incomparable, whereas the hybridaappnherits the strengths of
bothDD andSMT based approaches. Hence, given a problem instance, we mesrwhthe
hybrid approach, unless the approach which will perfornenés known a-priori.

Recall that inQE_.Combinedwe convertedX. f, wheref is an LMDD, into an equiv-
alent disjunction of sub-problems, and then gave thesepsuilems toQE_LMDD_Mod
separately. Our analysis revealed that this helped in iigerg redundant sub-problems.
However, it was observed that splittintX. f into sub-problems and computing the sub-
problems separately, reduced scope for reuse of resudisghdynamic programming when

44 John-Chakraborty

10000 : : : 10000
g AA AA A g A Add A
£ 1000 | a0 A £ 1000 | a ‘. .
2 A i s
u “ . & ot
3 NI/ N 2 Saa N
2 100 ok 2 100} e
b= At ut ay S FENIN
£ a gaAiL L a4 £ a4 a
Q Q
) O Las Ada a
o 104 ap o 10 * NN
54 2 . o7 s Gk O
A atal.” Ta
i pirivvy ¥y
IR ‘ ‘ IR Z ‘
1 10 100 1000 10000 1 10 100 1000 10000
QE_SMT QE Time QE_LMDD QE Time

Fig. 15 Plots comparing (aQEESMT and QE_Combinedand (b)QE_.LMDD and QE_Combined(All times
are in seconds)

10000

1000 ¢ a

00 %

QE_LMDD QE Time

10

1 10 100 1000 10000
QE_SMT QE Time

Fig. 16 Plot comparinQE.SMTandQE_LMDD (All times are in seconds)

compared to computingX. f directly usingQE_LMDD. We could also observe that using
a more eager strategy for splitting into subproblems (aesfrategy that generates more
sub-problems) in place afimplify, further reduced scope for reuse of results, although it
improved opportunity for identifying redundant sub-prals. On the other hand, using a
less eager strategy improved reuse of results, but gavegsstunity for identifying re-
dundant sub-problems. Hence, although both reuse of sesudt splitting into subproblems
contribute towards success of the hybrid approach, theggaihst each other. In our exper-
iments, we found that the splitting schemesimplifyachieves a trade-off between them.

In order to evaluate the effectiveness of our simplificagionQE_LMDD, we compared
the time taken bYQE LMDD with that taken byAll_Path QElim for QE from each bench-
mark (see Fig_17(a)All_Path QElim succeeded only in a few cases. This is not surpris-
ing, as the LMDDs for the benchmarks contained a huge numigeaitbs. INQE_LMDD,
the single variable elimination strategy and the simplifara of LMDDs using simpli-
fyLMDD helped in achieving significant reuse of results throughadyic programming.
This helped in avoiding path enumeration, which resultembimsiderable performance gains
overAll_Path QEIlim.

In order to evaluate the effectiveness of our generalinatiohnique based on analysis of
Boolean skeleton of formulae @eneralize2we implemented a variant §E_SMT called
QE_SMT-Mod. QE_.SMT Modis the same aQE_SMTexcept that it uses the implementation
of Generalize2as proposed in_[42]. Recall from Subsectionl 4.2 that the emgintation
of GeneralizeZn [42] makes use of SMT solver calls to identify unnecesdaviCs. We
compared the time taken iyE SMTandQE_SMT-Mod for QE from each benchmark (see

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 45

10000 T T T 10000
a a
g 1000 ¢ a ® 1000 'y
IS £ E y
w a4 w
o o 4 A
a 100 ¢ R e 100 ¢
a
s a 2 N
= b ol A 2
a w A
Y I
aaf “& A a A A
a - - a a0 tlaat
a A4 A4 & amumnr
1 . . . [N O .
1 10 100 1000 10000 1 10 100 1000 10000
All_Path_QEIlim QE Time QE_SMT_Mod QE Time

Fig. 17 Plots comparing (ahll_Path.QElim andQE_LMDD and (b)QE_SMTandQE_SMT-Mod (All times
are in seconds)

Fig.[17(b)).QE_SMT outperformedQE_SMT Mod except in a few cases. On profiling, we
found that most of the time taken KE SMT-Mod was spent in the SMT solver calls
in Generalize2In the few cases whel@E_SMT_Mod performed better thaQE_SMT, the
SMT solver based generalizationQE_SMTMod was more effective which helped in faster
termination of the All-SMT loop.

