
FMSD manuscript No.
(will be inserted by the editor)

A Layered Algorithm for Quantifier Elimination from Linear
Modular Constraints

Ajith K John · Supratik Chakraborty

Received: date / Accepted: date

Abstract Linear equalities, disequalities and inequalities on fixed-width bit-vectors, collec-
tively called linear modular constraints, form an important fragment of the theory of fixed-
width bit-vectors. We present a practically efficient and bit-precise algorithm for quantifier
elimination from conjunctions of linear modular constraints. Our algorithm uses a layered
approach, whereby sound but incomplete and cheaper layers are invoked first, and expensive
but complete layers are called only when required. We then extend this algorithm to work
with arbitrary boolean combinations of linear modular constraints as well. Experiments on
an extensive set of benchmarks demonstrate that our techniques significantly outperform
alternative quantifier elimination techniques based on bit-blasting and linear integer arith-
metic.

Keywords Quantifier Elimination· Linear Modular Arithmetic· Bit-precise Verification·
Decision Diagrams· Layered Algorithm

1 Introduction

Quantifier elimination (QE) is the process of converting a logic formula containing quanti-
fiers into a semantically equivalent quantifier-free formula. Formally, letF be a quantifier-
free formula over a setV of free variables in a first-order theoryT. Consider the quantified
formulaQ1x1 Q2x2 . . .Qnxn.F, whereX = {x1, . . .xn} is a subset ofV, andQi ∈ {∃,∀} for
i ∈ {1, . . .n}. QE involves computing a quantifier-free formulaF ′ over variables inV \X

This is an extended version of our earlier works in CAV 2011 [34] and TACAS 2013 [35].

Ajith K John
Homi Bhabha National Institute, BARC, Mumbai, India
Tel.: +91-22-25591836
Fax: +91-22-25505151
E-mail: ajithkj.barc@gmail.com

Supratik Chakraborty
Dept. of Computer Sc. & Engg., IIT Bombay, India
Tel.: +91-22-25764787
Fax: +91-22-25720290
E-mail: supratik@cse.iitb.ac.in

2 John-Chakraborty

such thatF ′ is semantically equivalent toQ1x1 Q2x2 . . .Qnxn.F in theoryT. QE has a num-
ber of important applications in formal verification and analysis of hardware and software
systems. Example applications include image computation [13], computation of strongest
post-conditions [36] and computation of predicate abstractions [21].

This paper focuses on existential QE from formulas in an important fragment of theory
of bit-vectors [38] called linear modular arithmetic. Formulas in linear modular arithmetic
are Boolean combinations of linear equalities, disequalities and inequalities on fixed-width
bit-vectors. Letp be a positive integer constant,x1, . . . ,xn bep-bit non-negative integer vari-
ables, anda0, . . . ,an be integer constants in{0, . . . ,2p−1}. A linear term overx1, . . . ,xn is
a term of the forma1 ·x1+ · · ·an ·xn+a0, where· denotes multiplication modulo 2p and+
denotes addition modulo 2p. A linear modular equality (LME) is a constraint of the form
t1 = t2 (mod 2p), wheret1 andt2 are linear terms overx1, . . . ,xn. Similarly, a linear mod-
ular disequality (LMD) is a constraint of the formt1 6= t2 (mod 2p), and a linear modular
inequality (LMI) is a constraint of the formt1 ⊲⊳ t2 (mod 2p), where⊲⊳∈ {<,≤}. We will
use linear modular constraint (LMC) to refer to an LME, LMD orLMI. Conventionally 2p is
called the modulus of the LMC. Since every variable in an LMC with modulus 2p represents
a p-bit integer, it follows that a set of LMCs sharing a variablemust have the same modulus.
Hence we will assume without loss of generality that whenever we consider a conjunction
of LMCs sharing a variable, all the LMCs have the same modulus.

The semantics of LMCs differs from that of linear constraints over integers in two as-
pects:

1. Wrap-around behaviour:The successor of 2p−1 in modular arithmetic is 0. Hence, if
x = 2p− 1, thenx+ 1 modulo 2p overflows and wraps to 0. Due to this wrap-around
behaviour, the formula(x = 3)∧(x+1≤ 2) is satisfiable in linear modular arithmetic
with modulus 4 whereas it is unsatisfiable over integers.

2. Finite domain:Domain of variables in modular arithmetic has finite/bounded cardinality
unlike integer arithmetic where the variables are unbounded. Hence the formula(x =
3)∧(x < y) is unsatisfiable in linear modular arithmetic with modulus 4whereas it is
satisfiable over integers.

Efficient techniques for QE from LMCs have applications in formal verification and
analysis of hardware and software systems. Formal verification and analysis tools reason
about symbolic transition relations of hardware and software systems expressed as formulas
in appropriate logic. Symbolic transition relations of word-level RTL designs and embedded
programs involve constraints in linear modular arithmetic. LMEs arise from the assignment
statements, whereas LMDs and LMIs arise primarily from branch and loop conditions that
compare words/registers. Key operations such as image computation [13], computation of
strongest post-conditions [36] and computation of predicate abstractions [21] performed by
formal verification and analysis algorithms essentially reduce to QE from formulas involving
symbolic transition relation. Symbolic transition relations of RTL designs and embedded
programs in general may involve signed variables with signed operations and comparisons
on them. There are standard techniques to convert constraints with signed semantics into
equisatisfiable constraints with unsigned semantics (for example, see page 2 of [27]). In the
remainder of this paper, we assume that all variables and alloperations, comparisons are
unsigned.

Our primary motivation for studying QE from LMCs arises frombounded model check-
ing [3] of word-level RTL designs. As an example, consider the synchronous circuit shown
in Fig. 1, with the relevant part of its functionality described in VHDL. The circuit com-
prises a controller and three 8-bit registers,A, B, andX. The controller switches between

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 3

three states, 0, 1, and 2. In state 0, the values ofA andB are read from inputsInA andInB
respectively, and are stored in corresponding registers. In addition, the value ofX is initial-
ized to 0, and the control moves to state 1. State 1 implementsthe iterative algorithm: if
X+A ≤ B, the value ofX is incremented, that ofA is doubled, and the circuit continues to
iterate in state 1. If, however,X+A> B, the circuit checks if the value ofX equalsB+1. If
so, the control moves to state 0 via state 2. Otherwise, the control moves directly to state 0
from state 1.

...
if (clock’event and clock = ’1’) then
case state is
when "00" => A <= InA;

B <= InB; X <= x"00"; state <= "01";
when "01" => if (X + A <= B) then
X <= X+’1’; A <= x"02"*A;
elsif (X = B+’1’) then state <= "10";
else state <= "00"; end if;
when others => state <= "00";

end case;
end if;

....

Fig. 1 An example circuit

The symbolic transition relation,R, for this circuit can be obtained by conjoining the
following equality relations, where primed variables refer to values of the corresponding
unprimed variables after the next rising edge of the clock.

state′ = ite(state= 0,1, ite(state= 1, ite(X+A≤ B,1, ite(X= B+1,2,0)),0))

A′ = ite(state= 0, InA, ite(state= 1, ite(X+A≤ B,2 ·A,A),A))

B′ = ite(state= 0, InB,B)

X′ = ite(state= 0,0x00, ite(state= 1, ite(X+A≤ B,X+1,X),X))

In the above equalities,A,A′,B,B′, InA, InB,X, andX′ are bit-vectors of width 8, whereas
state and state

′ are bit-vectors of width 2. Furthermore, all operations andcomparisons
involving A,A′,B,B′, InA, InB,X, andX′ are unsigned operations modulo 28, and those in-
volving state andstate′ are unsigned operations modulo 22. Sincea= ite(b,c,d) represents
(b∧ (a= c))∨ (¬b∧ (a= d)), the transition relationR above is a Boolean combination of
LMCs.

The above circuit computes the smallest 8-bit non-negativeintegerX such that 2X · InA+
X > InB, where all the operations are modulo 28. If the smallest value ofX thus computed
is InB+1, the control enters state 2; otherwise it returns to state 0. For example, suppose
InA= 1 andInB= 150. Inside state 1, the value ofA overflows to zero after 8 iterations and
remains as zero thereafter. The value ofX is incremented in each iteration until it becomes
151. Now thatX+A≤B is false andX=B+1 is true, the control moves to state 2. Observe
that 151 is the smallest 8-bit non-negative integerX such that 2X ·1+X> 150 modulo 28.

This circuit has the property that if it starts in state 0, then the value ofA is always less
than 255·X when it visits state 2. The value ofA may exceed 255·X and even overflow
during the modulo 28 multiplications in state 1. However, when it reaches state 2, A is less
than 255·X. To see why this istrue, observe that in state 2, bothX+A>B andX=B+1 are
true; henceX+A>X+255 istrue, where 255 is the additive inverse of 1 in modulo 28. Note
that sinceA≤ 255,X+A>X+255 impliesX 6= 0. Moreover, sinceA≤ 255, if the operation
X+A overflows, thenX+A≤X+255 holds forX 6= 0. But we haveX+A>X+255. Hence

4 John-Chakraborty

the operationX+A should not overflow. This implies thatA is less than the additive inverse
of X modulo 28. Since 255·X is the additive inverse ofX modulo 28, we haveA< 255·X.

Suppose we wish to verify this property for the firstN time steps of operation of the cir-
cuit using bounded model checking. This involves unrollingthe transition relationN times,
conjoining the unrolled relation with the negation of the property, and feeding the result-
ing formula to an SMT solver. Observe thatRcontains primed and unprimed versions of all
variables in the circuit. Hence, unrollingRa large number of times can give a formula with a
very large number of variables. While the number of variables in an SMT formula is not the
sole determinant of performance of SMT solving, formulas with large numbers of variables
typically lead to performance bottlenecks in SMT solving.

A common approach to circumventing this problem is to use an abstract transition re-
lation R′ that relates values of only a chosen subset of variables relevant to the property
being checked, while abstracting the relation between the other variables. In general, the set
of states reached usingR′ overapproximates the exact set of reachable states. Therefore, if
N-step bounded model checking usingR′ fails to give a counterexample, then the property
holds inN steps of operation of the circuit.

In our example, an abstract transition relationR′ can be obtained by computing∃B. ∃B′.
∃InB. R. An equivalent quantifier-free version ofR′ is given below.

((state= 0)∧ (state′ = 1)∧ (A′ = InA)∧ (X′ = 0x00)) ∨

((state= 1)∧ (state′ = 1)∧ (A′ = 2 ·A)∧ (X′ = X+1)) ∨

((state= 1)∧ (state′ = 2)∧ (A′ = A)∧ (X′ = X)∧ (X+A> X+255)) ∨

((state= 1)∧ (state′ = 0)∧ (A′ = A)∧ (X′ = X)∧ϕ) ∨
((state 6= 0)∧ (state 6= 1)∧ (state′ = 0)∧ (A′ = A)∧ (X′ = X))

whereϕ is the disjunction of the formulas(X+A 6= 0)∧(X 6= 1) and(X+A 6= 0)∧(X 6= 0)∧
(X≤ X+A+255).

It can indeed be verified that bounded model checking usingR′ (instead ofR) suffices
to show that if the circuit starts in state 0, then the value ofA is always less than 255·X
when it visits state 2. SinceR′ does not containB, B′ or InB, the number of variables in
N unrollings of R′ is less than that inN unrollings of R. This is likely to lead to better
performance of SMT solving during bounded model checking using R′ than during bounded
model checking usingR. In practice, this often translates to a problem being solved within
given time constraints, as opposed to timing out. Since transition relations of word-level
RTL designs involve Boolean combinations of LMCs, buildingan abstract transition relation
requires existentially quantifying variables from Boolean combinations of LMCs.

The above example illustrates the potential advantages of using an abstract transition
relation obtained by existentially quantifying a subset ofvariables from the original transi-
tion relation. However, the effectiveness of this approachdepends crucially on the choice
of variables to quantify, on the availability of efficient techniques to obtain a quantifier-free
version of the abstract transition relation, and on the quality of the abstract transition relation
obtained.

For ease of computation, formal verification and analysis algorithms abstract variables
in the system to be verified as integers, and use QE techniquesfor integers [51]. However
the underlying system implementation often uses modular arithmetic, and as mentioned ear-
lier, the semantics of integer arithmetic differs from thatof modular arithmetic. Hence, as
observed in [7], the results of verification and analysis by abstracting variables as integers
and using QE for integers may not be sound or complete if the underlying implementa-
tion uses modular arithmetic. Therefore, developingbit-preciseandpractically efficientQE
techniques for LMCs is an important problem.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 5

1.1 Contributions

There are two key technical contributions of this work.

1. We present a bit-precise and practically efficient algorithm for eliminating quantifiers
from conjunctions of LMCs. Our algorithm is based on a layered approach, whereby
sound but incomplete and cheaper layers are invoked first, and expensive but complete
layers are called only when required. While our algorithm uses a final layer of model
enumeration for the sake of theoretical completeness, extensive experiments indicate
that we do not need to invoke this layer on a wide range of benchmarks arising in prac-
tice. Experiments also demonstrate the effectiveness of our algorithm over alternative
QE techniques based on bit-blasting and conversion to linear integer arithmetic.

2. We present approaches to extend this algorithm to eliminate quantifiers from Boolean
combinations of LMCs. We introduce a new decision diagram called Linear Modular
Decision Diagram (LMDD) that represents Boolean combinations of LMCs, and present
algorithms for QE from LMDDs. We then present an SMT solving based approach for
QE from Boolean combinations of LMCs, and a hybrid approach that tries to combine
the strengths of the LMDD and SMT solving based approaches. Experiments demon-
strate the effectiveness of these approaches and utility ofthese approaches in bounded
model checking of word-level RTL designs.

2 Related Work

Currently, the dominant technique for eliminating quantifiers from LMCs involvesblasting
bit-vector variables into individual bits (also called bit-blasting [38]), followed by elimi-
nation of the blasted bit-level variables using bit-level QE tools [53]. However, blasting
involves a bitwidth-dependent blow-up in the size of the problem. This can present scaling
problems in the usage of bit-level QE tools, especially whenreasoning about wide words.
Similarly, if quantified variables and non-quantified variables appear as arguments of the
same function or predicate, then blasting quantified variables may transitively require blast-
ing non-quantified variables as well. This can cause the quantifier-eliminated formula to
appear like a propositional formula on blasted bits, instead of being a modular arithmetic
formula. Since reasoning at the level of modular arithmeticis often more efficient in prac-
tice than reasoning at the level of bits, QE using bit-blasting might not be the best option if
the quantifier-eliminated formula is intended to be used in further modular arithmetic level
reasoning.

Another technique for eliminating quantifiers from LMCs is converting the LMCs to
equivalent constraints in linear integer arithmetic [8], and then using QE techniques for lin-
ear integer arithmetic such as Omega Test [51]. Similarly, automata-theoretic approaches for
eliminating quantifiers from linear integer arithmetic constraints [26] can also be used. How-
ever, this approach scales poorly in practice and destroys the modular arithmetic structure
of the problem. The resulting formula is a linear integer arithmetic formula and converting
this formula back to modular arithmetic is often difficult.

The problem of extending a QE algorithm for conjunctions of constraints to Boolean
combinations of constraints is encountered in other first order theories such as linear real
arithmetic and linear integer arithmetic as well. In the following, we first focus on existing
approaches to solve this problem for these theories. We thenprovide a brief account of the
existing complexity results on QE and related problems for LMCs. Note that the related
works we survey below arise from a range of applications. Some of these applications such

6 John-Chakraborty

as SMT solving, generation of Craig [17] interpolants etc.,may not directly require QE.
Nevertheless these works are included here for completeness, since there is overlap between
the objectives of QE and what these works achieve.

2.1 Existing Techniques for Extending QE to Boolean Combinations

Cavada et al.’s work [11] addresses the problem of existentially quantifying out all numeric
variables from formulas involving linear arithmetic constraints and Boolean variables. Their
work uses BDDs [10] to represent Boolean structure of the formulas. QE is done by re-
cursively traversing the BDD, carrying along each path, thelinear arithmetic constraints
encountered on it so far (called the context). Paths with theory-inconsistent contexts are re-
moved. Because of the dependence of the result of a recursivecall on the context, if the
same BDD node is encountered following two different paths,the results of the calls are not
the same in general. Hence this procedure is not amenable to dynamic programming usually
employed in the implementation of BDD operations. In particular, the number of recursive
calls in the worst-case is linear in the number of paths, and not the number of nodes, of the
original BDD.

Chaki et al. [12] present a practically efficient algorithm for QE from formulas in the
theory of Octagons (a fragment of linear real arithmetic forwhich Fourier-Motzkin algo-
rithm [20] is sufficient for conjunction-level QE). Their work introduces decision diagrams
for linear arithmetic called LDDs. QE from LDDs makes use of asingle variable elimina-
tion procedure that recursively applies Fourier-Motzkin style elimination on the LDD nodes.
This procedure can be implemented with dynamic programming, which helps in achieving
considerable performance improvement as reported in [12].

Suppose we wish to quantify a set of variablesX from a formulaF in linear real arith-
metic. A straightforward algorithm to compute∃X.F is All-SMT algorithm (also called
All-SMT loop) that works as follows (versions of this algorithm can be found in [39, 42]).
An SMT solver call is used to check ifF is satisfiable. IfF is unsatisfiable, then∃X.F is
false. Otherwise, the solution ofF is generalized to a conjunctionC1 of constraints such
thatC1⇒ F . The SMT solver is now called to check ifF ∧¬C1 is satisfiable. IfF ∧¬C1

is unsatisfiable, then∃X.F is equivalent to∃X.C1. Otherwise, the solution ofF ∧¬C1 is
generalized to a conjunctionC2 such thatC2⇒ F . This loop is repeated until the formula
given to the SMT solver becomes unsatisfiable. Each iteration i of the loop generates a con-
junctionCi such thatCi ⇒ F , for 1≤ i ≤ n (Ci is also called implicant). Finally,∃X.F is
equivalent to∃X.C1 ∨ ·· ·∨∃X.Cn.

The work by Lahiri et al. [39] improves the All-SMT algorithmby considering¬Ci as a
conflicting clause and then performing conflict-driven back-jumping inside the SMT solver.
Monniaux [42] improves the All-SMT algorithm in the following ways. First, instead of¬Ci ,
¬∃X.Ci is conjoined with the formula given to the SMT solver. This iscalled “interleaving
projection and model enumeration” in [42]. Secondly, an SMTsolver based procedure is
used to further generalize the implicantCi by dropping constraints fromCi wherever possi-
ble, before∃X.Ci is computed. It is observed in [42] that these optimizationshelp in early
termination of the algorithm, and yield significant performance improvements on a wide
range of benchmarks. The later work by Monniaux [43] and the work by Phan et al. [50]
improves this algorithm further in handling of quantifier alternations.