5.3.2 Comparison with Alternative QE Techniques

We wanted to understand ho@E_SMT would perform if a bit-blasting or linear integer
arithmetic based alternative QE algorithm is used in plécBroject In order to do this,
we first computed the average times takerPogject for QE from conjunction-level prob-
lem instances arising fro QE_.SMT when QE is performed on each benchmark. We also
computed the average times taken lgyerlBlast Layerl1OT, andLayer2OT for QE
from these conjunction-level problem instances. For eaafthmark, we then compared
the average QE times taken Byojectagainst those taken lyayerl BlastandLayerl OT
(see Fig[IB(a) and_18(b)). Subsequently, for each bendhmarcompared the average
time consumed by.ayer3in the Project calls with that consumed by Omega Test in the
Layer2 OT calls (see Figl_19). For a large number of benchmarks, werabddhat the
bit-blasting or linear integer arithmetic based alten&@E algorithm was unsuccessful in
eliminating quantifiers from the conjunction-level prablénstances. These benchmarks are
indicated by the topmost green circles in Figl 18(a), Eigb},8and Fig[IP. Note that, for
these benchmarks we could not compute the average timesmedsy the bit-blasting or
linear integer arithmetic based alternative QE algoritamthe algorithm was unsuccessful
in eliminating quantifiers from the conjunction-level pteim instances. There were a few
cases where Omega Test performed better tizger3 This was due to the relatively larger
number of recursiv@rojectcalls in these cases.

We also wanted to understand h@&_SMT would perform if the BDD based alterna-
tive techniqueBddBasedLayer used in place dfayer2insideProject In order to do this,
for each benchmark, we first computed the average time cabylLayer2when QE is
performed usindQE_SMT. For each benchmark, we then computed the average time con-
sumed byBddBasedLayer@henBddBasedLayer used in place dfayer2insideProject
Fig.[20(a) compares these times. Many points correspontdinlifferent benchmarks are
merged in Fig[_20(a), since the average times consumksyiar2were significantly small
compared those consumedBddBasedLayer2Ne provide a comparison of the total times
in Fig.[20(b) for better exposition. The plots clearly derstrate thatQE_ SMT performs

46

John-Chakraborty

Average Layerl_Blast Time

1e+06

10000

100 |

S

100 10000 1le+06
Average Project Time

Average Layerl_OT Time

1e+06

10000

100 |

100 10000 1le+06
Average Project Time

Fig. 18 Plots comparing average times consumed byRenject and LayerlBlast and (b) Project and
LayerLOT when used insidQE_SMT (All times are in milli seconds). Topmost green circles indictite
benchmarks for whichayerl Blastor Layer1 OT was unsuccessful.

E 1e+06

=

@

(3]

2

@ 10000 -

[=2]

(7]

£

¢}

(5]

g 100 - by

% R

1 . . .
1 100 10000 1e+06

Average Layer3 Time

Fig. 19 Plot comparing average times consumedLlayer3and Omega Test when used insiQE_SMT
(All times are in milli seconds). Topmost green circles indictite benchmarks for which Omega Test was
unsuccessful.

poorly when the BDD based alternative technique is usedaogobfLayer2 Note that here
again, topmost green circles in Fig] 20(a) and Eig. 20(bicate the benchmarks for which
QE was unsuccessful wh@&ddBasedLayeras used in place dfayer2

Average BDDBasedLayer2 Time

1e+06

10000

100 |

100 10000 1le+06
Average Layer2 Time

Total BDDBasedLayer2 Time

1e+06

10000
a

100 &

100 10000 1le+06

Total Layer2 Time

Fig. 20 Plot comparing (a) average times and (b) total times consumeddapgr2 and BddBasedLayer2
when used insidQE_SMT (All times are in milli seconds). Topmost green circles indéctite benchmarks

for which BddBasedLayer@as unsuccessful.

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 47

5.4 Utility of our QE algorithms in verification
5.4.1 Utility in Bounded Model Checking

Recall that theshdl benchmarks were obtained by quantifying out a subset offiatevari-
ables from the symbolic transition relations of word-lev#iDL designs. The quantifier
eliminated formulae give abstract transition relationthefVHDL designs. In order to eval-
uate the utility of our QE algorithms, we us€E_LMDD to compute these abstract transi-
tion relations, and then used these abstract transitiatioak for checking safety properties
of the VHDL designs using bounded model checking.

In order to check if the safety property holds for the fiistycles of operation, we first
unrolled the transition relatioN times, and conjoined the unrolled relation with the nega-
tion of the property. The resulting formula was then givemitoSMT solver for checking
satisfiability. Next, we obtained an abstract transitidatien R usingQE_LMDD. The ab-
stract transition relation was then unrollddimes and was conjoined with the negation of
the property to obtain a formula, which was given to the SMiVesoto check satisfiability.

Table 3 Experimental results on VHDL programs

. N=500
Design LOC TR NA ‘ oL
machinel 363 | (592,22,580)| TO(TO) 52(7, 23)
machine2 373 | (594, 22,436)| TO(TO) 30(6, 1)
machine3 383 | (620, 25,439)| TO(TO) 33(6, 3)

machined | 253 | (439,26, 677)| 1471(1441)| 24(2,0)
machines | 253 | (439, 26, 509)| 1443(1413)| 25(2, 0)
machine6 | 363 | (406,17,64) | 78(53) 17(1, 1)
machine7 | 379 | (440,22,69) | 221(196) | 22(1,3)
machined | 251 | (286, 20, 157)| 193(177) | 13(2,0)
machined | 251 | (286, 20, 485)| 331(315) | 13(2,0)
machinel0 | 363 | (406, 17,420)| TO(TO) 16(0, 1)
machinell | 363 | (593,22,96) | TO(TO) 40(8, 4)
machinel? | 363 | (406, 17,420)| TO(TO) | 220(4, 187)
boardl 404 | (400, 24, 194)| 1442(1424)| 21(12, 1)
board2 373 | (420, 24, 194)| TO(TO) 14(5, 1)
board3 503 | (573,54, 361)| TO(TO) 16(5, 1)
board4 415 | (422, 28,198)| 241(223) | 62(9, 2)

All times are in seconds TO: > 1800 second4,0C: Lines of code;TR: Transition relation details (dag

size, number of variables, number of bits}A: Without abstraction : total time (simplifyingSTP tim&)L :

With QE_LMDD for abstraction : total time@E_LMDD time, simplifyingSTP time)N: Number of BMC
unrollings

All the SMT solver calls were unsatisfiable, which implieattthe properties hold for the
first N cycles of operation of the designs, and the abstract tiansi¢lations are sufficient
to prove the properties. Talilé 3 gives a summary of the iefatl6 designs. machinkto
machinel2 are modified versions of benchmarks from ITC99 benchmat& [22]. The re-
maining designs are proprietary. The table clearly shoesignificant performance benefit
of using abstract transition relations computeddy LMDD in these verification exercises.

For all the designs except machifig, all the internal variables were eliminated from
the transition relation in order to obtain the abstractdition relation. For machiné2, a
manually chosen subset of internal variables were elirathalt was observed that in all

48 John-Chakraborty

the casesl.ayerlandLayer2were sufficient to eliminate the variables, without any call
to Layer3 Layer2was needed only in five cases: machérough machind 0. In these
cased ayer2eliminated 125% to 40% of the quantified variables.

5.4.2 Utility in Other Applications

We performed preliminary experiments to evaluate thetytilf LayerlandLayer2as pre-
processing steps for conjunctions of LMCs before solvirggrthTowards this end, we gen-
erated 9 sets of random benchmarks. Each set included Srhanchthat are randomly gen-
erated conjunctions of LMCs with the same number of vargldlMEs, LMDs and LMils.
The modulus of all LMCs in all benchmarks was fixed #.2The number of variables
varied from 20 to 50. The number of LMCs was chosen as twicatneber of variables.
We first measured the time taken by simplifyingSTP to soh@dsnchmark. We then
eliminated variables in the support of each benchmark usiygrlandLayer2 This yields
a potentially simplified benchmark with lesser variableshia support. We then measured
the time taken by simplifyingSTP to solve each preprocessethmark. Tablgl4 gives a
summary of the results. Preprocessing helped in cases ohbek sets se2, set5, and
set8. Note that 80% of LMCs in these benchmarks were LMDs and ¢hgaiming were
LMiIs. Preprocessing in these cases completely solved titdgin instances. In other cases
preprocessing either caused additional overhead or wastafich use.