Techniques for finding generalized implicants are crucial in scalable application of the
All-SMT algorithm. Many interesting approaches are proposed recently for deriving such
generalized implicants from a given solution of an SMT formula. De Moura et al. [44]

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 7

present a variation of Boolean constraint propagation in order to identify constraints whose
truth values are not essential for determining the satisfiability of a formula. Déharbe et
al. [23] present algorithms for generating prime implicants from solutions of formulae by
iterative removal of assignments that are not necessary. Niemetz et al. [47] present a dual
propagation based technique to extract partial solutions from “full” solutions of SMT for-
mulas. Given a solutionm of a formulaF, the assignments to variables inm are presented
as assumptions to a dual solver which maintains¬F. The assumptions that are inconsistent
with ¬F identify the assignments sufficient to satisfyF.

Test point based QE algorithms such as Ferrante and Rackoff’s algorithm [24], Loos
and Wiespfenning’s algorithm [40] for linear real arithmetic and Cooper’s Algorithm [16]
for linear integer arithmetic can be directly applied on arbitrary Boolean combinations of
constraints. However, scalability of these algorithms in practice often depends on underlying
representation of Boolean structure of the formulas and implementation heuristics used.

LinAIG tool [19] implements Loos and Wiespfenning’s algorithm using a data structure
called LinAIG. Boolean structure of the formulas is represented using FRAIGs [41], and
Craig interpolants are used to identify and remove redundant constraints generated during
application of Loos and Wiespfenning’s algorithm. Bjørner’s work in [4] avoids application
of substitutions in the formulation of Loos and Wiespfenning’s algorithm and Cooper’s al-
gorithm. The effect of substitutions is encoded as an additional constraint calledpivotwhich
is conjoined with the input formulaF . Satisfying assignments toF∧pivot are generated us-
ing a DPLL(T) framework, which are then generalized to disjuncts in the formulation of
Loos and Wiespfenning’s algorithm or Cooper’s algorithm. Nipkow’s work [48] provides
implementations of Ferrante and Rackoff’s algorithm, Loosand Wiespfenning’s algorithm,
and Cooper’s algorithm that are verified in the theorem prover Isabelle.

Komuravelli et al. [37] introduce model based projection that involves computing model-
based under-approximations of existentially quantified formulas. Their work also gives pro-
cedures for computing such under-approximations for existentially quantified formulas in
linear arithmetic as disjuncts in the formulation of Loos and Wiespfenning’s algorithm or
Cooper’s algorithm. Bjørner et al. [5] give an algorithm that makes use of model based
projections for deciding the satisfiability of quantified linear arithmetic formulas. Their al-
gorithm conceptually works as a two-player satisfiability game and can be extended for QE
from linear arithmetic formulas.

The work by Veanes et al. [56] focuses on automatically constructing monadic decom-
positions of formulas in quantifier free fragments of first order logic. Monadic decompo-
sition involves transforming a given formula into an equivalent Boolean combination of
unary predicates. Veanes et al. give an algorithm for constructing monadic decompositions
in Disjunctive Normal Form (DNF). Once such a decompositionis constructed, QE can be
achieved by distributing the existential quantifiers over disjunctions in the DNF. This effec-
tively reduces the problem of eliminating quantifiers from ageneral formula to the problem
of eliminating quantifiers from conjunctions involving only unary predicates.

2.2 Complexity Results on LMCs

The satisfiability problem for a conjunction of LMEs is knownto be polynomial-time [25].
However, the satisfiability problem for conjunctions of even very limited fragments of LMDs
or LMIs are proved to be NP-hard as discussed below.

Jain et al. [33] prove that the satisfiability problem for a conjunction of LMDs is NP-
hard even when the modulus is fixed to 4. Bjørner et al.’s work [7] introduces Modular

8 John-Chakraborty

Difference Logic (MDL) constraints. MDL constraints are a fragment of LMIs of the form
x1 + k1 ≤ x2 + k2 (mod 2p), wherex1,x2 are variables, andk1,k2 are constants. Bjørner
et al. prove that the satisfiability problem for conjunctions of MDL constraints of the form
x1+1≤ x2 (mod 2p) or of the formx1 ≤ x2+2p−1 (mod 2p) with 2p ≥ 4 is NP-hard.

Gange et al.’s work [27] proves that the satisfiability problem for conjunctions of LMIs
involving LMIs of the formx1−x2≥ 1 (mod 2p) andx1−x2≤ 2 (mod 2p) is NP-hard,
where 2p ≥ 4 and−x2 represents additive inverse ofx2 modulo 2p. Sincex1− x2 ≥ 1
(mod 2p) is equivalent tox1 6= x2 (mod 2p), this result also implies that the satisfiabil-
ity problem for conjunctions of LMCs involving LMDs of the form x1 6= x2 (mod 2p) and
LMIs of the formx1−x2≤ 2 (mod 2p) with 2p ≥ 4 is NP-hard.

Since the satisfiability problem is a special case of QE problem (checking satisfiability
of a formula is equivalent to existentially quantifying allfree variables in the formula), the
above results imply that QE problem for a conjunction of LMCsis NP-hard in general.

2.3 Decision Procedures and Interpolation Procedures for LMCs

There are several techniques (see [54, 31]) on solving conjunctions of LMEs using variants
of Gaussian elimination. M̈uller-Olm et al. [46] and Huang et al. [32] give Gaussian elim-
ination based algorithms for deriving “solved form” for conjunctions of LMEs. A solved
form captures all possible solutions of a given conjunctionof LMEs. Ganesh et al. [25] give
a solve-and-substitute algorithm to derive a solved form for a conjunction of LMEs.

Most SMT solvers decide the satisfiability of conjunctions of LMDs and/or LMIs by bit-
blasting followed by SAT solving. However, as mentioned earlier, because of the bitwidth-
dependent blow-up during bit-blasting, this approach suffers from scaling problems for
problem instances with large moduli. Hadarean et al. [30] proposes an extension of the
congruence closure algorithm [38] for deciding the satisfiability of conjunctions of LMDs.
Their work also proposes an algorithm to decide the satisfiability of conjunctions of a spe-
cial class of MDL constraints that do not have the wrap-around behaviour, viz. constraints of
the formx1✁x2 (mod 2p) where✁ ∈ {<,≤}. Gange et al. [27] propose a sound heuristic
to check the satisfiability of MDL constraints that makes useof wrapped intervals [28] to
represent over-approximations of the relations between variables.

Modern SMT solvers, such as, Z3 [45] and theorem-provers such as PVS [49] use spe-
cialized heuristics [57] to solve quantified bit-vector formulas by Skolemization followed
by use of appropriate choices of Skolem functions. The use ofp-adic expansions [1, 15] is
explored in [2, 55] to solvenon-linear modular equations. Bruttomesso et al. [9] present
a polynomial time algorithm for solving conjunctions of constraints in the core bit-vector
theory consisting of only equalities, extractions and concatenations. Their algorithm first
generates an equisatisfiable conjunction of equalities on non-overlapping slices of variables
involved in the constraints. Congruence closure algorithmis then used for checking the sat-
isfiability of this conjunction of equalities on non-overlapping slices. Similar slicing based
ideas for solving conjunctions of bit-vector constraints can be found in [18, 6].

Jain et al. [33] give a polynomial-time algorithm for computing Craig interpolants for
conjunctions of LMEs. Griggio [29] presents a layered framework for computing inter-
polants for bit-vector formulas that tries to keep the word-level structure of the problem
as much as possible. The cheaper layers use interpolation inEUF (equality+ uninterpreted
functions) and interpolation by equality substitution. The more expensive layers use conver-
sion to linear integer arithmetic and bit-blasting. Their layered framework has similarity to
our layered approach. However the individual layers used are different.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 9

3 QE for Conjunctions of LMCs

The problem we wish to solve in this section can be formally stated as follows. LetAdenote a
conjunction of LMCs over a set of variablesV. We wish to compute a Boolean combination
of LMCs ϕ, such thatϕ ≡ ∃X.A, whereX ⊆ V. We present a layered algorithm called
Project to solve this problem. In the following, after the notation and preliminaries, we give
an overview of the techniques used in each layer; details of these techniques are presented
in the following subsections.

We will initially focus on the simpler problem of existentially quantifying a single vari-
able from a conjunction of LMCs. We usex to denote the variable to be quantified. For
clarity of exposition, in most of the lemmas and propositions presented in this section, we
give illustrative examples before presenting the detailedproofs.

3.1 Notation and Preliminaries

We assume that all LMCs have modulus 2p for some positive integerp, unless stated other-
wise. For notational clarity, we will henceforth omit mentioning “ (mod 2p)” with LMCs.
We use lettersx, y, z, x1, x2, . . . to denote variables, usea, a1, a2, . . ., b, b1, b2, . . . to denote
constants, and uses, s1, s2, . . ., t, t1, t2, . . . to denote linear terms. The lettersd, d1, d2, . . . are
used to denote LMDs,l , l1, l2, . . . are used to denote LMIs, andc, c1, c2, . . . are used to de-
note LMCs. Furthermore, we useD, D1, D2, . . . to denote conjunctions of LMDs,I , I1, I2, . . .
to denote conjunctions of LMIs, andC, C1, C2, . . ., A, A1, A2, . . . to denote conjunctions of
LMCs. For a linear termt, we use−t to denote the additive inverse oft modulo 2p.

Proposition 1 (t1 < t2) is equivalent to both(t1≤ 2p−2)∧(t1+1≤ t2) and(t2≥ 1)∧(t1≤
t2−1).

Proof of Proposition 1 is obvious from the definition oft1 < t2 and the fact that the op-
erations are modulo 2p. Proposition 1 implies that there is no loss of generality inassuming
that LMIs are restricted to be of the formt1 ≤ t2. However, for clarity of exposition, we
allow LMIs of the formt1 < t2, whenever convenient.

Proposition 2 An LME or LMD t1 ⊲⊳ t2, where⊲⊳∈ {=, 6=}, can be equivalently expressed
as2µ ·x ⊲⊳ t, where t is a linear term free of x, andµ is an integer such that0≤ µ ≤ p.

Example All LMCs in this example have modulus 8. Consider the LME 7x+4y = x+ z.
Rearranging the terms modulo 8, we get 7x− x = z− 4y. Simplifying modulo 8, we get
6x= 4y+z, which can be written as 21 ·3x= 4y+z. Multiplying by 3 (multiplicative inverse
of 3 modulo 8) and simplifying gives, 21x = 4y+3z. Similarly, the LMD 7x+4y 6= x+ z
with modulus 8 can be equivalently expressed as 21x 6= 4y+3z.

For every linear termt1 and variablex, we defineκ(x, t1) to be an integer in{0, . . . , p}
such thatt1 is equivalent to 2κ(x,t1) · b · x+ t, wheret is a linear term free ofx, andb is
an odd number. Note that ift1 is free ofx, thenκ(x, t1) = p. The definition ofκ(x, ·) can
be extended to (conjunctions of) LMCs as follows. Letc be an LME/LMD equivalent to
2µ · x ⊲⊳ t, where⊲⊳∈ {=, 6=} andt is free ofx. We defineκ(x,c) to beµ in this case. If
t1, t2 are linear terms, thenκ(x, t1 ≤ t2) is defined to bemin(κ(x, t1),κ(x, t2)). Finally, if

c1, . . . ,cm are LMCs, thenκ(x,
m∧

i=1
(ci)) is defined to be

m
min
i=1

(κ(x,ci)). Observe that ifC is a

conjunction of (possibly one) LMCs and ifκ(x,C) = k, then only the least significantp−k
bits ofx affect the satisfaction ofC. We will say thatx is in the support ofC if κ(x,C)< p.

10 John-Chakraborty

3.2 Overview of Layers inProject

The first layer ofProject(Layer1) involves simplification of the given conjunction of LMCs
using the LMEs present in the conjunction. For example, consider the problem of computing
∃x.((6x+y= 4) ∧(2x+z 6= 0)) with modulus 8. Note that(6x+y= 4) can be equivalently
expressed as(2x= 5y+4) in modulo 8 using modular arithmetic operations. The variable x
can be eliminated from the conjunction by replacing the occurrences of 2x in the conjunction
by 5y+ 4. Layer1 performs elimination of quantifiers by simplifications as above using
LMEs present in the conjunction.

The second layer (Layer2) makes use of an efficient combinatorial heuristic to identify
unconstraining LMIs and LMDs that can be dropped from the problem instance. For exam-
ple, consider the problem of computing∃x.((2x = 5y+4) ∧(x+ y≤ 3)) with modulus 8.
Note thatx, y are 3-bit variables here.(2x= 5y+4) is independent of the most significant
bit of x, denoted asx[2]. It can be observed that every solution of(2x = 5y+ 4) can be
“adapted” by possibly modifying the value ofx[2] to become a solution of(2x= 5y+4) ∧
(x+y≤ 3). This means that∃x.((2x= 5y+4))⇒∃x.((2x= 5y+4)∧(x+y≤ 3)). The con-
verse, i.e.∃x.((2x = 5y+4) ∧(x+ y≤ 3)) ⇒ ∃x.((2x = 5y+4)) obviously holds. Hence
(x+ y≤ 3) is unconstraining in∃x.((2x = 5y+ 4) ∧(x+ y≤ 3)) and it can be dropped.
Layer2 computes sufficient and polynomial time computable conditions that identify such
unconstraining LMDs and LMIs and drops them.

The cases that are not computed by the application of the above computationally cheap
layers are handled by expensive but more complete techniques in the third layer (Layer3).
Layer3 primarily involves a variant of Fourier-Motzkin algorithm adapted to work for LMIs.
First the LMIs in the problem instance are converted to a “coefficient-matched” forma·x ⊲⊳
t, where⊲⊳∈ {≤,≥}, andt is a linear term free ofx. Then a Fourier-Motzkin style variable
elimination algorithm is applied on the coefficient-matched LMIs to eliminate the quantified
variable. For example, consider the problem of computing∃x.((y≤ 4x) ∧ (4x≤ z)) with
modulus 16.∃x.((y≤ 4x) ∧ (4x≤ z)) expresses the condition under which there exists a
multiple of 4 betweenyandz, wherey≤ z. Our algorithm computes∃x.((y≤ 4x)∧ (4x≤ z))
as(y≤ z)∧ϕ, whereϕ is the disjunction of(z≥ y+3)∧ (y≤ 12), (z< y+3)∧ (4y= 0),
and(z< y+3)∧ (4y> 4z).

Finally Layer3 uses model enumeration as the last resort. Model enumeration involves
elimination of the quantified variable by enumerating of allpossible values of the variable.
Our experiments however indicate that we do not need to invoke model enumeration on a
wide range of benchmarks arising in practice.

Techniques in Layer1 and Layer2 can be considered as preprocessing or simplification
steps that preprocess or simplify the given conjunction of LMCs and eliminate quantifiers if
possible. However inside Layer3, converting LMIs to coefficient-matched form, in general
generates a Boolean combination of LMCs. Elimination of quantifiers from this Boolean
combination of LMCs results in new recursiveProject calls. Because of this feedback, the
control flow insideProject is not linear. Hence we choose to call Layer1 and Layer2 as
layers, not as preprocessing or simplification steps.

It is well known that order of elimination of variables crucially affect the running time of
QE algorithms in general. Inside the layers, when there are multiple variables to eliminate,
any ordering heuristic can be used. However the focus of thiswork does not include finding
the best possible order of elimination. The specific order ofelimination of variables we have
used inside the layers is elaborated in Section 5.1.

Time Complexities of Layers: Layer1 and Layer2 have polynomial worst-case time com-
plexities. Letn be the number of constraints in the conjunction given as input, v be the num-

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 11

ber of variables in the conjunction, and lete be the number of variables to be eliminated.
Assuming that additions, multiplications, and finding multiplicative inverses onp-bit num-
bers take timeO(Q(p)) in the worst-case, whereQ(p) is a polynomial onp such thatp≤
Q(p)≤ p3, Layer1 has a worst-case time complexity ofO(e·n ·v ·Q(p)), and Layer2 has a
worst-case time complexity ofO(e·n2 ·Q(p)+n· p·v). Layer3 resorts to model enumeration
as the last resort, and has a worst-case time complexity ofO(n·Q(p) ·2(e+1)·p+n· p·v·2e·p).
Recall that algorithms for QE from linear real arithmetic have doubly exponential complex-
ities [24, 40].

3.3 Layer1: Simplification using LMEs

Layer1 involves simplification of the given conjunction of LMCs using the LMEs present
in the conjunction. It is an extension of the work by Ganesh et. al. in [25]. The following
Proposition and Lemmas form the crux of Layer1.

Proposition 3 Let c be an LME2k ·x= t, where k denotesκ(x,c). Then∃x.c≡ (2p−k · t =
0).

ExampleAll LMCs in this example have modulus 8.∃x.(21x= 5y+2)≡ (23−1(5y+2) =
0)≡ (4y= 0).

Proof Let ϕ1 andϕ2 denote the formulas∃x.(2k · x = t) and 2p−k · t = 0 respectively. To
see thatϕ1⇒ ϕ2, we simply multiply both sides of 2k ·x= t by 2p−k, and simplify modulo
2p. To see whyϕ2⇒ ϕ1, note thatϕ2 implies that the least significantk bits of t evaluate
to zero. Also recall thatt is free ofx. Given any value of variables int such that the least
significantk bits of t evaluate to zero, we can always find a value ofx such that 2k · x = t.
This can be done by choosing the least significantp−k bits of x to be the same as the most
significantp−k bits of t. Hence,ϕ2⇒ ϕ1, and thereforeϕ1 ≡ ϕ2. ⊓⊔

Lemma 1 Let A be a conjunction of LMEs. Then∃x.A can be equivalently expressed as a
conjunction of LMEs each of which is free of x.

Example All LMCs in this example have modulus 8. Consider the problemof computing
∃x.((21x= 5y+2) ∧(22x= 5y+6z) ∧(21x= 2y+4)). This can be equivalently expressed
as∃x.((2x= 5y+2) ∧(2 · (5y+2) = 5y+6z) ∧(5y+2= 2y+4)). Simplifying modulo 8,
we get∃x.((2x = 5y+2)) ∧(5y+2z= 4)∧ (3y = 2). Using Proposition 3, we obtain the
final result as(4y= 0) ∧(5y+2z= 4)∧ (3y= 2).

Proof Let A be
m∧

i=1
(qi), where eachqi is an LME. Let each LMEqi be of the form 2ki ·x=

ti , whereki = κ(x,qi) and 1≤ i ≤ m. Without loss of generality, letk1 be the minimum
of k1, . . . ,km. It can be observed that the LME 2k1 · x = t1 can be used to eliminate the
occurrences ofx in other LMEs by expressing each LME 2ki ·x= ti for 2≤ i ≤mas 2µi · t1 =
ti , where eachµi = ki−k1. Hence,∃x.A can be equivalently expressed asC1∧∃x.(2k1 ·x=
t1), whereC1 is the conjunction of the LMEs 2µi · t1 = ti . Using Proposition 3, it follows that
C1∧∃x.(2k1 ·x= t1) is equivalent toC1∧ (2p−k1 · t1 = 0). ⊓⊔

Lemma 2 Let A be a conjunction of LMCs containing at least one LME. Let2k1 ·x= t1 be
the LME with the minimumκ(x, ·) value among the LMEs in A. Then∃x.A≡ C1∧∃x.C2,
where C1 is a conjunction of LMCs free of x, and C2 is a conjunction of2k1 · x = t1 and
(possibly zero) LMIs and LMDs, each of which hasκ(x, ·) less than k1.

12 John-Chakraborty

Example All LMCs in this example have modulus 8. Consider the problemof computing
∃x.((21x= 5y+2) ∧(20x 6= 6y+7z)∧ (20 ·5x+ z≤ 21x)∧ (21 ·3x≤ y+ z)). Substituting
the occurrences of 21x in the LMIs(20 ·5x+z≤ 21x) and(21 ·3x≤ y+z) by 5y+2, we have
∃x.((2x= 5y+2)∧ (x 6= 6y+7z)∧ (5x+ z≤ 5y+2)∧ (3 · (5y+2)≤ y+ z)). Simplifying
modulo 8, we get(7y+6≤ y+z)∧∃x.((2x= 5y+2)∧ (x 6= 6y+7z)∧ (5x+z≤ 5y+2)).
Note that the result is of the formC1∧∃x.C2, as specified in Lemma 2.

Proof Let A be equivalent toE∧D∧ I , whereE is a conjunction of LMEs,D is a conjunction

of LMDs, andI is a conjunction of LMIs. LetE be
m∧

i=1
(qi), where eachqi is an LME,D be

n∧
i=m+1

(di), where eachdi is an LMD, andI be
r∧

i=n+1
(l i), where eachl i is an LMI.

Suppose each LMEqi is of the form 2ki · x = ti , whereki = κ(x,qi) and 1≤ i ≤ m.
Suppose each LMDdi is of the form 2ki · x 6= ti , whereki = κ(x,di) andm+ 1≤ i ≤ n.
In addition, suppose each LMIl i is of the form(ai · x+ ui ≤ bi · x+ vi), whereai , bi are
constants such that(ai 6= 0)∨ (bi 6= 0), ui , vi are linear terms free ofx, andn+1≤ i ≤ r. Let
us express eachai ·x appearing in the LMIs such thatai 6= 0 in the equivalent form 2ki ·ei ·x,
whereki = κ(x,ai ·x) andei is an odd number. Similarly, let us express eachbi ·x appearing
in the LMIs such thatbi 6= 0 in the equivalent form 2k

′
i ·e′i ·x, wherek′i = κ(x,bi ·x) ande′i is

an odd number.
Without loss of generality, letk1 be the minimum ofk1, . . . ,km. It can be observed that

the LME 2k1 ·x= t1 can be used to eliminate the occurrences ofx in other LMEs, and in the
LMDs and the LMIs withκ(x, .) at least as large ask1 in the following way.

– Each LME 2ki · x= ti for 2≤ i ≤m can be equivalently expressed as 2µi · t1 = ti where
eachµi = ki−k1.

– Each LMD 2ki ·x 6= ti for m+1≤ i ≤ n, such thatk1≤ ki can be equivalently expressed
as 2µi · t1 6= ti where eachµi = ki−k1.

– Each occurrence ofx of the form 2ki ·ei ·x in the LMIs forn+1≤ i ≤ r such thatk1≤ ki

can be equivalently expressed as 2µi · t1 ·ei where eachµi = ki−k1.
– Each occurrence ofx of the form 2k

′
i ·e′i ·x in the LMIs forn+1≤ i ≤ r such thatk1≤ k′i

can be equivalently expressed as 2µ ′i · t1 ·e′i where eachµ ′i = k′i −k1.

Hence, it can be observed that∃x.A can be equivalently expressed asC1∧∃x.C2, where
C1 is a conjunction of LMCs free ofx, andC2 is a conjunction of the LME 2k1 · x= t1 and
those LMIs and LMDs fromA with κ(x, .) less thank1, after substitution of the occurrences
of 2k1 ·x by t1. ⊓⊔

Proposition 3, Lemma 1, and Lemma 2 yield us a simple heuristic QE1 Layer1 that
forms the core of Layer1. Given a conjunction of LMCsA and a variablex to be quantified,
QE1 Layer1computes∃x.A asC1∧∃x.C2 based on Lemma 2. If theκ(x, ·) of all LMDs
and LMIs in A are at least as large ask1 (as in Lemma 2), thenC2 consists of the single
LME 2k1 · x = t1. In this case,∃x.C2 simplifies to 2p−k1 · t1 = 0 (see Proposition 3), and
QE1 Layer1 suffices to compute∃x.A. However, in general,C2 may contain LMDs and
LMIs with κ(x, ·) values less thank1. We describe techniques to address such cases in the
following subsections.

Analysis of Complexity: Consider a conjunction of LMCs with a subset of variables inits
support to be eliminated. Letn be the number of LMCs in the conjunction,v be the number
of variables its support, andebe the number of variables to be eliminated. It can be observed
that for a variablex to be eliminated, Layer1 performsO(n·v) multiplications and additions

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 13

in the worst-case. Assuming that arithmetic operations onp-bit numbers take timeO(Q(p))
in the worst-case, whereQ(p) is a polynomial onp such thatp≤Q(p)≤ p3, elimination of
a variable hence has a worst-case time complexity ofO(n·v·Q(p)). Observe that eliminating
a variable does not increase the number of LMCs in the conjunction. Hence eliminatinge
variables has a worst-case time complexity ofO(e·n·v·Q(p)). Note that reading and writing
an LMC withv variables in support takesO(v· p) time. Hence readingn LMCs as input and
writing them back after eliminating the variables takesO(n·v· p) time. Hence Layer1 has a
worst-case time complexity ofO(e·n·v·Q(p)+n·v· p). Sincep≤Q(p)≤ p3, this reduces
to O(e·n·v·Q(p).

3.4 Layer2: Dropping Unconstraining LMIs and LMDs

Formally, our goal in this subsection is to expressC2, obtained after application ofQE1 Layer1,
asC∧D∧ I , where (i)D is a conjunction of (zero or more) LMDs inC2, (ii) I is a conjunc-
tion of (zero or more) LMIs inC2, (iii) C is the conjunction of the remaining LMCs inC2,
and (iv)∃x.(C)⇒∃x.(C∧D∧ I). Since∃x.(C∧D∧ I)⇒∃x.(C) always holds, this would
allow us to compute∃x.C2, or equivalently∃x.(C∧D∧ I), as∃x.C. We say thatD andI are
unconstrainingLMDs and LMIs, respectively, in such cases.

GivenC, D andI satisfying conditions (i), (ii) and (iii) above, checking if condition (iv)
holds requires solving a quantified bit-vector formula in general. This can be done by using
an SMT solver such as Z3 that supports quantified bit-vector formulae. Alternatively bit-
blasting followed by QBF solving or bit-level QE can be used.However applying such tech-
niques can be expensive, as demonstrated in our experiments. In the following discussion,
we focus on finding sufficient and polynomial time computableconditions for condition (iv)
to hold.

Let x[i] denote theith bit of a bit-vectorx, wherex[0] denotes its least significant bit. For
i ≤ j, let x[i : j] denote the slice of bit-vectorx consisting of bitsx[i] throughx[j]. Given
slice x[i : j], its value is the natural number encoded by the bits in the slice. A key notion
used in the subsequent discussion is that of “adapting” a solution of a constraint to make it
satisfy another constraint. Formally, we say that a solution θ1 of a conjunctionϕ of LMCs
can be adapted with respect to slicex[i : j] to satisfy a (possibly different) conjunctionψ of
LMCs if there exists a solutionθ2 of ψ that matchesθ1 except possibly in the bits of slice
x[i : j]. For example, consider the LMCs(x= y+z) (mod 8) and(4y+z≤ x) (mod 8).
Let θ1 be the solutionx= 1, y= 1, z= 0 of (x= y+z) (mod 8), and letθ2 be the solution
x= 5, y= 1, z= 0 of (4y+z≤ x) (mod 8). Note thatθ2 matchesθ1 except in the bits of
slicex[2 : 2]. Hence we can say thatθ1 can be adapted with respect to slicex[2 : 2] to satisfy
(4y+z≤ x) (mod 8).

The central idea in the second layer is to efficiently computean under-approximationη
of the number of ways in which anarbitrary solution ofC can be adapted to satisfyC∧D∧ I .
It is easy to see that ifη ≥ 1, then∃x.(C)⇒ ∃x.(C∧D∧ I). We illustrate this idea below
through an example. We will use this as a running example throughout this subsection.

Consider the problem of computing∃x.(C∧D∧ I), whereC≡ (z= 4x+ y), D ≡ (x 6=
z+ 7), and I ≡ (6x+ y ≤ 4) and all LMCs have modulus 8. We claim that an arbitrary
solution ofC can be adapted to satisfyC∧D∧ I . Note thatC constrains only slicex[0 : 0],
whereasI constrains slicex[0 : 1] andD constrains slicex[0 : 2]. Therefore, the value of
slicex[1 : 2] does not affect satisfaction ofC, and the value of slicex[2 : 2] does not affect
satisfaction ofC∧ I . It can be observed thatany solutionof C can be adapted with respect to
slicex[1 : 1] to satisfyI by choosing value of slicex[1 : 1] such that 6x lies between−y and

14 John-Chakraborty

4− y. Sincex[0 : 0] is unchanged, each such adapted solution must also satisfyC∧ I . For
example, the solutionx = 1, y= 0, z= 4 of C can be adapted with respect to slicex[1 : 1]
to obtain the solutionx = 3, y = 0, z= 4 of C∧ I . Moreover, notice thatany solutionof
C∧ I can be adapted with respect to slicex[2 : 2] to satisfyD by choosing value for slice
x[2 : 2] that differs from the most significant bit ofz+7. Sincex[0 : 1] is unchanged, each
such adapted solution also satisfiesC∧D∧ I . For example, the solutionx= 3,y= 0,z= 4 of
C∧ I can be adapted with respect to slicex[2 : 2] to obtain the solutionx= 7, y= 0, z= 4 of
C∧D∧ I . In this case, Layer2 computes the under-approximationη of the number of ways
in which an arbitrary solution ofC can be adapted to satisfyC∧D∧ I as≥ 1, thus inferring
that∃x.(C)⇒∃x.(C∧D∧ I).

We now present procedureQE1 Layer2, that applies the technique described above to
problem instances of the form∃x.C2, obtained after invokingQE1 Layer1. QE1 Layer2
initially expresses∃x.C2 as∃x.(C∧D∧ I), whereC denotes 2k1 · x = t1 andD∧ I denotes
the conjunction of LMDs and LMIs inC2. If η (as defined above) is at least 1, thenD∧ I
is dropped fromC2. Otherwise, the LMCs inD∧ I with the largestκ(x, ·) value (i.e. LMCs
whose satisfaction depends on the least number of bits ofx) are identified and included in
C, and the above process repeats. If all the LMIs and LMDs in∃x.C2 are dropped in this
manner, then∃x.C2 reduces to∃x.(2k1 · x= t1), andQE1 Layer2can return the equivalent
form 2p−k1 · t1 = 0. Otherwise,QE1 Layer2 returns∃x.C3, whereC3 is a conjunction of
possibly fewer LMCs compared toC2, such that∃x.C3≡ ∃x.C2.

Before presenting the details of computingη , we present the following proposition.

Proposition 4 Let x1, . . . ,xn be r-bit numbers and b be an r-bit odd number such that b·x1,
. . . ,b ·xn take distinct consecutive values. Letℓ be a number such that1≤ ℓ≤ r. If n < 2ℓ,
then the values of x1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] are distinct. Otherwise, if n≥ 2ℓ, then the
values of x1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] span the entire range0,1, . . . ,2ℓ−1.

Example Let x1, x2, x3, x4, x5 respectively be 6, 1, 4, 7, 2, which are 3-bit numbers. Here
n = 5 andr = 3. Supposeb = 3. Note thatb · x1, b · x2, b · x3, b · x4, b · x5 take distinct
consecutive values 2,3,4,5,6 respectively.

– Case 1: Letℓ be 3. Hencen< 2ℓ. The values ofx1[0 : ℓ−1], x2[0 : ℓ−1], x3[0 : ℓ−1],
x4[0 : ℓ−1], x5[0 : ℓ−1] are 6, 1, 4, 7, 2 respectively, which are distinct.

– Case 2: Letℓ be 2. Hencen≥ 2ℓ. The values ofx1[0 : ℓ−1], x2[0 : ℓ−1], x3[0 : ℓ−1],
x4[0 : ℓ− 1], x5[0 : ℓ− 1] are 2, 1, 0, 3, 2 respectively, which span the entire range
0,1, . . . ,2ℓ−1.

Proof The proof is based on the following observations:

1. The values of(b·x1)[0 : ℓ−1], . . . ,(b·xn)[0 : ℓ−1] are consecutive.
2. (b·xi)[0 : ℓ−1] is equivalent tob[0 : ℓ−1] ·xi [0 : ℓ−1] for 1≤ i ≤ n.
3. b[0 : ℓ−1] is odd.

Sinceb[0 : ℓ−1] is odd, it has a multiplicative inverse(b[0 : ℓ−1])′ modulo 2ℓ. Note that
(b[0 : ℓ− 1])′ is also odd. Since(b · xi)[0 : ℓ− 1] is equivalent tob[0 : ℓ− 1] · xi [0 : ℓ− 1]
for 1≤ i ≤ n, we get values ofx1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] by multiplying the values of
(b·x1)[0 : ℓ−1], . . . ,(b·xn)[0 : ℓ−1] by (b[0 : ℓ−1])′ modulo 2ℓ.

Observe that for 1≤ i ≤ n and 1≤ j ≤ n such thati 6= j, xi [0 : ℓ−1] = x j [0 : ℓ−1] iff
(b·xi)[0 : ℓ−1] = (b·x j)[0 : ℓ−1]. Since the values of(b·x1)[0 : ℓ−1], . . . ,(b·xn)[0 : ℓ−1]
are consecutive, it follows that, ifn< 2ℓ, then the values ofx1[0 : ℓ−1], . . . ,xn[0 : ℓ−1] are
distinct. If n≥ 2ℓ, then the values of(b ·x1)[0 : ℓ−1], . . . ,(b ·xn)[0 : ℓ−1] are consecutive
and they span the range 0,1, . . . ,2ℓ−1. Hence it is obvious that the values ofx1[0 : ℓ−1],
. . . ,xn[0 : ℓ−1] also span the range 0,1, . . . ,2ℓ−1. ⊓⊔

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 15

Let I be
∧n

i=1(l i), where eachl i is an LMI of the forms⊲⊳ t, the operator⊲⊳ is in {≤,≥},
s is a linear term withx in its support, andt is a linear term free ofx. Note that this implies
some loss of generality, since we disallow LMIs of the forms ⊲⊳ t, where boths and t
havex in their support. However, our experiments indicate that this is not very restrictive in
practice. Lets1, . . . ,sr be the distinct linear terms inI with x in their support. We partition
I into I1, . . . , Ir , where eachI j is the conjunction of only those LMIs inI that contain the
linear termsj . We assume without loss of generality that eachI j contains the trivial LMIs
sj ≥ 0 andsj ≤ 2p−1. Suppose eachI j hasn j LMIs, of which the firstmj(< n j) are of the
form sj ≥ tq, where 1≤ q≤mj . Let the remaining LMIs inI j be of the formsj ≤ tq, where
mj +1≤ q≤ n j .

Consider the inequalityZ j : u j ≤ sj ≤ v j , whereu j denotes max
mj
q=1(tq) andv j denotes

min
n j
q=mj+1(tq). AlthoughZ j is not a LMI, it is semantically equivalent toI j . For notational

convenience, let us denoteκ(x,sj) by k j . Clearly, the value of slicex[p− k j : p−1] does
not affect the satisfaction ofZ j . We wish to compute the number of ways, sayNj , in which
an arbitrary solution ofC can be adapted with respect to slicex[0 : p− k j − 1] to satisfy
Z j . Towards this end, we compute an integerδ j in {0, . . . ,2p−1} such thatδ j ≤max(v j −
u j +1,0) for every combination of values of other variables. Intuitively, δ j represents the
minimum number ofconsecutivevalues thatsj can take for every combination of values of
other variables, if we were to treatsj as a freshp-bit variable and ifZ j were to be satisfied.

In our running example, whereC≡ (z= 4x+y), D≡ (x 6= z+7), andI ≡ (6x+y≤ 4),
we haves1 = 6x+ y andI1 ≡ (6x+ y≥ 0) ∧(6x+ y≤ 4) ∧(6x+ y≤ 7). HenceZ1 is (0≤
6x+y≤ 4) and thusu1 = 0 andv1 = 4. Note thatp= 3,k1 = 1, and the value of slicex[2 : 2]
does not affect the satisfaction of(0≤ 6x+y≤ 4). We are trying to computeN1, the number
of ways in which an arbitrary solution of(z= 4x+ y) can be adapted with respect to slice
x[0 : 1] to satisfy(0≤ 6x+y≤ 4). Treating 6x+y as a fresh variablef gives us(0≤ f ≤ 4).
As f can take fiveconsecutivevalues in(0≤ f ≤ 4), δ1 is 5.

Let s be a linear term withx in its support. Letk be κ(x,s). Let u, v respectively be
arbitrary terms free ofx which serve as lower and upper bounds ofs. Let δ be the mini-
mum number ofconsecutivevalues thats can take for every combination of values of other
variables, if we were to treats as a freshp-bit variable and ifZ : u ≤ s≤ v were to be
satisfied. The following Lemma gives a lower bound for the number of distinct values that
x[0 : p−k−1] can take while satisfyingZ.

Lemma 3 For every combination of values of variables other than x, there exist at least
⌊δ/2k⌋ distinct values that x[0 : p−k−1] can take while satisfying Z.

Example Let Z beZ1 : (0≤ 6x+ y≤ 4) from our running example. We havep= 3, k = 1
andδ = 5. Note that, for every value ofy, there are at least⌊δ/2k⌋ = ⌊5/21⌋ = 2 distinct
values thatx[0 : 1] can take while satisfying(0≤ 6x+y≤ 4).

Proof δ is the minimum number ofconsecutivevalues thatscan take for every combination
of values of other variables, if we were to treatsas a freshp-bit variable and ifZ : u≤ s≤ v
were to be satisfied. However, in general,s is of the form 2k ·b · x+w, wherew is a linear
term free ofx, andb is an odd number.

There are at least⌊δ/2k⌋ multiples of 2k amongδ consecutive values. Hence, for every
combination of values of other variables, there exist at least ⌊δ/2k⌋ values that 2k ·b ·x can
take while satisfyingZ. The least significantk bits of these values are all zeros. Moreover,
the values of the most significantp− k bits, i.e., the values of slice(2k ·b · x)[k : p−1] are
consecutive. Note that slice(2k · b · x)[k : p− 1] is the same as slice(b · x)[0 : p− k− 1].