Table 4 Experimental results on preprocessing udiagerlandLayer2

[Set [VIE[DJ[T][NP [PR | AP |
setl | 20 | 14 | 13 [13 | 1763 | 1572 | 2688
set2 | 20 | 0 | 36 | 4 | 3270 | 251 0

set3 | 20| O 4 | 36 3208 655 3245

set4 | 30 | 20 | 20 | 20 8415 4769 9216
setb | 30| O | 54| 6 7423 533 0
set6 | 30 | O 6 | 54 7203 1651 7218

set7 | 40 | 28 | 26 | 26 | 223880 | 11255 | 171207
set8§ | 40| O | 72| 8 14115 | 1150 0
set9 | 40| O 8 | 72 | 14343 | 3561 13238

All times are in milliseconds V: Number of variablest: Number of LMEs,D: Number of LMDs,|:
Number of LMIs,NP: Average time in simplifyingSTP for solving the benchmarkshia set without
preprocessing?R: Average time for preprocessing the benchmarks in theA§&tAverage time in
simplifyingSTP for solving the benchmarks in the set afteppoeessing

We also performed preliminary experiments to evaluate titigywof our QE techniques
for computing Craig interpolants for Boolean combinatiohntMCs. Towards this end, we
generated a set of interpolation benchmarks in the follgwmy. First, we selected a subset
of vhdlbenchmarks. Recall that eachdlbenchmark is a Boolean combination of LM@s
with a subseX of variables in its support existentially quantified. We guted3X. ¢ using
one of our algorithms for QE from Boolean combinations of L#Ceta be the quantifier-
free version ofiX. ¢ thus computed, and |&t be the set of variables in the supportaf
We then created a formu[ion variables irY UZ, whereZ is a set of fresh variables. Lgt
be the formula~a A 8. Note thatp andy are mutually inconsistent. The final interpolation
benchmark generated wég, ().

For each interpolation benchmai, /) as above, we first used Mathsat to compute an
interpolant (Mathsat makes use of work|in/[29] for interpoleomputation). We then com-

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 49

pared the time taken by Mathsat to compute interpolant Wi taken byQE Combinedo
computedX. ¢. Note thatX. ¢ serves as an interpolant fop,). Tabldb gives a summary
of the results for 10 benchmarks. The results show that tbadehniques are incompara-
ble: Mathsat outperformeQE_Combinedn some cases, where@&_ Combinedcomputed
interpolants in cases where Mathsat timed out.

Table 5 Experimental results on computing interpolants

Benchmark [X[Y[[Z[[W [MS | QC |
benchmarkl 5 16 | 12 | 16 | 12 36
benchmark2 6 15 8 16 | 45 44
benchmark3 8 10 6 8 0 3
benchmark4 17 | 23 | 11 | 32 7 275
benchmarks 17 | 23 | 10 | 32 6 142
benchmark6 21 | 25 8 32| TO | TO
benchmark7 12 7 7 22 | TO 16
benchmark8 10 17 8 32 0 29
benchmarko 3 10 3 32 | TO 12
benchmarkl0 4 14 3 16 | TO 7

All times are in seconds TO: > 1800 secondsX|: Number of variables in set XY |: Number of variables
in set Y,|Z|: Number of variables in set ZV: Maximum bit-width of a variableMS: Time taken by
Mathsat,QC: Time taken byQE_Combined

6 Conclusions and Future Work

We presented a practically efficient and bit-precise atborifor QE from conjunctions of
LMCs. Our algorithm made use of a layered framework — incetgpand cheaper layers
are applied first, expensive and complete layers are catidvehen required. Each of our
layers is motivated by QE problem instances that occur istw@ Our studies revealed
that using a layered framework allows us to solve such prolestances efficiently using
incomplete and cheaper techniques rather than resortiegpensive and complete tech-
niques. Our layers make use of properties of modular ariticra@d keep the quantifier-
eliminated formula in modular arithmetic. We extended #hggorithm to work with arbitrary
boolean combinations of LMCs. Experiments demonstrataitthr techniques significantly
outperform alternative QE techniques.