16 John-Chakraborty

Also (b · x)[0 : p− k− 1] is equivalent tob[0 : p− k− 1] · x[0 : p− k− 1]. Therefore, for
every combination of values of variables other thanx, there exist at least⌊δ/2k⌋ consecutive
values thatb[0 : p−k−1] ·x[0 : p−k−1] can take while satisfyingZ.

Sinceb is odd,b[0 : p− k−1] is odd. Let us apply Proposition 4 on theseconsecutive
values ofb[0 : p−k−1] ·x[0 : p−k−1] with n= ⌊δ/2k⌋, r = ℓ= p−k andb= b[0 : p−k−
1]. Note thatn= ⌊δ/2k⌋< 2ℓ = 2p−k here, sinceδ < 2p. Therefore, using Proposition 4, we
have: for every combination of values of variables other thanx, there exist at leastn= ⌊δ/2k⌋
distinctvalues thatx[0 : p−k−1] can take while satisfyingZ. ⊓⊔

Lemma 3 indicates that there are at least⌊δ j/2k j ⌋ ways in which an arbitrary solution of
C can be adapted with respect to slicex[0 : p−k j −1] to satisfyZ j . Hence,Nj ≥ ⌊δ j/2k j ⌋.
For notational convenience, we denote⌊δ j/2k j ⌋ by N̂j .

To understand howδ j is computed in general, recall that for everyg in {1. . .mj} and for
everyh in {mj +1. . .n j}, we havetg≤ sj ≤ th. For every such pair of indicesg andh, letδg,h

be an integer in{0, . . . ,2p−1} such thatδg,h≤max(th− tg+1,0) for every combination of
values ofth andtg. The value ofδ j can then be obtained as the minimum of allδg,h values.
For reasons of simplicity and efficiency, we compute the values ofδg,h conservatively using
the following Proposition.

Proposition 5 1. If tg and th are constants and th ≥ tg, thenδg,h = th− tg+1.
2. If th is a constant, tg can be expressed as2τ · t, whereτ is an integer such that0≤ τ ≤

p−1, and th ≥ 2p−2τ , thenδg,h = th− (2p−2τ)+1.
3. If tg is a constant, th can be expressed as2τ · t + a, whereτ is an integer such that

0≤ τ ≤ p−1, and amod 2τ ≥ tg, thenδg,h = a mod 2τ − tg+1.
4. Otherwiseδg,h = 0.

Example

1. Supposetg = 1 andth = 6. Therefore, max(th− tg+1,0) = th− tg+1= 6. Sinceδg,h≤
max(th− tg+1,0), we can setδg,h to 6.

2. Supposetg = 4y, th = 14, andp= 4. Heretg is of the form 2τ · t, whereτ = 2 andt = y.
Observe that the maximum possible value of 4y with modulus 16 is 2p−2τ = 12, i.e.,
4y≤ 12. Therefore,th−tg+1= 14−4y+1≥ 14−12+1= 3. Hence max(th−tg+1,0)
≥ 3. Therefore 3 can be used asδg,h.

3. Supposetg = 0, th = 4y+7, andp = 4. Hereth is of the form 2τ · t +a, whereτ = 2,
t = y, anda= 7. Observe that the minimum possible value of 4y+7 with modulus 16
is a mod 2τ = 7 mod 4= 3, i.e., 4y+7≥ 3. Therefore,th− tg+1= (4y+7)−0+1≥
3−0+1= 4. Hence max(th− tg+1,0) ≥ 4. Therefore 4 can be used asδg,h.

4. Supposetg = y, th = z. In such cases we setδg,h to 0.

Proof δg,h is an integer in{0, . . . ,2p− 1} such thatδg,h ≤ max(th− tg + 1,0) for every
combination of values ofth andtg.

1. If tg and th are constants andth ≥ tg, then max(th− tg + 1,0) reduces toth− tg + 1.
Therefore, it is obvious thatth− tg+1 can be used asδg,h.

2. Consider the case whenth is a constant,tg can be expressed as 2τ · t, whereτ is an
integer such that 0≤ τ ≤ p− 1, andth ≥ 2p− 2τ . Sincetg is a multiple of 2τ , the
possible values oftg are 0,2τ , . . . ,2p−2τ . Hence the maximum possible value oftg is
2p−2τ , i.e., tg ≤ 2p−2τ . This implies thatth− tg+1≥ th− (2p−2τ)+1. Therefore
max(th− tg+1,0)≥ th− (2p−2τ)+1. Henceth− (2p−2τ)+1 can be used asδg,h.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 17

Fig. 2 Slicing of bits ofx by k0, . . . ,kr

3. Consider the case whentg is a constant,th can be expressed as 2τ · t +a, whereτ is an
integer such that 0≤ τ ≤ p− 1, anda mod 2τ ≥ tg. Let a = 2τ · a1 + a2, wherea2 =
a mod 2τ anda1 ≥ 0. Henceth can be expressed as 2τ · (t +a1)+a2. Since 2τ · (t +a1)
is a multiple of 2τ , the possible values of 2τ · (t +a1) are 0,2τ , . . . ,2p−2τ . Hence the
possible values ofth area2,2τ +a2, . . . ,2p−2τ +a2. Therefore, the minimum possible
value of th is a2, i.e., th ≥ a2, which implies thatth− tg + 1≥ a2− tg + 1. Therefore
max(th− tg+1,0) ≥ a2− tg+1. Hencea2− tg+1, i.e.,a mod 2τ − tg+1 can be used
asδg,h.

4. Consider the case when none of the above conditions is true. Since 0≤ max(th− tg+
1,0), we can useδg,h as 0 in this case.

⊓⊔

Let D be
∧m

i=1(di), where eachdi is an LMD of the form 2κ(x,di) · x 6= tdi , wheretdi

is a linear term free ofx. Let k0 denoteκ(x,C), and letC be such thatk0 is greater than
both maxmi=1 κ(x,di) and maxrj=1 k j (recall thatk j = κ(x,sj)). To simplify the exposition,
suppose further thatk1 > .. . > kr . We partition the bits ofx into r + 2 slices as shown in
Fig. 2, whereslice0 representsx[0 : p− k0−1], slicej representsx[p− k j−1 : p− k j −1] for
1≤ j ≤ r, andslicer+1 representsx[p− kr : p−1]. Note that the value ofslice0 potentially
affects the satisfaction ofC as well as that ofZ1 throughZr , the value ofslicej potentially
affects the satisfaction ofZ j throughZr for 1≤ j ≤ r, and the value ofslicer+1 does not affect
the satisfaction of anyZ j orC. Recall that similar slicing schemes were used in [9, 18, 6] for
converting conjunctions of bit-vector constraints into equisatisfiable constraints on slices of
variables. However such slicing schemes were used for a different objective of simplifying
constraints and solving them.

Let Z0 denoteTrue. Let θ be a solution ofC ∧ Z0 ∧ . . . ∧ Zi , where 0≤ i < r. Note that
bits in slicei+1 throughslicer+1 do not affect satisfaction ofC∧ Z0 ∧ . . . ∧ Zi . LetYi, j denote
the number of ways in whichθ can be adapted with respect to bits inslicei+1 throughslicej,
to satisfyZ j , wherei < j ≤ r. Sinceslice0 throughslicei are unchanged, each such adapted
solution must also satisfyC ∧ Z0 ∧ . . . ∧ Zi .

18 John-Chakraborty

Lemma 4 An arbitrary solution of C∧ Z0 ∧ . . . ∧ Zi for 0≤ i < r can be adapted with
respect to bits inslicei+1 through slicej, to satisfy Zj for i < j ≤ r in at least⌊N̂j/2p−ki ⌋

ways. Moreover, if we focus only onslicei+1, then there are at leastmin(⌊N̂j/2p−ki ⌋,2ki−ki+1)
distinct values ofslicei+1 in the corresponding adapted solutions.

ExampleIn our running example, sincep= 3,k0 = 2,k1 = 1, the bits ofx are partitioned into
three slices:slice0 is x[0 : 0], slice1 is x[1 : 1] andslice2 is x[2 : 2]. Clearly, the value ofslice0
potentially affects the satisfaction ofC : (z= 4x+y) as well as that ofZ1 : (0≤ 6x+y≤ 4).
The value ofslice1 potentially affects the satisfaction ofZ1, but not that ofC, and the value
of slice2 does not affect the satisfaction ofC or Z1. Let θ be a solution ofC. Using Lemma 4,
there exists at least⌊N̂1/2p−k1⌋= ⌊2/23−2⌋= 1 way in whichθ can be adapted with respect
to bits in slice1 to satisfyZ1. Sinceslice0 is unchanged, the adapted solution must satisfy
C∧Z1.

Proof Recall from Proof of Lemma 3 that for every combination of values of variables
other thanx, there exist at least̂Nj consecutivevalues thatb j [0 : p−k j −1] ·x[0 : p−k j −1]
can take while satisfyingZ j , whereb j [0 : p− k j − 1] is odd. Note thati < j, ki > k j and
p−ki < p−k j . We make use of the following claims.

Claim 1 For every combination of values of variables other than x, (i) if N̂j < 2p−ki , then

there exist at least̂Nj distinct values that x[0 : p− ki −1] can take while satisfying Zj , and

(ii) if N̂j ≥ 2p−ki , the values that x[0 : p−ki−1] can take while satisfying Zj span the entire
range0,1, . . . ,2p−ki −1.

Claim 2 For every combination of values of variables other than x, (i) if N̂j < 2p−ki+1, then

there exist at least̂Nj distinct values that x[0 : p−ki+1−1] can take while satisfying Zj , and

(ii) if N̂j ≥ 2p−ki+1, the values that x[0 : p− ki+1−1] can take while satisfying Zj span the
entire range0,1, . . . ,2p−ki+1−1.

Claim 1 can be proved by applying Proposition 4 on theconsecutivevalues ofb j [0 :
p− k j −1] · x[0 : p− k j −1] with n= N̂j , r = p− k j , ℓ = p− ki andb= b j [0 : p− k j −1].
Similarly, Claim 2 can be proved by applying Proposition 4 onthe consecutivevalues of
b j [0 : p− k j − 1] · x[0 : p− k j − 1] with n = N̂j , r = p− k j , ℓ = p− ki+1 and b = b j [0 :
p−k j −1].

Using Lemma 3, we know that, for every combination of values of variables other than
x, there exist at least̂Nj distinct values that can be assigned tox[0 : p− k j −1] (i.e. bits in
slice0 throughslicej) while satisfyingZ j . Lemma 3 and Claim 1 together imply that for every
combination of values of variables other thanx and for any arbitrary value ofx[0 : p−ki−1]
(i.e. bits inslice0 throughslicei), there exist at least⌊N̂j/2p−ki ⌋ distinct values that can be
assigned tox[p−ki : p−k j−1] (i.e. bits inslicei+1 throughslicej) while satisfyingZ j . Hence,
an arbitrary solution ofC ∧ Z0 ∧ . . . ∧ Zi for 0≤ i < r can be adapted with respect to bits in
slicei+1 throughslicej, to satisfyZ j for i < j ≤ r in at least⌊N̂j/2p−ki ⌋ ways.

In order to prove our claim on values ofslicei+1 in the corresponding adapted solu-
tions, note that, from Claim 2 we know that, for every combination of values of variables
other thanx, there exist at least min(N̂j ,2p−ki+1) distinct values thatx[0 : p− ki+1−1] can
take while satisfyingZ j . Hence Claim 1 and Claim 2 together imply that, for every com-
bination of values of variables other thanx and for any arbitrary value ofx[0 : p− ki −1]
(i.e. bits in slice0 throughslicei), there exist at least min(⌊N̂j/2p−ki ⌋,⌊2p−ki+1/2p−ki ⌋) =

min(⌊N̂j/2p−ki ⌋,2ki−ki+1) distinctvalues that can be assigned tox[p−ki : p−ki+1−1] (i.e.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 19

bits in slicei+1) while satisfyingZ j . Therefore, if we focus only onslicei+1 in the aforemen-
tioned adapted solutions, then there are at least min(⌊N̂j/2p−ki ⌋,2ki−ki+1) distinctvalues of
slicei+1. ⊓⊔

Using Lemma 4, we haveYi, j ≥ ⌊N̂j/2p−ki ⌋. For notational convenience, let us denote
min(⌊N̂j/2p−ki ⌋,2ki−ki+1) by αi, j .

Lemma 4 indicates that a solutionθ of C ∧ Z0 ∧ . . . ∧ Zi for 0≤ i < r can be adapted
to satisfyC ∧ Z0 ∧ . . . ∧ Zi ∧ Z j for i < j ≤ r by using at leastαi, j different values of
slicei+1. Let the corresponding set of values ofslicei+1 be denotedSθ

i+1, j . If
⋂r

j=i+1 Sθ
i+1, j is

non-empty, there exists a common value ofslicei+1 that permits us to adaptθ with respect to
slicei+1 throughslicer to satisfyZi+1 throughZr , respectively. It is therefore desirable to have
|
⋂r

j=i+1 Sθ
i+1, j | ≥ 1. Using the Inclusion-Exclusion principle, we find that|

⋂r
j=i+1 Sθ

i+1, j |

≥ (∑r
j=i+1 αi, j)− (r − i−1) ·2ki−ki+1. Note that the lower bound is independent ofθ . For

notational convenience, let us denote the lower bound byWi+1.

If Wi+1 ≥ 1 for all i ∈ {0, . . . r − 1}, an arbitrary solutionθ of C can be adapted to
satisfyC ∧ Z0 ∧ . . . ∧ Zr as follows. SinceW1 ≥ 1, we choose a value ofslice1, sayv1,
from

⋂r
j=1 Sθ

1, j . Let θ1 denoteθ with slice1 (possibly) changed to have valuev1. Thenθ1

satisfiesC∧Z1. SinceW2 ≥ 1, we can now choose a value ofslice2, sayv2, from
⋂r

j=2 Sθ1
2, j ,

and repeat the procedure until we have chosen values forslice1 throughslicer. Finally, since
slicer+1 does not affect the satisfaction ofC or of anyZi , we can choose an arbitrary value for
slicer+1. Clearly, there are at least(∏r−1

i=0 |Wi+1|) ·2kr ways in which values of different slices
can be chosen, so as to adaptθ to satisfyC∧ Z0 ∧ . . . ∧ Zr . Let us denote(∏r−1

i=0 |Wi+1|) ·2kr

by µI .

In our running example, we have,Y0,1 ≥ ⌊N̂1/2p−k0⌋ = 1. Also α0,1 = min (⌊ N̂1 /
2p−k0 ⌋ ,2k0−k1) = min(1,22−1) = 1. HenceW1 = (∑1

j=1 α0,1)− (1−0−1) ·2k0−k1 = α0,1

= 1. Note that there is at least one way of adapting an arbitrarysolution of(z= 4x+y) with
respect toslice1 to satisfy(z= 4x+ y) ∧(0≤ 6x+ y≤ 4). Moreover, there are at least two
ways of adapting an arbitrary solution of(z= 4x+y) with respect toslice1 through toslice2
to satisfy(z= 4x+y) ∧(0≤ 6x+y≤ 4) as indicated byµI =W1 ·2k1 = 1·21 = 2.

Let us now consider each LMDdi in D. Recall that eachdi is of the form 2κ(x,di) ·x 6= tdi .
Note thatdi constrains only slicex[0 : p− κ(x,di)− 1]. It can be observed that for every
combination of values of variables other thanx, the only way to violatedi is to choose value
of slicex[0 : p−κ(x,di)−1] to be the same as the value oftdi [κ(x,di) : p−1]. Hence, for
every combination of values of variables other thanx, there is at most one way of choosing
value for slicex[0 : p−κ(x,di)−1] such thatdi is violated. Since slicex[p−κ(x,di) : p−1]
is not constrained bydi , this means that for every combination of values of variables other
thanx, there are at most 2κ(x,di) ways of choosing values forslice0 throughslicer+1 such
that di is violated. Therefore, for every combination of values of variables other thanx,
∑m

i=1(2
κ(x,di)) is an over-approximation of the number ways of choosing values for slice0

throughslicer+1 such thatD is violated. Let us denote∑m
i=1(2

κ(x,di)) by µD. We have already
seen that there are at leastµI ways of adapting an arbitrary solutionθ of C to satisfyC ∧
Z0 ∧ . . . ∧ Zr . As µD is an over-approximation of the number of such adapted solutions that
can violateD, there are at leastµI − µD ways of adaptingθ to satisfyC ∧ Z0 ∧ . . . ∧ Zr ∧
D. We denoteµI −µD by η .

In the running example, we have,d1 ≡ (x 6= z+7) andκ(x,d1) = 0. Note that for every
value ofz+7, there is at most one way of choosing value for slicex[0 : 2] such thatd1 is
violated. HereµD = 2κ(x,d1) = 1, and henceη = µI −µD = 1. Thus there is at least one way

20 John-Chakraborty

of adapting an arbitrary solution of(z= 4x+ y) to satisfy(z= 4x+ y) ∧(0≤ 6x+ y≤ 4)
∧(x 6= z+7).

The above reasoning can be extended to the general casek1≥ . . .≥ kr . Let πi for 0≤ i <
r be the number ofZ j ’s with k j < ki for i < j ≤ r. Using the Inclusion-Exclusion principle,
Wi+1 above then changes to(∑r

j=i+1 αi, j)− (πi−1) ·2ki−ki+1.

Theorem 1 If η ≥ 1, then∃x.(C∧D∧ I)≡ ∃x.(C)

Proof There are at leastη ways of adapting an arbitrary solution ofC to satisfyC ∧ Z0 ∧
. . . ∧ Zr ∧ D. If η ≥ 1, then an arbitrary solution ofC can be adapted to satisfyC ∧ Z0 ∧
. . . ∧ Zr ∧ D, and hence∃x.(C)⇒ ∃x.(C∧D∧ I). Since∃x.(C∧D∧ I)⇒ ∃x.(C) always
holds, we have∃x.(C∧D∧ I)≡ ∃x.(C) if η ≥ 1. ⊓⊔

It can be observed thatη is computable in polynomial time. The difficult step is com-
putation ofµI . Let r be the number of distinct linear terms inI with x in their support.
ComputingµI requiresO(r2) arithmetic operations in the worst-case.

As mentioned earlier, the procedureQE1 Layer2applies this technique to problem in-
stances of the form∃x.C2, obtained after invokingQE1 Layer1to find unconstraining LMDs
and LMIs. If all the LMIs and LMDs in∃x.C2 are unconstraining, then∃x.C2 reduces to
∃x.(2k1 ·x= t1), andQE1 Layer2returns the equivalent form 2p−k1 · t1 = 0.

In the running example,QE1 Layer2drops the LMI(6x+ y≤ 4) and the LMD(x 6=
z+ 7) as they are unconstraining in∃x.((z= 4x+ y) ∧(6x+ y ≤ 4) ∧(x 6= z+ 7)). The
problem instance thus reduces to∃x.(z= 4x+ y), which is equivalent to(4y+ 4z= 0).
Hence the final result is(4y+4z= 0).

In general,QE1 Layer2 returns∃x.C3, whereC3 is a conjunction of possibly fewer
LMCs compared toC2, such that∃x.C3 ≡ ∃x.C2. The next subsection describes techniques
to eliminate quantifiers from such problem instances.

Analysis of Complexity: Consider a conjunction of LMCs with a subset of variables inits
support to be eliminated. Letn be the number of LMCs in the conjunction,v be the number
of variables in its support, ande be the number of variables to be eliminated. Consider the
elimination of a variablex inside Layer2. Recall that Layer2 can be applied only when all
LMIs involving x are of the forms⊲⊳ t, where⊲⊳∈ {≤,≥}, s is a linear term withx in its
support, andt is a linear term free ofx. Let r be the number of distinct linear terms with
x in the support appearing in the LMIs. As observed above, computing η requiresO(r2)
arithmetic operations in the worst-case. Note thatr ≤ n. Assuming that each arithmetic
operation onp-bit numbers take timeO(Q(p)) in the worst-case, wherep≤ Q(p) ≤ p3,
elimination of a variable hence has a worst-case time complexity of O(n2 ·Q(p)). Observe
that eliminating a variable does not increase the number of LMCs in the conjunction. Hence
eliminatinge variables has a worst-case time complexity ofO(e·n2 ·Q(p)). Since reading
n LMCs as input and writing the result takesO(n ·v · p) time, Layer2 has a worst-case time
complexity ofO(e·n2 ·Q(p)+n· p·v).

3.5 Layer3: Fourier-Motzkin Elimination for LMIs

In this subsection, we present a Fourier-Motzkin (FM) styleQE algorithm for computing
∃x.C3 obtained above. Recall thatC3 obtained above, in general, contains LMDs, LMIs,
and a single LME. We propose converting the LMDs and the LME inC3 to LMIs using the
equivalences(t1 = t2) ≡ (t1 ≥ t2) ∧ (t1 ≤ t2) and(t1 6= t2) ≡ ¬(t1 = t2). This, in general,
convertsC3 to a Boolean combination of LMIs. However, as we will see in Section 4, a

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 21

QE algorithm for conjunctions of LMIs can be extended to a QE algorithm for Boolean
combinations of LMIs. Hence, in the remainder of this subsection, we will focus on QE
from conjunctions of LMIs.

There are two fundamental problems when trying to apply FM elimination for reals [20]
to a conjunction of LMIs:

1. Wrap-around behaviour:Recall that FM elimination normalizes each inequalityl w.r.t.
the variablex being quantified by expressingl in an equivalent formx⊲⊳ t, where⊲⊳∈ {≤
,≥} andt is a term free ofx. However, due to wrap-around behaviour, the equivalences
(i) (t1 ≤ t2)≡ (t1+ t3 ≤ t2+ t3) and (ii) (t1 ≤ t2)≡ (a · t1 ≤ a · t2) used for normalizing
inequalities do not hold for LMIs in general. For example,(2≤ 3 (mod 4)), but (2+
1> 3+1 (mod 4)). Similarly, (1≤ 2 (mod 4)), but(1·2> 2·2 (mod 4)). Hence,
normalizing an LMI w.r.t. a variable is much more difficult than normalizing in the
case of reals. Moreover, unlike in the case of reals and integers, presence of equalities
does not always simplify QE in modular arithmetic. For example, ∃x.((2x = 3y+ 2)
∧ (3x > 4z+3)) can be simplified to∃x.((6x = 9y+6) ∧ (6x > 8z+6)) on integers.
However this simplification cannot be done in modular arithmetic in general.

2. Lack of density:Even if we could normalize LMIs w.r.t. the variable being quantified,
due to the lack of density of integers, FM elimination cannotbe directly lifted to nor-
malized LMIs. For example∃x.((y≤ 4x)∧ (4x≤ z)) is equivalent to(y≤ z) in reals,
whereas this is not true in modular arithmetic in general.

This motivates us to (i) define a (weak) normal form for LMIs, and (ii) adapt FM elim-
ination to achieve QE from normalized LMIs. Recall that Omega Test [51] also defines a
normal form for inequalities over integers, and adapts FM elimination over reals for QE
from normalized inequalities over integers. However, Omega Test cannot be directly used
for QE from LMIs – using Omega Test for QE from LMIs requires converting the LMIs
to equivalent constraints in linear integer arithmetic; the resulting formula is in linear in-
teger arithmetic, and converting the resulting formula back to modular arithmetic is diffi-
cult. Moreover our experiments in Section 5 indicate that, using Omega Test for QE from
the linear integer arithmetic constraints arising from LMIs incurs considerable performance
overhead.

3.5.1 A (weak) normal form for LMIs

We say that an LMIl with x in its support isnormalized w.r.t. xif it is of the forma·x⊲⊳ t, or
of the forma·x⊲⊳ b·x, where⊲⊳∈ {≤,≥}, andt is a linear term free ofx. We will henceforth
useNF1 to refer to the first normal form (a · x ⊲⊳ t) andNF2 to refer to the second normal
form (a · x ⊲⊳ b · x). A Boolean combination of LMCsϕ is said to be normalized w.r.t.x if
every LMI in ϕ with x in its support is normalized w.r.t.x.

We will now show that every LMI withx in its support can be equivalently expressed
as a Boolean combination of LMCs normalized w.r.t.x. Before going into the details of
normalizing LMIs, it would be useful to introduce some notation. We defineΘ(t1, t2) as the
condition under whicht1+ t2 overflows ap-bit representation, i.e.,t1+ t2 interpreted as an
integer exceeds 2p− 1. Note thatΘ(t1, t2) is equivalent to both(t2 6= 0)∧ (t1 ≥ −t2) and
(t1 6= 0)∧ (t2≥−t1).

Suppose we wish to normalize the LMI(x+2≤ y) modulo 8 w.r.t.x. Adding the additive
inverse of 2 modulo 8, i.e, 6 to both sides of the LMI, the left-hand sidex+2 changes tox
and the right-hand sidey changes toy+6. However, note that(x+2≤ y) is not equivalent
to (x≤ y+ 6). If Θ(x+ 2,6) ≡ Θ(y,6), then(x+ 2≤ y) ≡ (x≤ y+ 6) holds; otherwise

22 John-Chakraborty

(x+2≤ y)≡ (x> y+6) holds. Note thatΘ(x+2,6)≡Θ(y,6) can be equivalently expressed
as(x≤ 5) ≡ (y≥ 2). Hence,(x+2≤ y) can be equivalently expressed in the normalized
form ite(ϕ,(x≤ y+6),(x> y+6)), whereϕ denotes(x≤ 5) ≡ (y≥ 2), andite(α ,β ,γ) is
a shorthand for(α ∧β)∨ (¬α ∧ γ).

In this example, theΘ predicate allowed us to perform a case-split and normalize each
branch. The following Lemma generalizes this idea.

Lemma 5 Let l1 : (a·x+ t1≤ b·x+ t2) be an LMI, where t1 and t2 are linear terms without
x in their supports. Then, l1 ≡ ite(ϕ, l2,¬l2), where l2 ≡ (a · x−b · x≤ t2− t1), andϕ is a
Boolean combination of LMCs normalized w.r.t. x.

Before we present the proof of Lemma 5, it would be useful to present a proposition.

Proposition 6 Let l1 be an LMI t1 ≤ t2, and let t3 be a linear term. Then l1 ≡ ite(ϕ1∧
(ϕ2⊕ϕ3),(t1+ t3 > t2+ t3),(t1+ t3 ≤ t2+ t3)), whereϕ1 ≡ (t3 6= 0), ϕ2 ≡ (−t3 ≤ t1),
ϕ3 ≡ (−t3≤ t2) andϕ2⊕ϕ3 denotes exclusive-or ofϕ2 andϕ3.

Proof Note that(t1≤ t2) ≡ ψ1∨ψ2∨ψ3∨ψ4, where

– ψ1 ≡ (t1≤ t2)∧Θ(t1, t3)∧Θ(t2, t3)
– ψ2 ≡ (t1≤ t2)∧Θ(t1, t3)∧¬Θ(t2, t3)
– ψ3 ≡ (t1≤ t2)∧¬Θ(t1, t3)∧Θ(t2, t3)
– ψ4 ≡ (t1≤ t2)∧¬Θ(t1, t3)∧¬Θ(t2, t3)

It can be seen that,

– ψ1 ≡ (t1+ t3≤ t2+ t3)∧Θ(t1, t3)∧Θ(t2, t3)
– ψ2 ≡ false, sinceΘ(t1, t3)∧¬Θ(t2, t3)⇒ (t1 > t2). However, we can writeψ2 as(t1+

t3 > t2+ t3)∧Θ(t1, t3)∧¬Θ(t2, t3) as well, which is equivalent tofalse, sinceΘ(t1, t3)∧
¬Θ(t2, t3)⇒ (t1+ t3 < t2+ t3).

– ψ3 ≡ (t1+ t3 > t2+ t3)∧¬Θ(t1, t3)∧Θ(t2, t3)
– ψ4 ≡ (t1+ t3≤ t2+ t3)∧¬Θ(t1, t3)∧¬Θ(t2, t3)

Expressingψ1∨ψ2∨ψ3∨ψ4 in terms ofites, we have,

(t1 ≤ t2) ≡ ite(Θ(t1, t3)⊕Θ(t2, t3),(t1+ t3 > t2+ t3),(t1+ t3≤ t2+ t3))

Expanding theΘ ’s using the formulaΘ(α ,β)≡ (β 6= 0)∧(α ≥−β), whereα, β are linear
terms, we have,

(t1≤ t2) ≡ ite(ϕ1∧ (ϕ2⊕ϕ3),(t1+ t3 > t2+ t3),(t1+ t3≤ t2+ t3))

where,ϕ1 ≡ (t3 6= 0), ϕ2 ≡ (−t3≤ t1), andϕ3 ≡ (−t3≤ t2). ⊓⊔

We can now prove Lemma 5.

Proof (Proof of Lemma 5)Consider an LMIl1 : a · x+ t1 ≤ b · x+ t2, wheret1 andt2 are
linear terms withoutx in their supports. Using Proposition 6, witha · x+ t1 in place oft1,
b·x+ t2 in place oft2 and−b·x− t1 in place oft3,

l1 ≡ ite(ϕ1∧ (ϕ2⊕ϕ3),(a·x−b·x> t2− t1),(a·x−b·x≤ t2− t1))

where,ϕ1 ≡ (b·x+ t1 6= 0), ϕ2 ≡ (b·x+ t1≤ a·x+ t1), andϕ3 ≡ (b·x+ t1≤ b·x+ t2).
Note that the LMIs(a·x−b·x> t2− t1) and(a·x−b·x≤ t2− t1) are normalized w.r.t.

x, whereasϕ2 andϕ3 are not. Hence, let us try to normalizeϕ2 andϕ3 w.r.t. x.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 23

Considerϕ2 ≡ (b ·x+ t1 ≤ a ·x+ t1). Using Proposition 6, withb ·x+ t1 in place oft1,
a·x+ t1 in place oft2 and−t1 in place oft3,

ϕ2 ≡ ite((t1 6= 0)∧ ((t1≤ a·x+ t1)⊕ (t1≤ b·x+ t1)),(b·x> a·x),(b·x≤ a·x))

Using the observations(β ≤ α +β) ≡ ¬Θ(α ,β) andΘ(α ,β) ≡ (β 6= 0)∧ (α ≥ −β) for
linear termsα and β , and simplifying,(t1 6= 0)∧ ((t1 ≤ a · x+ t1)⊕ (t1 ≤ b · x+ t1)) is
equivalent to(t1 6= 0)∧ ((−t1≤ a·x)⊕ (−t1≤ b·x)). Hence,

ϕ2 ≡ ite((t1 6= 0)∧ ((−t1≤ a·x)⊕ (−t1≤ b·x)),(b·x> a·x),(b·x≤ a·x))

Similarly, considerϕ3 ≡ (b · x+ t1 ≤ b · x+ t2). Using Proposition 6, withb · x+ t1 in
place oft1, b·x+ t2 in place oft2 and−b·x in place oft3,

ϕ3 ≡ ite((b·x 6= 0)∧ ((b·x≤ b·x+ t1)⊕ (b·x≤ b·x+ t2)),(t1 > t2),(t1≤ t2))

≡ ite((b·x 6= 0)∧ ((−b·x≤ t1)⊕ (−b·x≤ t2)),(t1 > t2),(t1≤ t2))

Putting everything together,

l1 ≡ ite(ϕ1∧ (ϕ2⊕ϕ3),(a·x−b·x> t2− t1),(a·x−b·x≤ t2− t1)),where

ϕ1 ≡ (b·x+ t1 6= 0)

ϕ2 ≡ ite((t1 6= 0)∧ ((−t1≤ a·x)⊕ (−t1≤ b·x)),(b·x> a·x),(b·x≤ a·x))

ϕ3 ≡ ite((b·x 6= 0)∧ ((−b·x≤ t1)⊕ (−b·x≤ t2)),(t1 > t2),(t1≤ t2))

Hencel1 can be equivalently expressed as,ite(ϕ, l2,¬l2), where l2 ≡ (a · x− b · x ≤
t2− t1), andϕ ≡ ¬ϕ1∨ (ϕ2 ≡ ϕ3). Note thatϕ here is a Boolean combination of LMCs
normalized w.r.t.x. ⊓⊔

3.5.2 Modified FM for normalized LMIs

We begin by illustrating the primary idea through an example. Consider the problem of
computing∃x.C, whereC≡ (y≤ 4x)∧ (4x≤ z) with modulus 16. Note that∃x.C is “the
condition under which there exists a multiple of 4 betweeny andz, wherey≤ z”. Note that
if x,y,z were reals, then we would have obtained(y≤ z) for ∃x.C. However, as in the case
of integers, this would over-approximate∃x.C in the case of fixed width bit-vectors.

If (y≤ 12)∧ (z≥ y+3) holds, then the difference betweeny andz is≥ 3. In this case,
existence of a multiple of 4 betweeny andz is guaranteed. Thus(y≤ z)∧ (y≤ 12)∧ (z≥
y+3)⇒ ∃x.C.

It can be seen that if(y> 12), then there does not exist anyx such that(y≤ 4x). Hence,
if (y > 12), then∃x.C is false. If (z< y+ 3), then∃x.C is true iff one of the following
conditions holds: (i)(y≤ z) andy is a multiple of 4, i.e.,(y≤ z)∧ (4y= 0), (ii) (y≤ z) and
(y> z (mod 4)), i.e.,(y≤ z) ∧(4y> 4z).

Hence∃x.C is equivalent to(y≤ z)∧ϕ, whereϕ is the disjunction of the following three
formulas: (i)(z≥ y+3)∧ (y≤ 12), (ii) (z< y+3)∧ (4y= 0), (iii) (z< y+3)∧ (4y> 4z).

The following Lemma generalizes this idea.

Lemma 6 Let l1 : (t1≤ a·x) and l2 : (a·x≤ t2) be LMIs in NF1 w.r.t. x. Let k beκ(x,a·x).
Then,∃x.(l1∧ l2) ≡ (t1≤ t2)∧ϕ, whereϕ is the disjunction of the formulas: (i)(2p−k · t1 =
0), (ii) (t2≥ t1+2k−1)∧(t1≤ 2p−2k), and (iii) (t2 < t1+2k−1)∧(2p−k · t1 > 2p−k · t2).

24 John-Chakraborty

Proof Note that∃x.(l1∧ l2) ≡ ∃x.(l ′1∧ l ′2), wherel ′1 ≡ (t1 ≤ 2k · x) and l ′2 ≡ (2k · x≤
t2), since the multiples of 2k and 2k · e are the same modulo 2p for any odd numbere∈
{1, . . . ,2p−1}.

Now ∃x.(l ′1∧ l ′2) ≡ ∃x.ψ1∨∃x.ψ2∨∃x.ψ3∨∃x.ψ4, where

– ψ1 ≡ l ′1∧ l ′2∧ (2
p−k · t1 = 0)

– ψ2 ≡ l ′1∧ l ′2∧ (2
p−k · t1 6= 0)∧ (t2≥ t1+2k−1)∧ (t1≤ 2p−2k)

– ψ3 ≡ l ′1∧ l ′2∧ (2
p−k · t1 6= 0)∧ (t2 < t1+2k−1)

– ψ4 ≡ l ′1∧ l ′2∧ (2
p−k · t1 6= 0)∧ (t1 > 2p−2k)

Consider∃x.ψ1. This is equivalent to∃x.(ψ1∧ (t1 ≤ t2)), since(t1 ≤ t2) is an LMI
implied byψ1. It can be seen that∃x.(ψ1∧ (t1 ≤ t2)) is equivalent to(2p−k · t1 = 0)∧ (t1 ≤
t2), since given any solution to(2p−k ·t1 = 0)∧(t1≤ t2), we can satisfyl ′1∧ l ′2 by setting 2k ·x
to t1. Note that setting 2k · x to t1 is always possible, since 2p−k · t1 = 0⇒ ∃x.(2k · x = t1)
(see Proposition 3). Hence,∃x.ψ1 ≡ (2p−k · t1 = 0)∧ (t1≤ t2).

Consider∃x.ψ2. Note that the difference betweent1 and t2 here is≥ 2k− 1, which
implies that there exists a multiple of 2k betweent1 andt2. Hence it can be seen that(t1 ≤
t2)∧ (2p−k · t1 6= 0)∧ (t2 ≥ t1+2k−1)∧ (t1 ≤ 2p−2k)⇒ ∃x.ψ2. Implication in the other
direction is obvious. Hence,∃x.ψ2 ≡ (t1 ≤ t2)∧ (2p−k · t1 6= 0)∧ (t2 ≥ t1+2k−1)∧ (t1 ≤
2p−2k).

Consider∃x.ψ3. This implies(2p−k ·t1 > 2p−k ·t2). Hence∃x.ψ3≡ ∃x.(ψ3∧(2p−k ·t1 >
2p−k · t2)). This is equivalent to(t1 ≤ t2)∧ (2p−k · t1 6= 0)∧ (t2 < t1+2k−1)∧ (2p−k · t1 >
2p−k · t2), as the existence of a multiple of 2k betweent1 and t2 is implied by (t1 ≤ t2)∧
(2p−k · t1 6= 0)∧ (t2 < t1+2k−1)∧ (2p−k · t1 > 2p−k · t2).

Consider∃x.ψ4. This is equivalent tofalse, since given(t1 > 2p−2k), there exists not2
such thatl ′1∧ l ′2 holds.