There are several promising directions for future work. ®xperiments showed that
Layer3 is significantly expensive compared to Layer2. As pafuture work, we will ex-
plore development of new cheaper layers between Layer2 agdrB. It is interesting to
study how our techniques can be extended to QE from full éiter arithmetic. Other than
linear modular arithmetic operations, bit-vector arithimg@rimarily includes extractions,
concatenations, non-linear multiplications and bit-wigerations. Many QE problem in-
stances that arise in practice frequently mix expressioms fifferent theories. It is in-
teresting to understand how our techniques can be extendsdrk in combined theories
such as combination of linear modular arithmetic and egualier uninterpreted functions,
combination of linear modular arithmetic and array logic. ¬her interesting direction
in future work is to integrate our QE techniques with SMT sob; which will allow SMT
solvers to use these techniques to reason about quantifieeldior formulas.

50

John-Chakraborty

We showed the utility of our techniques in computing abstsgmbolic transition rela-

tions for improving the scalability of bounded model checkdf word-level RTL designs.
We also presented preliminary experiments that demoestiat utility of our techniques

in

solving conjunctions of LMCs and computing Craig intdepus for Boolean combina-

tions of LMCs. There are many other applications that caemgdlly benefit from our QE
techniques. Our techniques can be used for computatioredigate abstractions, compu-
tation of strongest post-conditions and image computatidghe verification of word-level
RTL designs and embedded programs. In a Counterexamplie@uibstraction Refine-
ment (CEGAR)|[14] framework, our techniques can be used mopede Craig interpolants
from spurious counterexamples. We plan to explore theskcagipns in future.

References

1.

2.

10.

11.

12.

13

Ax J, Kochen S (1965) Diophantine problems over local §dld A complete set of

axioms for p-adic number theory. American Journal of Mathtes 87(3):631-648

Babic D, Musuvathi M (2005) Modular arithmetic decisiongedure. Technical Report

TR-2005-114, Microsoft Research

. Bierre A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic modehecking without
BDDs. In: Proceedings of International Conference on Tamld Algorithms for the
Construction and Analysis of Systems (TACAS), pp 193-207

. Bjgrner N (2010) Linear quantifier elimination as an adtdecision procedure. In:
Proceedings of International Joint Conference on Autocth&easoning (IJCAR), pp
316-330

. Bjgrner N, Janota M (2015) Playing with quantified satién. In: Proceedings of
International Conferences on Logic for Programming, Auiti Intelligence and Rea-
soning (LPAR) - Short Presentations, pp 15-27

. Bjgrner N, Pichora M (1998) Deciding fixed and non-fixededmt-vectors. In: Pro-
ceedings of International Conference on Tools and Algorilfor the Construction and
Analysis of Systems (TACAS), pp 376-392

. Bjarner N, Blass A, Gurevich Y, Musuvathi M (2008) Modutiference logic is hard.
CoRR abs/0811.0987

. Brinkmann R, Drechsler R (2002) RTL-datapath verifiaatising integer linear pro-
gramming. In: Proceedings of IEEE VLSI Desigh Conferenge7 41746

. Bruttomesso R, Sharygina N (2009) A scalable decisiongatore for fixed-width bit-

vectors. In: Proceedings of International Conference om@der-Aided Design (IC-

CAD), pp 13-20

Bryant R (1986) Graph-based algorithms for boolean tfancmanipulation. IEEE

Transactions on Computers 35(8):677—691

Cavada R, Cimatti A, Franzen A, Kalyanasundaram K, RdveShyamasundar RK

(2007) Computing predicate abstractions by integratingBand SMT solvers. In:

Proceedings of International Conference on Formal Method3omputer-Aided De-

sign (FMCAD), pp 69-76

Chaki S, Gurfinkel A, Strichman O (2009) Decision diagsdior linear arithmetic.

In: Proceedings of International Conference on Formal lashin Computer-Aided

Design (FMCAD), pp 53-60

. Clarke EM, Grumberg O, Peled D (1999) Model checking. Rféss

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 51

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Countanmeple-guided ab-
straction refinement. In: Proceedings of International f€@mce on Computer Aided
Verification (CAV), pp 154-169

Cohen P (1969) Decision procedures for real and p-adiitsfi€ommunications in Pure
and Applied Logic 25:213-231

Cooper D (1972) Theorem proving in arithmetic withouttiplication. Machine Intel-
ligence 7:91-99

Craig W (1957) Linear reasoning: A new form of the Herldr&entzen theorem. Jour-
nal of Symbolic Logic 22(3):250-268

Cyrluk D, Moller M, Ruel3 H (1997) An efficient decision procedure for theory of
fixed-sized bit-vectors. In: Proceedings of Internatiddahference on Computer Aided
Verification (CAV), pp 60-71

Damm W, Dierks H, Disch S, Hagemann W, Pigorsch F, SchalValdmann U, Wirtz
B (2012) Exact and fully symbolic verification of linear hythrautomata with large
discrete state spaces. Science of Computer Programmit@-217(:1122—-1150
Dantzig GB, Eaves BC (1973) Fourier-Motzkin eliminatiand its dual. Journal of
Combinatorial Theory, Series A 14(3):288-297

Das S (2003) Predicate abstraction. PhD thesis, Sthbfioiversity

Davidson S (1999) Characteristics of the ITC'99 bendhkmecircuits.
cerc.utexas.edu/itc99-benchmarks/bench.html

Déharbe D, Fontaine P, Berre DL, Mazure B (2013) Computing@iimplicants. In:
Proceedings of International Conference on Formal Mettwd3omputer-Aided De-
sign (FMCAD), pp 46-52

Ferrante J, Rackoff C (1975) A decision procedure forfitst order theory of real
addition with order. Society for Industrial and Applied Matnatics (SIAM) Journal on
Computing 4(1):69-76

Ganesh V, Dill D (2007) A decision procedure for bit-w@stand arrays. In: Proceed-
ings of International Conference on Computer Aided Verifa@a(CAV), pp 519-531
Ganesh V, Berezin S, Dill D (2002) Deciding Presburgitharetic by model checking
and comparisons with other methods. In: Proceedings ofrlat®nal Conference on
Formal Methods in Computer-Aided Design (FMCAD), pp 171618

Gange G, Sgndergaard H, Stuckey P, Schachte P (2013)¢difference constraints
over modular arithmetic. In: Proceedings of InternatioBahference on Automated
Deduction (CADE), pp 215-230

Gotlieb A, Leconte M, Marre B (2010) Constraint solvingraodular integers. In: Pro-
ceedings of Ninth International Workshop on Constraint Blbdg and Reformulation
(ModRef) co-located with International Conference on Elptes and Practice of Con-
straint Programming (CP)

Griggio A (2011) Effective word-level interpolationrfsoftware verification. In: Pro-
ceedings of International Conference on Formal Methodsdmguter-Aided Design
(FMCAD), pp 28-36

Hadarean L, Bansal K, Jovanovic D, Barret C, Tinelli CI{20A tale of two solvers:
Eager and lazy approaches to bit-vectors. In: Proceedihbyjgeynational Conference
on Computer Aided Verification (CAV), pp 680—695

Howell JA, Gregory RT (1969) An algorithm for solving diar algebraic equations
using residue arithmetic I. BIT Numerical Mathematics %8p—224

Huang C, Cheng K (2000) Assertion checking by combinedivievel ATPG and mod-
ular arithmetic constraint-solving techniques. In: Pemtiags of ACM/IEEE Design
Automation Conference (DAC), pp 118-123

cerc.utexas.edu/itc99-benchmarks/bench.html

52

John-Chakraborty

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Jain H, Clarke EM, Grumberg O (2008) Efficient Craig ipt#ation for linear dio-
phantine (dis)equations and linear modular equationd?1oceedings of International
Conference on Computer Aided Verification (CAV), pp 254-267

John A, Chakraborty S (2011) A quantifier eliminationaaitpm for linear modular
equations and disequations. In: Proceedings of IntematiGonference on Computer
Aided Verification (CAV), pp 486-503

John A, Chakraborty S (2013) Extending quantifier elation to linear inequalities on
bit-vectors. In: Proceedings of International ConfereaneTools and Algorithms for
the Construction and Analysis of Systems (TACAS), pp 78-92