Putting everything together, it can be seen that∃x.(l1∧ l2) ≡ (t1 ≤ t2)∧ϕ, whereϕ is
the disjunction of the formulas: (i)(2p−k · t1 = 0), (ii) (t2≥ t1+2k−1)∧(t1≤ 2p−2k), and
(iii) (t2 < t1+2k−1)∧(2p−k · t1 > 2p−k · t2). ⊓⊔

Suppose we wish to compute∃x. I , whereI is a conjunction of LMIs normalized w.r.t.
x. Let I ≡ I1∧ I2, whereI1 is the conjunction of LMIs inI that are inNF1, and I2 is the
conjunction of LMIs inI that are inNF2. In addition, leta1, . . . ,an be the distinct non-zero
coefficients ofx in LMIs in I1, and letI1,i denote the conjunction of LMIs inI1 in which the
coefficient ofx is ai . Finally, let∆(t1, t2,k) denote the result of computing∃x.((t1≤ a ·x)∧
(a·x≤ t2)) using Lemma 6, wherek denotesκ(x,a·x). It is easy to see that Lemma 6 can be
used to compute∃x. I1,i , for everyi ∈ {1, . . .n}. Similar to FM elimination, we partition the
LMIs l i, j : ai ·x ⊲⊳ t j in I1,i into two setsΛ≤ andΛ≥, whereΛ⊲⊳ = {l i, j | l i, j is of the formai ·
x ⊲⊳ t j}, for ⊲⊳∈ {≤,≥}. We assume without loss of generality that the trivial LMIsai ·x≤
2p−1 andai ·x≥ 0 are present inΛ≤ andΛ≥ respectively. We can now compute∃x. I1,i as∧

(ai ·x≤tp)∈Λ≤, (ai ·x≥tq)∈Λ≥ (∆ (tq, tp,κ (x,ai ·x))).
Each conjunction of LMIs such asI1,i above, where all LMIs are inNF1w.r.t.x, and have

the same coefficient ofx are said to be “coefficient-matched” w.r.t.x. Similarly, a Boolean
combination of LMCsϕ is said to be coefficient-matched w.r.t.x if all LMIs in ϕ with x in
their support are inNF1w.r.t. x and have the same coefficient ofx. In the special case when
I2 ≡ true andn= 1, i.e., whenI is a conjunction of LMIs coefficient-matched w.r.t.x, ∃x. I
reduces to∃x. I1,1.

Unfortunately, convertingI to coefficient-matched form w.r.t. a variable is inefficient
in general. Hence we propose convertingI to coefficient-matched form w.r.t.x only in the
following cases, where it can be done without much loss of efficiency: (a)I2 ≡ true, n= 2

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 25

anda2 =−a1, and (b)I2≡ true and everyai is of the form 2ki ·e, wheree is an odd number
in {1, . . . ,2p−1} independent ofi.

In case (a) above,I can be equivalently expressed as a Boolean combination of LMCs
coefficient-matched w.r.t.x by using the following Proposition.

Proposition 7 (−t1≤−t2) is equivalent to(t1 = 0) ∨ ((t2 6= 0)∧ (t1≥ t2)).

Example Consider the problem of computing∃x. I , whereI ≡ (y≤ 2x) ∧ (6x≤ z) with
modulus 8. Using Proposition 7,(6x≤ z) is equivalent to(2x= 0) ∨ ((z 6= 0) ∧ (2x≥−z)).
Thus∃x. I can be equivalently expressed as∃x.ϕ, whereϕ is the disjunction of(y≤ 2x) ∧
(2x= 0) and(y≤ 2x) ∧ (z 6= 0) ∧ (2x≥−z). Note thatϕ is coefficient-matched w.r.t.x.

We explain the idea behind case (b) with an example before considering the general case.
Consider the problem of computing∃x. I , whereI ≡ (y≤ 2x)∧(x≤ z) with modulus 8. It can
be shown thatx≤ zcan be equivalently expressed as the disjunction of (i)Θ(x,x)∧Θ(z,z)∧
(2x≤ 2z), (ii) ¬Θ(x,x)∧¬Θ(z,z)∧ (2x≤ 2z), and (iii)¬Θ(x,x)∧Θ(z,z). Hence,∃x. I can
be equivalently expressed as∃x.ϕ ′, whereϕ ′ is the disjunction of (i)Θ(x,x)∧Θ(z,z)∧(2x≤
2z)∧ (y≤ 2x), (ii) ¬Θ(x,x)∧¬Θ(z,z)∧ (2x≤ 2z)∧ (y≤ 2x), and (iii)¬Θ(x,x)∧Θ(z,z)∧
(y≤ 2x). Note thatΘ(x,x) andΘ(z,z) can be equivalently expressed asx≥ 4 andz≥ 4
respectively. However, on closer inspection, it can be seenthat occurrences ofx ≥ 4 in
∃x.ϕ ′ arising fromΘ(x,x) are unconstraining, and can therefore be dropped. Thus∃x.ϕ ′
can be equivalently expressed as∃x.ϕ, whereϕ is the disjunction of(2x≤ 2z)∧ (y≤ 2x)
and(z≥ 4)∧ (y≤ 2x). Note that∃x.ϕ is equivalent to∃x. I and is coefficient-matched w.r.t.
x.

In general, given∃x. I such thatI2 ≡ true and everyai is of the form 2ki ·e (as defined
above), we have the following Lemma.

Lemma 7 Let I1 be a conjunction of LMIs inNF1w.r.t. x. Let a1, . . . ,an be the distinct non-
zero coefficients of x in LMIs in I1. Let each ai , for 1≤ i ≤ n, be of the form2ki ·e, where
e is an odd number in{1, . . . ,2p− 1} independent of i. Then,∃x. I1 can be equivalently
expressed as∃x.ϕ, whereϕ is a Boolean combination of LMCs coefficient-matched w.r.t. x.

Proof Our proof makes use of the following claims.

Claim 3 An LMI a·x≤ t in NF1can be equivalently expressed as the disjunction of formu-
las: (i) Θ(a·x,a·x)∧Θ(t, t)∧ (2a·x≤ 2t), (ii) ¬Θ(a·x,a·x)∧¬Θ(t, t)∧ (2a·x≤ 2t), and
(iii) ¬Θ(a·x,a·x)∧Θ(t, t).

Claim 4 An LMI a·x≥ t in NF1can be equivalently expressed as the disjunction of formu-
las: (i) Θ(a·x,a·x)∧Θ(t, t)∧ (2a·x≥ 2t), (ii) ¬Θ(a·x,a·x)∧¬Θ(t, t)∧ (2a·x≥ 2t), and
(iii) Θ(a·x,a·x)∧¬Θ(t, t).

To see why Claim 3 is true, note that(a·x≤ t) ≡ ψ1∨ψ2∨ψ3∨ψ4, where

– ψ1 ≡ (a·x≤ t)∧Θ(a·x,a·x)∧Θ(t, t)
– ψ2 ≡ (a·x≤ t)∧Θ(a·x,a·x)∧¬Θ(t, t)
– ψ3 ≡ (a·x≤ t)∧¬Θ(a·x,a·x)∧Θ(t, t)
– ψ4 ≡ (a·x≤ t)∧¬Θ(a·x,a·x)∧¬Θ(t, t)

It can be seen that,

– ψ1 ≡ Θ(a·x,a·x)∧Θ(t, t)∧ (2a·x≤ 2t)
– ψ2 ≡ false, sinceΘ(a·x,a·x)∧¬Θ(t, t)⇒ (a·x> t)
– ψ3 ≡ ¬Θ(a·x,a·x)∧Θ(t, t), since¬Θ(a·x,a·x)∧Θ(t, t)⇒ (a·x< t)

26 John-Chakraborty

– ψ4 ≡ ¬Θ(a·x,a·x)∧¬Θ(t, t)∧ (2a·x≤ 2t)

Claim 4 can be proved in a similar manner.
Without loss of generality, leta1 > a2 > .. . > an, i.e., 2k1 ·e> 2k2 ·e> .. . > 2kn ·e. This

implies that (i)k1 > k2 > .. . > kn, and (ii)a1 = 2k1−ki ·ai for 2≤ i ≤ n.
Now consider each LMIai ·x ⊲⊳ t j in I1, where 2≤ i ≤ n and⊲⊳∈ {≤,≥}. It can be seen

that the above Claims can be used to expressai ·x⊲⊳ t j as an equivalent Boolean combination
of LMCs, involving (i) the LMI(2ai ·x⊲⊳ 2t j), (ii) Θ(ai ·x,ai ·x), and (iii)Θ(t j , t j). Moreover,
the above claims can be used repeatedly to expressai · x ⊲⊳ t j as an equivalent Boolean
combination of LMCs, involving (i) the LMI(2k1−ki ai ·x ⊲⊳ 2k1−ki t j), i.e.,(a1 ·x ⊲⊳ 2k1−ki t j),
(ii) Θ(ai · x,ai · x), Θ(2ai · x,2ai · x),. . ., Θ(2k1−ki−1ai · x,2k1−ki−1ai · x), and (iii) Θ(t j , t j),
Θ(2t j ,2t j),. . ., Θ(2k1−ki−1t j ,2k1−ki−1t j).

It can be seen thatΘ(ai ·x,ai ·x), Θ(2ai ·x,2ai ·x),. . ., Θ(2k1−ki−1ai ·x,2k1−ki−1ai ·x) can
be equivalently expressed as(ai ·x≥ 2p−1), (2ai ·x≥ 2p−1), . . ., (2k1−ki−1ai ·x≥ 2p−1) re-
spectively. SimilarlyΘ(t j , t j), Θ(2t j ,2t j),. . ., Θ(2k1−ki−1t j ,2k1−ki−1t j) can be equivalently
expressed as(t j ≥ 2p−1), (2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥ 2p−1) respectively. HenceI1 can
be equivalently expressed as a Boolean combination of LMCsϕ ′, involving (i) LMIs of
the form (a1 · x ⊲⊳ 2k1−ki · t j), (ii) LMIs of the form (ai · x ≥ 2p−1), (2ai · x ≥ 2p−1), . . .,
(2k1−ki−1ai ·x≥ 2p−1), and (iii) LMIs of the form(t j ≥ 2p−1), (2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥
2p−1).

We can expressϕ ′ equivalently as
r∨

ℓ=1
Cℓ, where eachCℓ is a conjunction of LMCs.

Hence∃x.ϕ ′ is equivalent to
r∨

ℓ=1
(∃x.Cℓ). Observe that eachCℓ involves three kinds of LMIs:

(i) LMIs of the form(a1 ·x⊲⊳ 2k1−ki ·t j), (ii) LMIs of the form(ai ·x≥ 2p−1), (2ai ·x≥ 2p−1),
. . ., (2k1−ki−1ai · x≥ 2p−1) and/or their negations, and (iii) LMIs of the form(t j ≥ 2p−1),
(2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥ 2p−1) and/or their negations. LetCℓ,1 be the conjunction of
the first kind of LMIs inCℓ. Similarly, letCℓ,2 andCℓ,3 respectively be the conjunctions of
the second and the third kinds of LMIs inCℓ. Hence we haveCℓ ≡Cℓ,1∧Cℓ,2∧Cℓ,3.

Therefore∃x.Cℓ ≡ (∃x.(Cℓ,1∧Cℓ,2))∧Cℓ,3, sinceCℓ,3 is free ofx. Moreover, by applying
Theorem 1 on∃x.(Cℓ,1∧Cℓ,2), it can be proved thatCℓ,2 is unconstraining in∃x.(Cℓ,1∧Cℓ,2).
Hence∃x.Cℓ can be equivalently expressed as∃x.(Cℓ,1)∧Cℓ,3. Note that the coefficient ofx

in Cℓ,1 is a1. This implies that
r∨

ℓ=1
Cℓ can be equivalently expressed as a Boolean combination

of LMCs coefficient-matched w.r.t.x, with coefficient ofx asa1. ⊓⊔

Note that normalizing a given conjunction of LMIs w.r.t. a variable and then converting
it to coefficient-matched form transforms it to a Boolean combination of LMCs in general.
We make use of techniques in Section 4 for eliminating quantifiers from such Boolean com-
binations of LMCs.

In cases other than those covered in cases (a) and (b) above, we propose computing
∃x. I usingmodel enumeration, i.e., by expressing∃x. I in the equivalent formI |x←0∨ . . .∨
I |x←2p−1 whereI |x←i denotesI with x replaced by the constanti.

The procedure that computes∃x.C3 (whereC3 is obtained fromQE1 Layer2) using
techniques mentioned in this subsection is calledQE1 Layer3(see Algorithm 1). Initially,
the LMDs and the single LME in the conjunction are converted to LMIs using the equiv-
alences(t1 = t2) ≡ (t1 ≥ t2)∧ (t1 ≤ t2) and (t1 6= t2) ≡ ¬(t1 = t2). This in general yields
a Boolean combination of LMCsϕ1. If ϕ1 is a conjunction of LMIs coefficient-matched
w.r.t. x, then∃x.ϕ1 is computed using the modified FM elimination in Lemma 6. Otherwise,

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 27

∃x.ϕ1 is computed either by convertingϕ1 to coefficient-matched form w.r.t.x, followed by
QE from the resulting Boolean combination of LMCs, or by model enumeration.

Algorithm 1: QE1 Layer3
Input : Conjunction of LMCsC, Variable to eliminatex
Output : Boolean combination of LMCsψ equivalent to∃x.C

1 ϕ1 := convertToLMIs(C); // convert LMEs and LMDs to LMIs

2 if ϕ1 is a coefficient-matched conjunction w.r.t. xthen
3 ψ := modifiedFM(ϕ1, x); // Apply modified FM based on Lemma 6

4 else
5 if model enumeration is selected to compute∃x.ϕ1 then
6 ψ := modelEnumerate(ϕ1, x); // Apply model enumeration

7 else
8 ϕ2 := coefficientMatch(ϕ1, x);
9 ψ := QEFromBooleanCombination(ϕ2, x);

// Eliminate x from Boolean combination ϕ2; this recursively

// calls Project

10 return ψ;

Analysis of Complexity: Consider a conjunction of LMCs with a subset of variables in
its support to be eliminated. Letn be the number of LMCs in the conjunction,v be the
number of variables in its support, ande be the number of variables to be eliminated. Note
that Layer3 resorts to model enumeration in the worst case. Consider the elimination of the
first quantified variable, say,x1 by model enumeration.

Elimination ofx1 by model enumeration involves creating 2p copies of the conjunction,
and then replacingx1 by a constant in each copy. Replacingx1 by constant and then sim-
plifying takesO(n) arithmetic operations in the worst-case for each copy. Assuming that
each arithmetic operation onp-bit numbers take timeO(Q(p)) in the worst-case, where
p≤ Q(p) ≤ p3, elimination ofx1 from each copy hence has a worst-case time complex-
ity of O(n ·Q(p)). Since there are 2p such copies, elimination ofx1 has a worst-case time
complexity ofO(n·Q(p) ·2p).

Elimination ofx1 generates a formula with 2p disjuncts, where each disjunct can haven
LMCs. In a similar manner as above, it can be seen that elimination of the second quantified
variable, say,x2 has a worst-case time complexity ofO(n·Q(p) ·22·p). Proceeding like this,
it can be seen that elimination ofe quantified variables has a worst-case time complexity of
O
(
n·Q(p) ·

(
2p+22·p+ . . .2e·p

))
, which reduces toO(n·Q(p) ·2(e+1)·p).

After elimination of e variables, we have a formula with 2e·p disjuncts, where each
disjunct can haven LMCs. Writing each disjunct involvingn LMCs takesO(n ·v · p) time.
Hence writing the result takesO(n·v· p·2e·p) time. Therefore Layer3 has a worst-case time
complexity ofO(n·Q(p) ·2(e+1)·p+n·v· p·2e·p).

3.6 Project: Combining Layers

Recall thatQE1 Layer1, QE1 Layer2, andQE1 Layer3try to eliminate a single quantifier
from a conjunction of LMCs. These procedures can be extendedto eliminate multiple quan-
tifiers by invoking them iteratively. Thus we have procedures Layer1, Layer2, andLayer3-

28 John-Chakraborty

extensions ofQE1 Layer1, QE1 Layer2, andQE1 Layer3respectively, to eliminate multi-
ple quantifiers.

Algorithm 2: Project
Input : Conjunction of LMCsA, Set of variables to eliminateX
Output : Boolean combination of LMCsψ equivalent to∃X.A

1 ϕ1 := Layer1(A, X); // for each x ∈ X, Apply QE1 Layer1

2 if ϕ1 has no quantifiersthen
3 ψ := ϕ1;

4 else
// Let ϕ1 ≡ A1∧∃Y.B

5 ϕ2 := Layer2(B, Y); // for each x ∈ Y, Apply QE1 Layer2

6 if ϕ2 has no quantifiersthen
7 ψ := A1 ∧ ϕ2;

8 else
// Let ϕ2 ≡ A2∧∃Z.C

9 ϕ3 := Layer3(C, Z); // for each x ∈ Z, Apply QE1 Layer3

10 ψ := A1 ∧ A2 ∧ ϕ3;

11 return ψ;

We now present the overall QE algorithmProject (see Algorithm 2) for computing
∃X.A, whereA is a conjunction of LMCs over a set of variablesV such thatX ⊆V. Initially
Project tries to compute∃X.A usingLayer1. This reduces∃X.A to an equivalent conjunc-
tion of LMCsϕ1. If all variables inX are eliminated byLayer1, thenϕ1 is free of quantifiers.
In this case,∃X.A is equivalent toϕ1, andProjectreturnsϕ1. Otherwise,ϕ1 is equivalent to
the conjunction ofA1 and∃Y.B, whereA1, B are conjunctions of LMCs,Y ⊆ X, andX \Y
is the subset of variables inX that are eliminated byLayer1. Project then tries to compute
∃Y.B usingLayer2.

Layer2 reduces∃Y.B to an equivalent conjunction of LMCsϕ2. If all variables inY
are eliminated byLayer2, thenϕ2 is free of quantifiers. In this case∃X.A is equivalent to
A1∧ϕ2, andProject returnsA1∧ϕ2. Otherwise,ϕ2 is equivalent to the conjunction ofA2

and∃Z.C, whereA2,C are conjunctions of LMCs,Z⊆Y, andY\Z is the subset of variables
in Y that are eliminated byLayer2. ProjectcallsLayer3to compute∃Z.C. Layer3computes
ϕ3, a Boolean combination of LMCs equivalent to∃Z.C, andProjectreturnsA1∧A2∧ϕ3.

Let x be the variable being eliminated. Line-8 ofQE1 Layer3generates a Boolean com-
bination of LMCsϕ2 coefficient-matched w.r.t.x. Line-9 of QE1 Layer3 then callsQE-
FromBooleanCombinationin order to eliminatex from ϕ2. This eventually gets reduced to
eliminatingx from a bunch of conjunctions of LMCs. Eliminatingx from each such conjunc-
tion of LMCs results in a new recursiveProjectcall. Because of this feedback, the control
flow insideProject is not linear.

Note that each new recursiveProjectcall may in turn callQE1 Layer3. However it can
be observed that this mutual recursion betweenQE1 Layer3andProjectdoes not result in
infinite recursion. To see this, note that in each of the recursiveProject calls, all LMIs in-
volving x are coefficient-matched w.r.t.x. Hencex will be certainly eliminated byLayer1,
Layer2, or modifiedFMinside these recursiveProjectcalls. This guarantees that the recur-
sion terminates.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 29

4 Extending QE to Boolean Combinations

Algorithm Project described above eliminates a set of variables from a conjunction of
LMCs. In this section, we explore approaches for extendingProject to Boolean combina-
tions of LMCs.