Kapur D (2006) A quantifier-elimination based heurigtc automatically generat-
ing inductive assertions for programs. Journal of Systewien8e and Complexity
19(3):307-330

Komuravelli A, Gurfinkel A, Chaki S (2014) SMT-based mbdeecking for recursive
programs. In: Proceedings of International Conferenceamiliter Aided Verification
(CAV), pp 17-34

Kroening D, Strichman O (2008) Decision procedures: lgorthmic point of view.
Springer

Lahiri S, Nieuwenhuis R, Oliveras A (2006) SMT technigjder fast predicate ab-
straction. In: Proceedings of International Conferenc€omputer Aided Verification
(CAV), pp 424-437

Loos R, Weispfenning V (1993) Applying linear quantiégéimination. Computer Jour-
nal 36(5):450-462

Mishchenko A, Chatterjee S, Jiang R, Brayton R (2005) FFA A unifying repre-
sentation for logic synthesis and verification. Technicap&t, EECS Department, UC
Berkeley

Monniaux D (2008) A quantifier elimination algorithm fiinear real arithmetic. In:
Proceedings of International Conference on Logic for Paogning Artificial Intelli-
gence and Reasoning (LPAR), pp 243-257

Monniaux D (2010) Quantifier elimination by lazy modelareration. In: Proceedings
of International Conference on Computer Aided VerificaiGAV), pp 585-599

de Moura L, Bjgrner N (2007) Relevancy propagation. el Report TR-2007-140,
Microsoft Research

de Moura L, Bjgrner N (2008) Z3: An efficient SMT solver: Proceedings of In-
ternational Conference on Tools and Algorithms for the @uuesion and Analysis of
Systems (TACAS), pp 337-340

Muller-Olm M, Seidl H (2007) Analysis of modular arithmet&CM Transactions on
Programming Languages and Systems (TOPLAS) 29(5)

Niemetz A, Preiner M, Biere A (2014) Turbo-charging leasmon demand with don't
care reasoning. In: Proceedings of International Conferesn Formal Methods in
Computer-Aided Design (FMCAD), pp 179-186

Nipkow T (2008) Linear quantifier elimination. In: Preckngs of International Joint
Conference on Automated Reasoning (IJCAR), pp 18-33

Owre S, Rushby J, Shankar N (1992) PVS: A prototype vatifio system. In: Pro-
ceedings of International Conference on Automated Dedn¢CADE), pp 748-752
Phan A, Bjgrner N, Monniaux D (2012) Anatomy of alterngtquantifier satisfiability
(work in progress). In: Proceedings of SMT Workshop at iméional Joint Conference
on Automated Reasoning (SMT@IJCAR), pp 120-130

Pugh W (1992) The Omega Test: A fast and practical integggramming algorithm
for dependence analysis. Communications of the ACM 3502):114

A Layered Algorithm for Quantifier Elimination from Linear Malar Constraints 53

52.

53.

54.

55.

56.

57.

Pugh W (2013) The Omega Project: Frameworks and algesifior the analysis and
transformation of scientific programsiw. cs.umd . edu/projects/omega

Somenzi F (2015) CUDD: Colorado university decisiorgdian package release 3.0.0.
vlsi.colorado.edu/~fabio/CUDD

Szabo N, Tanaka R (1967) Residue arithmetic and itsagifans to computer technol-
ogy. McGraw-Hill

Tew N, Kalla P, Shekhar N, Gopalakrishnan S (2008) Vetifim of arithmetic dat-
apaths using polynomial function models and congruencérgplin: Proceedings of
International Conference on Computer-Aided Design (ICGAIp 122-128

Veanes M, Bjgrner N, Nachmanson L, Bereg S (2014) Monddammposition. In:
Proceedings of International Conference on Computer AMdfication (CAV), pp
628645

Wintersteiger C, Hamadi Y, de Moura L (2010) Efficienthéng quantified bit-vector
formulas. In: Proceedings of International Conferenceamtfal Methods in Computer-
Aided Design (FMCAD), pp 239-246

www.cs.umd.edu/projects/omega
vlsi.colorado.edu/~fabio/CUDD

	Introduction
	Related Work
	QE for Conjunctions of LMCs
	Extending QE to Boolean Combinations
	Experimental Results
	Conclusions and Future Work