As mentioned in Section 2, the problem of extending a QE algorithm for conjunctions
of constraints to Boolean combinations of constraints is encountered in other theories such
as linear real arithmetic and linear integer arithmetic as well. Among the techniques to solve
this problem for these theories (see Subsection 2.1), the work by Chaki et. al. in [12] pro-
poses a decision diagram based algorithm for QE from formulas in the theory of Octagons
and the work by Monniaux in [42] proposes an SMT solving basedalgorithm for extending
Fourier-Motzkin to arbitrary Boolean combinations of constraints in linear real arithmetic.
The approaches for extendingProject to Boolean combinations of LMCs described in this
section are motivated by the ideas introduced in these works.

4.1 Decision Diagram Based Approach

We introduce a data structure called Linear Modular Decision Diagram (LMDD) that rep-
resents Boolean combinations of LMCs. LMDDs are BDDs [10] with nodes labeled with
LMEs or LMIs. The problem we wish to solve in this subsection can be formally stated
as follows. Given an LMDDf representing a Boolean combination of LMCs over a set of
variablesV, we wish to compute an LMDDg equivalent to∃X. f , whereX ⊆V.

The algorithms presented in this subsection use the following helper functions: a)Vars:
returns the set of variables in an LMC, b)getConjunct: computes the conjunction of LMCs in
a given set, c)isUnsat: determines if the conjunction of LMCs in a given set is unsatisfiable,
d) createLMDD: creates an LMDD from a Boolean combination of LMCs, e)AND, OR,
NOT, ITE: performs the basic operations on LMDDs indicated by their names. We denote
a non-terminal LMDD nodef as(P(f),H(f),L(f)), whereP(f) is the LME/LMI labeling
the node, andH(f) andL(f) are the high child and low child respectively as defined in [10].

A straightforward algorithm to compute∃X. f is to applyProject to each path originat-
ing from the root off . We call this algorithmAll Path QElim(see Algorithm 3). To compute
∃X. f , we callAll Path QElim with argumentsf , {} andX. All Path QElim performs a re-
cursive traversal off collecting the set of LMCsScontaining any of the variables inX that
it encountered along the path from the root off . If the path leads to a 1-terminal and if the
conjunctionCs of LMCs in S is theory-consistent, thenProject is called to compute∃X.Cs.

As observed in [11, 12], because of the dependence of the result of a recursive call on
the contextS, if the same LMDD node is encountered following two different paths, then
the results of the calls are not the same in general. HenceAll Path QElim is not amenable
to dynamic programming, and the number of recursive calls islinear in the number of paths
in f , which can be exponential in the number of nodes inf .

In the following discussion we present a more efficient algorithm QE LMDD to compute
∃X. f . QE LMDD makes use of an algorithm calledQE1 LMDD that eliminates a single
variablex from f (see Algorithm 4). To compute∃x. f , we callQE1 LMDD with arguments
f , {} andx. QE1 LMDD performs a recursive traversal of the LMDDf collecting the set
of LMCs Sx containingx that it encountered along the path fromf .

In general,QE1 LMDD (f , Sx, x) computes an LMDD for∃x.(f ∧CSx), whereCSx

denotes the conjunction of LMCs inSx. Let Ex be the set of LMEs inSx. Let each LMEei

in Ex be of the form 2ki ·x= ti , whereki = κ(x,ei) and 1≤ i ≤ n (recall the definition ofκ

30 John-Chakraborty

Algorithm 3: All Path QElim
Input : LMDD f , Set of LMCsS, Set of variables to eliminateX
Output : LMDD for ∃X.(f ∧Cs), whereCs is the conjunction of LMCs inS

1 if f = 0 or isUnsat(S) then
2 return 0;

3 if f = 1 then // f is theory-consistent 1-terminal
4 Cs := getConjunct(S);
5 π := Project(Cs, X);// π ≡ ∃X.Cs
6 return createLMDD(π);// π ≡ ∃X.(f ∧Cs)

// traverse down

7 c := P(f);
8 if Vars(c)∩ X == {} then // c is free of variables to eliminate

9 return ITE(c, All Path QElim(H(f), S, X), All Path QElim(L(f), S, X));

10 else // c contains variables to eliminate

11 return OR(All Path QElim(H(f), S∪ {c}, X), All Path QElim(L(f), S∪{¬c}, X));

Algorithm 4: QE1 LMDD
Input : LMDD f , Set of LMCsSx, Variable to eliminatex
Output : LMDD for ∃x.(f ∧CSx), whereCSx is the conjunction of LMCs inSx

1 if f = 0 or isUnsat(Sx) then
2 return 0;

3 if f = 1 then // theory-consistent 1-terminal
4 CSx := getConjunct(Sx);
5 π := Project(CSx , {x});// π ≡ ∃x.CSx

6 return createLMDD(π);// π ≡ ∃x.(f ∧CSx)

// simplification using LMEs

7 Ex := set of LMEs inSx;
8 if Ex 6= {} then
9 e1 := selectLME(Ex);

10 f ′ := simplifyLMDD(f , e1, x);
11 if f ′ is free of xthen
12 CSx := getConjunct(Sx);
13 π := Project(CSx , {x});// π ≡ ∃x.CSx

14 return AND(f ′, createLMDD(π));// f ′ ∧π ≡ ∃x.(f ∧CSx)

15 else
16 f ′ := f ;

// traverse down

17 c := P(f ′);
18 if c is free of xthen
19 return ITE(c, QE1 LMDD(H(f ′), Sx, x), QE1 LMDD(L(f ′), Sx, x));

20 else
21 return OR(QE1 LMDD(H(f ′), Sx ∪ {c}, x), QE1 LMDD(L(f ′), S∪{¬c}, x));

from Section 3.1). Without loss of generality, letk1 be the minimum ofk1, . . . ,kn. Let g be
any internal non-terminal node off represented as(P(g),H(g),L(g)). Let us denoteP(g)
by c. It can be observed that ifc hasx in its support, thenc can be simplified by replacing
the occurrences of 2k1 ·x in it by t1. Let c′ be the simplified LMC. Note that ifκ(x,c)≥ k1,
thenc′ we get, is free ofx. Thus, ifκ(x,c)≥ k1, theng can be simplified to(c′,H(g),L(g)),
wherec′ is free ofx.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 31

We call the procedure that performs the selection of LME withthe minimumκ among
the LMEs inEx asselectLME. The ProceduresimplifyLMDD (see Algorithm 5) performs
simplification of f using the selected LME as described above. The proceduresimplifyLMC
in Algorithm 5 simplifiesc to c′ using the selected LME.

Algorithm 5: simplifyLMDD

Input : LMDD f , LME e1 : 2k1 ·x= t1, Variable to eliminatex
Output : LMDD f simplified usinge1

1 if f = 0 or f = 1 then
2 return f ;

3 c := P(f);
4 if c is free of xthen
5 return ITE(c, simplifyLMDD(H(f), x, e1), simplifyLMDD(L(f), x, e1));

6 else
7 c′ := simplifyLMC(c, e1, x);// if κ(x,c) ≥ k1, then c′ is free of x
8 return ITE(c′, simplifyLMDD(H(f), x, e1), simplifyLMDD(L(f), x, e1));

If simplifyLMDD is successful in eliminating all occurrences of variablex using the se-
lected LME, then it returns a simplified LMDDf ′ such that∃x.(f ∧CSx) is equivalent to
f ′ ∧∃x.(CSx). Note that∃x.(CSx) can be computed byProject. In this case,QE1 LMDD
returns without any further recursive calls. IfsimplifyLMDD is unable to eliminate all oc-
currences of variablex, thenQE1 LMDD proceeds by recursively traversing the simplified
LMDD f ′.

Example All LMCs in this example have modulus 8. Letf be the LMDD shown on the
left in Fig. 3. Suppose we wish to compute∃x. f usingQE1 LMDD. Note thatQE1 LMDD
callssimplifyLMDDwith argumentsH(f), (3x+2y= 0) andx. The LME (3x+2y= 0) is
equivalent to(x= 2y). simplifyLMDDeliminates all occurrences ofx in H(f) using(x= 2y),
and thus simplifiesH(f) as shown on the right in Fig. 3. Letg be the simplified LMDD,
which is free ofx (shown in different colour in Fig. 3). Notice that∃x.(H(f)∧ (x= 2y)) is
equivalent tog∧∃x.(x= 2y). Since∃x.(x= 2y) is true, ∃x.(H(f)∧ (x= 2y)) is equivalent
to g. However,L(f) cannot be simplified in this manner, as there are no LMEs involving x in
its context.QE1 LMDD performs traversal ofL(f), and callsProject to compute∃x.((3x+
2y 6= 0) ∧ (2x+n= 0)). Projectcomputes∃x.((3x+2y 6= 0) ∧ (2x+n= 0)) as(4n= 0).
Hence the final result is LMDD forg∨ (4n= 0).

It can be observed that if the same LMDD node is encountered with the same LME
following two different paths, then the results of the callsto simplifyLMDD must be the
same. HencesimplifyLMDD can be implemented with dynamic programming. Moreover,
although the result of each recursive call toQE1 LMDD depends on the contextSx, the
number of LMCs inSx is usually very small, as only the LMCs containingx are collected in
Sx. HenceQE1 LMDD is still amenable to dynamic programming.

QE1 LMDD can be repeatedly invoked to compute∃X. f . This is implemented in the al-
gorithmQE LMDD. The order in which variables are selected for elimination in QE LMDD
has a crucial impact on the sizes of the intermediate and finalLMDDs. In our ordering
scheme, we selected the variable occurring in the least number of LMDD nodes as the next
variable to be eliminated. Intuitively, this ordering scheme usually results in smaller contexts
(i.e., smallerSx’s), and more opportunities for dynamic programming.

32 John-Chakraborty

Fig. 3 Example forQE1 LMDD

In practice, the strategy of eliminating one variable at a time and simplification of
LMDDs using the LMEs in the context provide significant opportunities for reuse of re-
sults through dynamic programming. As a result of these,QE LMDD in practice clearly
outperformsAll Path QElim, as also demonstrated by our experiments.

4.2 SMT Solving Based Approach

In this subsection, we present an algorithmQE SMT(see Algorithm 6) which is an extension
of the algorithm proposed in [42]. Given a Boolean combination of LMCs ϕ over a set of
variablesV, QE SMT computes a Boolean combination of LMCsψ equivalent to∃X.ϕ,
whereX ⊆V. Notice thatQE SMT involves All-SMT loop with optimizations as suggested
in [42].

Algorithm 6: QE SMT
Input : Boolean combination of LMCsϕ, Set of variables to eliminateX
Output : Boolean combination of LMCsψ equivalent to∃X.ϕ

1 H := ϕ;
2 ψ := false;
3 while H is satisfiabledo
4 m := a solution ofH;// m |= H and m |= ϕ
5 C := Generalize1(ϕ, m);// C⇒ ϕ
6 C′ := Generalize2(ϕ, C);// C⇒C′ and C′⇒ ϕ
7 π := Project(C′, X);// π ≡ ∃X.C′

8 ψ := ψ ∨ π;
9 H := H ∧ ¬π;

10 return ψ;// ψ ≡ ∃X.ϕ

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 33

Algorithm 7: Generalize1
Input : Boolean combination of LMCsϕ, A solutionm of ϕ
Output : A conjunctionC of LMCs such thatC⇒ ϕ

1 S:= set of LMCs inϕ;
2 C := true;
3 for c∈ Sdo
4 if m |= c then
5 C := C ∧ c;

6 else
7 C := C ∧ ¬c;

8 return C;

Each iteration of the All-SMT loop in Algorithm 6 finds a solution m of H. Note thatm
is also a solution ofϕ. Generalize1(see Algorithm 7, originally proposed in [42]) is then
used for generalizingm to a conjunction of LMCsC such thatC⇒ ϕ. Generalize1computes
C as follows. FirstC is initialized totrue. Each LMCc in ϕ is then evaluated with values
given to variables in its support as perm. If c evaluates totrue underm, i.e., m |= c, then
c is conjoined withC. Otherwise, ifc evaluates tofalse underm, i.e., m |= ¬c, then¬c is
conjoined withC. It is easy to see that the conjunctionC returned impliesϕ.

Generalize2is used for further generalizingC by dropping unnecessary constraints from
C. HenceC′ computed byGeneralize2is such thatC⇒C′ andC′⇒ ϕ. The implementation
of Generalize2in [42] works as follows. For each constraintc in C, it is checked to see
if C⇒ ϕ remains valid even after droppingc from C. If C⇒ ϕ remains valid even after
droppingc fromC, thenc is unnecessary and is dropped fromC. Otherwise if the implication
C⇒ ϕ becomes invalid after droppingc fromC, thenc is not dropped fromC. Checking the
validity of C⇒ ϕ involves an SMT solver call. However, in our experiments with LMCs, we
have found that this implementation ofGeneralize2is prohibitively time consuming as the
number of SMT solver calls is equal to the number of constraints inC. Our implementation
of Generalize2makes use of a cheaper technique to achieve generalization.

The technique is based on analysis of the Boolean skeleton ofthe formulaϕ. Boolean
skeletonP of ϕ is the representation of Boolean structure ofϕ as a Directed Acyclic Graph
(DAG), with leaves representing LMCs inϕ and internal nodes as¬, ∧, and∨. As every
LMC in ϕ appears inC in its original or negated form,C effectively gives an assignment of
Boolean values to the leaves ofP. We now perform a bottom-up traversal ofP to evaluate
P using the values assigned to the leaves. LetB(n) be the value assigned to a noden in P
during the evaluation. For each noden, we find a subsetS(n) of LMCs inC that are sufficient
to evaluaten to B(n). Table 1 shows howB(n) andS(n) are computed for the different nodes
in P under different conditions. LetS(r) be the set of LMCs found in this way for the rootr
of P. ThenC′ is computed as the conjunction of LMCs inS(r). It is easy to see thatC⇒C′

andC′⇒ ϕ.
ExampleAll LMCs in this example have modulus 8. Letϕ be(y= 4x)∧((x 6= z)∨ (x 6=w)).
Suppose we wish to compute∃X.ϕ usingQE SMT, whereX = {x}. Let m : x = 1, y= 4,
z= 1, w = 0 be the solution ofϕ from SMT solver in the first iteration of the loop in
QE SMT. Note thatGeneralize1generalizesm to the conjunctionC : (y= 4x) ∧ (x= z) ∧
(x 6= w). Generalize2then generalizesC toC′ : (y= 4x) ∧ (x 6= w). To see howGeneralize2
works, observe that the Boolean skeletonP of ϕ is n1 ∧ (n2 ∨ n3), wheren1, n2, n3 denote
(y= 4x), (x 6= z), (x 6= w) respectively. From Table 1, we have,B(n1) = true, B(n2) = false,
andB(n3) = true. Also S(n1) = {n1}, S(n2) = {¬n2}, andS(n3) = {n3}. Let n4 be the node

34 John-Chakraborty

Table 1 Computation ofB(n) andS(n) insideGeneralize2

noden Condition B(n) S(n)

LMC c
c appears inC true {c}
¬c appears inC f alse {¬c}

¬n1
B(n1) = true f alse S(n1)

B(n1) = f alse true S(n1)

n1∧n2

B(n1) = true∧ B(n2) = true true S(n1)∪S(n2)
B(n1) = true∧ B(n2) = f alse f alse S(n2)
B(n1) = f alse∧ B(n2) = true f alse S(n1)

B(n1) = f alse∧ B(n2) = f alse f alse smaller amongS(n1) andS(n2)

n1∨n2

B(n1) = true∧ B(n2) = true true smaller amongS(n1) andS(n2)
B(n1) = true∧ B(n2) = f alse true S(n1)
B(n1) = f alse∧ B(n2) = true true S(n2)

B(n1) = f alse∧ B(n2) = f alse f alse S(n1)∪S(n2)

(n2 ∨ n3). SinceB(n2) = false, B(n3) = true, andn4 is (n2 ∨ n3), we haveB(n4) = true.
Note thatB(n3) = true is sufficient to makeB(n4) = true. We haveS(n4) = S(n3) = {n3}
as per Table 1. Letr be the root node ofP, i.e., the noden1 ∧ n4. SinceB(n1) = true, B(n4)
= true, we haveB(r) = true. Sincer is n1 ∧ n4, bothB(n1) andB(n4) should betrue for
B(r) to betrue. We haveS(r) = S(n1)∪S(n4) = {n1,n3}. FinallyC′ is n1∧n3, i.e.,(y= 4x)
∧ (x 6= w). Projectcomputes∃x.C′ asπ : (2y= 0). Note thatϕ ∧ ¬π is unsatisfiable, and
the algorithm terminates. The result of QE is thus(2y= 0).

4.3 Hybrid Approach

The factors that contribute to the success of the LMDD based approach are the presence of
large shared sub-LMDDs and the strategy of eliminating one variable at a time. Both factors
contribute to significant opportunities for reuse of results through dynamic programming.
The success of the SMT solving based approach is attributable primarily to pruning of the
solution space achieved by interleaving of projection and model enumeration. In the follow-
ing discussion, we present a hybrid approach that tries to combine the strengths of these two
approaches.

We illustrate the idea with the help of an example. All LMCs inthis example have
modulus 8. Letf be the LMDD shown in Fig. 4. Letf1, f2, f3, and f4 be the internal nodes
of the LMDD as shown in Fig. 4. Suppose we wish to compute∃x. f . Note that∃x. f is the
disjunction of three sub-problems: (i)∃x.(f3 ∧ (y= 4x) ∧ (x 6= z)), (ii) ∃x.(f2 ∧ (y= 4x)
∧ (x = z)), and (iii) ∃x.(f4 ∧ (y 6= 4x)). Also, notice that∃x. f is actually equivalent to
(2y = 0), the result of the first sub-problem∃x.(f3 ∧ (y = 4x) ∧ (x 6= z)). Hence it is
not necessary to compute the sub-problems∃x.(f2 ∧ (y = 4x) ∧ (x = z)) and∃x.(f4 ∧
(y 6= 4x)). We call such sub-problems whose computation is not necessary as “redundant”
sub-problems. We can infer that the sub-problems∃x.(f2 ∧ (y= 4x) ∧ (x= z)) and∃x.(f4
∧ (y 6= 4x)) are redundant, from the fact thatf2 ∧ (y= 4x) ∧ (x= z) ∧ (2y 6= 0) and f4 ∧
(y 6= 4x) ∧ (2y 6= 0) are unsatisfiable.

In general, suppose we wish to compute∃X. f , wheref denotes an LMDD representing
a Boolean combination of LMCs over a set of variablesV and X ⊆ V. We can derive a
set of sub-problems of the form∃X.(fi ∧Ci), for 1≤ i ≤ n, where fi denotes an LMDD
andCi denotes a conjunction of LMCs, such that∃X. f is equivalent to

∨n
i=1 (∃X.(fi ∧Ci)).

Let g denote
∨m

i=1 (∃X.(fi ∧Ci)), where 1≤ m< n. A sub-problem∃X.(f j ∧Cj), where
m+1≤ j ≤ n, is redundant iff j ∧Cj ∧ ¬g is unsatisfiable.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 35

Fig. 4 Example for hybrid approach

Our hybrid algorithmQE Combined(see Algorithm 8) makes use of this idea to identify
redundant sub-problems. Initially,QE Combinedselects a satisfiable pathπ in the LMDD
f using a functionselectPath. Subsequently, the algorithmsimplify(see Algorithm 9) is in-
voked, which traverses the pathπ, in order to splitf into an equivalent disjunction

∨n
i=1(fi∧

Ci), where fi denotes an LMDD andCi denotes a conjunction of LMCs. In Algorithm 9,
(fi ∧Ci) is represented as a pair〈 fi , Ci〉.

Algorithm 8: QE Combined
Input : LMDD f , Set of variables to eliminateX
Output : Boolean combination of LMCsg equivalent to∃X. f

1 π := selectPath(f);
2 S:= {};// set of sub-problems

3 C := true;
4 simplify(f , π, C, S);
5 g := false;
6 for each〈 fi ,Ci〉 ∈ Sdo
7 if fi ∧Ci ∧ ¬g is satisfiablethen
8 h := QE LMDD Mod(fi , Ci , X);
9 g := g∨ h;

10 return g;

In order to split LMDD f , simplify is called with argumentsf , π, C andS. Note thatC
is initialized totrue andS initialized to{}. simplifycollects(fi ∧Ci), for 1≤ i ≤ n in the set
S in the following way. The pathπ is traversed recursively starting from the root node off ,
conjoining withC all LMCs encountered onπ. In each recursive call, iff is a terminal, then
〈 f , C〉 is inserted inS. Otherwise if f is a non-terminal and nodeH(f) appears inπ, then
〈L(f),C∧¬P(f)〉 is inserted inS. Similarly if f is a non-terminal and nodeL(f) appears in
π, then〈H(f), C∧P(f)〉 is inserted inS. Fig. 5 illustrates the splitting scheme followed by

36 John-Chakraborty

Algorithm 9: Simplify
Input : LMDD f , Satisfiable pathπ,

ConjunctionC of LMCs encountered alongπ
Output : Set of sub-problemsS

1 if f = 1 then
2 S:= S∪ { 〈 f , C〉 };

3 else
4 if node H(f) is in π then
5 S:= S∪ { 〈L(f), C∧¬P(f)〉 };
6 simplify(H(f), π, C∧P(f));

7 else
8 S:= S∪ { 〈H(f), C∧P(f)〉 };
9 simplify(L(f), π, C∧¬P(f));

simplify. For example, in the case of LMDD in Fig. 4, using the path(y= 4x)→ (x 6= z)→
1 asπ, splits the LMDD into (i)〈 f3, (y= 4x) ∧ (x 6= z)〉, (ii) 〈 f2, (y= 4x) ∧ (x= z)〉, and
(iii) 〈 f4, (y 6= 4x)〉.

Fig. 5 Splitting scheme insimplify

The functionselectPathselects the pathπ in the following way. First, a solutionmof f is
generated using an SMT solver call. The root node off is selected as the first node inπ. The
LMC P(f) labeling the root node off is then evaluated with values given to variables in its
support as perm. If P(f) evaluates totrue underm, thenH(f) is selected as the next node in
π. Otherwise ifP(f) evaluates tofalse underm, thenL(f) is selected as the next node inπ.
The LMC labeling the child off thus selected as the next node inπ is then evaluated under
m. These steps are iteratively repeated until 1-terminal is encountered, each iteration adding
a new node toπ. Note that encountering 1-terminal is guaranteed sincem is a solution off .

QE Combinednow computesg≡ ∃X. f as
∨n

i=1 (∃X.(fi ∧Ci)) in the following manner.
In order to compute∃X.(fi∧Ci), QE Combinedmakes use of an algorithmQE LMDD Mod.
QE LMDD Mod is a variant ofQE LMDD that eliminates a set of variables from an LMDD
conjoined with a set of LMCs.QE Combinedinitially setsg to false. In the first iteration
of the loop, the satisfiability off1∧C1 is checked. Iff1∧C1 is satisfiable, theng is set to
∃X.(f1∧C1). Otherwise if f1∧C1 is unsatisfiable, then the sub-problem∃X.(f1∧C1) is

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 37

redundant and is not computed. In the second iteration, the satisfiability of f2∧C2∧¬g is
checked. Iff2∧C2∧¬g is satisfiable, then∃X.(f2∧C2) is computed and is disjoined with
g. Otherwise if f2∧C2∧¬g is unsatisfiable, then∃X.(f2∧C2) is redundant and is not com-
puted. This loop is repeated until all the sub-problems are considered. It can be observed that
g is equivalent to

∨i
j=1 (∃X.(f j ∧Cj)) after theith iteration of the loop. Henceg is equivalent

to
∨n

j=1 (∃X.(f j ∧Cj)) when the loop is terminated.
In our example, in the first iteration of the loop, the satisfiability of f3 ∧ (y = 4x) ∧

(x 6= z) is checked. Sincef3 ∧ (y= 4x) ∧ (x 6= z) is satisfiable,g is set to(2y= 0), the result
of ∃x.(f3 ∧ (y= 4x) ∧ (x 6= z)). In the second iteration, the satisfiability off2 ∧ (y= 4x)
∧ (x = z) ∧ (2y 6= 0) is checked.f2 ∧ (y = 4x) ∧ (x = z) ∧ (2y 6= 0) is unsatisfiable, and
hence∃x.(f2 ∧ (y= 4x) ∧ (x= z)) is not computed. Similarly, in the third iteration of the
loop, the satisfiability off4 ∧ (y 6= 4x) ∧ (2y 6= 0) is checked.f4 ∧ (y 6= 4x) ∧ (2y 6= 0) is
unsatisfiable, and∃x.(f4 ∧ (y 6= 4x)) is also not computed. The final result of QE is(2y= 0).

Note that unlikeQE SMT, QE Combineddoes not explicitly interleave projections in-
side model enumeration. However disjoining the result of∃X.(fi ∧Ci) with g, and com-
puting∃X.(fi ∧Ci) only if fi ∧Ci ∧¬g is satisfiable, helps in avoiding the computation of
redundant sub-problems. This enables pruning the solutionspace of the problem, as achieved
in QE SMT.

5 Experimental Results

We performed experiments to evaluate the performance and effectiveness of our QE algo-
rithms, compare their performance with alternative QE techniques, and evaluate their utility
in formal verification.

5.1 Experimental Methodology and Benchmarks

All the experiments were performed on a 1.83 GHz Intel(R) Core 2 Duo machine with
2GB memory running Linux, with a timeout of 1800 seconds. We implemented our own
LMDD package for carrying out QE experiments involving LMDDs. In LMDDs the follow-
ing heuristic was used to order the LMCs. We performed depth-first traversal of the DAG
representations of formulae from which the LMDDs were created. Each new LMC encoun-
tered in the traversal was placed at the end of the current order. A similar variable ordering
heuristic was used in the experiments involving BDDs. InProject, inside the layers, when
there were multiple variables to eliminate, we used a simplelexicographic variable elimi-
nation order. Moreover, insideLayer3, the variables with constraints in coefficient-matched
form were eliminated before the variables which required transformation to Boolean com-
bination. In all experiments, we used simplifyingSTP as theSMT solver. simplifyingSTP
was selected, because it has a variable eliminator [25] considered as suitable for solving
bit-vector formulas involving LMEs. In experiments involving Omega Test, we used Pugh
et al.’s implementation of Omega Test from [52].

The following simplification heuristics were used in the implementation. (i) The LMDs
with modulus 2 were converted to equivalent LMEs. For example, the LMD x+ y 6= 1
(mod 2) was converted tox+ y = 0 (mod 2). We observed that this helps in easy elim-
ination of existentially quantified variables involved in LMCs with modulus 2. (ii) In a non-
terminal LMDD nodeu, if P(u) is an LME, then it is kept in a normal form 2k ·x= t, wherex
is the variable appearing first in lexicographical orderingbetween the names of variables in

38 John-Chakraborty

the support ofP(u), andk= κ(x,P(u)) (recall the definition ofκ from Subsection 3.1). This
allows identification of equivalent LMEs during LMDD creation and hence more compact
LMDDs.

We used a benchmark suite consisting of 198lindd benchmarks [12] and 39vhdlbench-
marks. Each of these benchmarks is a Boolean combination of LMCs with a subset of the
variables in their support existentially quantified.

The lindd benchmarks reported in [12] are Boolean combinations of octagonal con-
straints over integers, i.e., constraints of the forma · x+ b · y ≤ k wherex, y are integer
variables,k is an integer constant, anda,b ∈ {−1,1}. We converted these benchmarks to
Boolean combinations of LMCs by assuming the size of integeras 16 bits. Although these
benchmarks had no LMEs explicitly, they contained LMEs encoded as conjunctions of the
form (x−y≤ k)∧¬(x−y≤ k−1). We converted each such conjunction to an LMEx−y= k
as a preprocessing step. The total number of variables, the number of variables to be elim-
inated, and the number of bits to be eliminated in thelindd benchmarks ranged from 30 to
259, 23 to 207, and 368 to 3312 respectively.

The vhdl benchmarks were obtained in the following manner. We took a set of word-
level VHDL designs. Some of these are designs taken from ITC99 benchmark suite [22], and
the remaining are proprietary. We derived the symbolic transition relations of these VHDL
designs. Thevhdl benchmarks were obtained by quantifying out a subset of internal vari-
ables (i.e. neither input nor output of the top-level module) from these symbolic transition
relations. Effectively this gives abstract transition relations of the designs. The coefficients
of the variables in these benchmarks were largely odd. Thesebenchmarks contained a sig-
nificant number of LMEs (arising from assignment statementsin the VHDL programs). The
total number of variables, the number of variables to be eliminated, and the number of bits
to be eliminated in thevhdlbenchmarks ranged from 8 to 50, 2 to 21, and 10 to 672 respec-
tively.

Overview of Experiments: We performed experimental evaluation of our QE techniques
in three different ways.

1. Experimental evaluation at the level of conjunctions of LMCs: This involved evaluation
of performance and effectiveness of layers inProject, and comparison of the perfor-
mance ofProject with alternative QE techniques based on bit-blasting and conversion
to linear integer arithmetic.

2. Experimental evaluation at the level of Boolean combinations of of LMCs: This involved
evaluation of performance of the algorithmsQE SMT, QE LMDD, andQE Combined
for QE from Boolean combinations of LMCs. We then compared the performance of
QE SMTwith alternative QE techniques based on bit-blasting and conversion to linear
integer arithmetic.

3. Evaluation of utility of our techniques in verification: We selected a set of word-level
VHDL designs, and derived their symbolic transition relations. We usedQE LMDD to
compute abstract transition relations of these designs by quantifying out a subset of
internal variables from the symbolic transition relations. We then compared the perfor-
mance of bounded model checking using these abstract transition relations with that of
bounded model checking using the original transition relations. We also evaluated the
utility of our QE techniques in solving conjunctions of LMCsand for computing Craig
interpolants for Boolean combinations of LMCs.

All benchmarks, implementations, and experimental data can be accessed fromhttps://
github.com/ajithkjohn123/QuantifierElimination.git.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 39

5.2 Evaluation of QE Techniques for Conjunctions of LMCs

5.2.1 Evaluation of Layers in Project

We performed QE from the benchmarks using the algorithmsQE SMT, QE LMDD, and
QE Combined, and analyzed theProjectcalls that were generated during this process. Re-
call thatLayer3 involves transforming a conjunction of LMCs to a Boolean combination
of LMCs and QE from this Boolean combination. As mentioned inSection 3.6, this re-
sults in new recursiveProjectcalls. Hence two kinds ofProjectcalls were generated while
performing QE from the benchmarks: (i) the initial/original Project calls, and the (ii) re-
cursiveProjectcalls. In our analysis, we focussed only on the initial/original Projectcalls.
The recursiveProjectcalls were considered as part ofLayer3. In the subsequent discussion,
whenever we mention “Project calls”, it refers to the initial/originalProject calls, unless
stated otherwise.

Table 2 Details ofProjectcalls (figures are perProjectcall)

Type Vars Qnt LMIs LMEs LMDs
Contr Time

L1 L2 L3 L1 L2 L3 Pr

lindd 39.9 38.1 (88, 0, 18.9) (60, 0, 10.1) (35, 0, 8.1) 51 44 5 3 5 13149 674
vhdl 8.6 7.2 (4, 0, 0.3) (16, 0, 5.8) (31, 0, 2.0) 95 4.5 0.5 2 6 161 3

Vars : Average number of variables,Qnt : Average number of quantifiers,LMIs : (Maximum, minimum,
average) number of LMIs,LMEs : (Maximum, minimum, average) number of LMEs,LMDs : (Maximum,
minimum, average) number of LMDs,Contr : Average contribution of a layer,L1 : Layer1, L2 : Layer2, L3

: Layer3, Pr : Project, Time : Average time spent per quantifier eliminated in milliseconds

The total number ofProject calls generated from thelindd andvhdl benchmarks were
52,836 and 8,027 respectively. Statistics of theseProject calls are shown in Table 2. The
contribution of a layer is measured as the ratio of the numberof quantifiers eliminated by
the layer to the number of quantifiers to be eliminated in theProjectcall multiplied by 100.
The time spent per quantifier eliminated for a layer is measured as the ratio of the time spent
inside the layer to the number of quantifiers eliminated by the layer. The contributions of
the layers and the times spent by the layers per quantifier eliminated for individualProject
calls fromlindd benchmarks are shown in Fig. 6, Fig. 7 and Fig. 10, and those for individual
Projectcalls fromvhdlbenchmarks are shown in Fig. 8, Fig. 9 and Fig. 11. TheProjectcalls
here are sorted in increasing order of contribution fromLayer1.

 0

 20

 40

 60

 80

 100

 120

 0 20000 40000 60000

La
ye

r1
 C

on
tr

ib
ut

io
n

Project Call

 0

 20

 40

 60

 80

 100

 120

 0 20000 40000 60000

La
ye

r2
 C

on
tr

ib
ut

io
n

Project Call

Fig. 6 Contribution of (a)Layer1and (b)Layer2for lindd benchmarks

40 John-Chakraborty

 0

 20

 40

 60

 80

 100

 120

 0 20000 40000 60000

La
ye

r3
 C

on
tr

ib
ut

io
n

Project Call

Fig. 7 Contribution ofLayer3for lindd benchmarks

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

La
ye

r1
 C

on
tr

ib
ut

io
n

Project Call

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

La
ye

r2
 C

on
tr

ib
ut

io
n

Project Call

Fig. 8 Contribution of (a)Layer1and (b)Layer2for vhdlbenchmarks

 0

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000

La
ye

r3
 C

on
tr

ib
ut

io
n

Project Call

Fig. 9 Contribution ofLayer3for vhdlbenchmarks

Layer1 and Layer2 were cheap and eliminated a large fraction of quantifiers in both
lindd andvhdl benchmarks. This underlines the importance of our layered framework. The
relatively large contribution ofLayer1in theProjectcalls fromvhdlbenchmarks was due to
significant number of LMEs in these problem instances.Layer3was found to be the most
expensive layer. Most of the time spent inLayer3was consumed in the recursiveProject
calls. NoLayer3call in our experiments required model enumeration. The large gap in the

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 41

time per quantifier inLayer2and that inLayer3for both sets of benchmarks points to the
need for developing additional cheap layers betweenLayer2andLayer3as part of future
work.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20000 40000 60000

T
im

e
P

er
 Q

ua
nt

ifi
er

 (
m

ill
i s

ec
s)

Project Call

Layer 1
Layer 2
Layer 3

Fig. 10 Cost of layers forlindd benchmarks

Fig. 11 Cost of layers forvhdlbenchmarks

5.2.2 Comparison with Alternative QE Techniques

We compared the performance ofProjectwith QE based on linear integer arithmetic using
Omega Test [8, 51], and also with QE based on bit-blasting [38, 53]. We implemented the
following algorithms for this purpose: (i)Layer1Blast: this procedure first quantifies out
the variables usingLayer1 (recall thatLayer1 is a simple extension of the work in [25]),
and then uses bit-blasting and BDD based bit-level QE [53] for the remaining variables. (ii)
Layer1OT, Layer2OT: Layer1OT first quantifies out the variables usingLayer1, and then
uses conversion to linear integer arithmetic and Omega Testfor the remaining variables.
Layer2OT first quantifies out the variables usingLayer1 followed by Layer2, and then
uses conversion to linear integer arithmetic and Omega Testfor the remaining variables.
Layer2OT helps us to compare the performance ofLayer3with that of Omega Test.

42 John-Chakraborty

We collected 100 instances of QE problem for conjunctions ofLMCs arising from
QE SMTwhen QE is performed on the benchmarks. We performed QE from these conjunction-
level problem instances usingProject, Layer1Blast, Layer1OT, andLayer2OT. Fig. 12(a)
and 12(b) compare the QE times taken byProjectagainst those taken byLayer1Blastand
Layer1OT for each of these conjunction-level problem instances.

Projectcould successfully eliminate quantifiers in all of the 100 instances.Layer1Blast
was unsuccessful in in 68 cases andLayer1OT were unsuccessful in 65 cases. These cases
are indicated by the topmost points in Fig. 12(a) and 12(b) respectively. In most cases where
Layer1Blast andLayer1OT were successful, the times taken by all the three algorithms
were comparable. However there were a few cases whereLayer1BlastandLayer1OT per-
formed better thanProject. We found that these cases involvedLayer3, and most of the time
consumed byProjectwas spent insideLayer3.

We compared the times consumed byLayer3in Projectwith those consumed by Omega
Test inLayer2OT (see Fig. 13). There were 51 problem instances which required Layer3.
Omega Test timed out in 37 of them. In 13 of the remaining 14 cases, Omega Test performed
better thanLayer3. Our analysis revealed that these cases were simpler in terms of number of
LMCs and number of variables to be eliminated. HoweverLayer3incurred several recursive
Projectcalls in these cases.

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_B

la
st

 T
im

e

Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_B

la
st

 T
im

e

Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_O

T
 T

im
e

Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_O

T
 T

im
e

Project Time

Fig. 12 Plots comparing (a)ProjectandLayer1Blastand (b)ProjectandLayer1OT (All times are in milli
seconds)

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

O
m

eg
a

T
es

t T
im

e

Layer3 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

O
m

eg
a

T
es

t T
im

e

Layer3 Time

Fig. 13 Plot comparingLayer3and Omega Test (All times are in milli seconds)

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 43

Recall that given∃x.(C∧D∧ I), whereC is a conjunction of LMCs,D is a conjunction
of LMDs andI is a conjunction of LMIs,Layer2checks if∃x.(C) ≡ ∃x.(C∧D∧ I) holds.
Layer2performs this check by computing an efficiently computable under-approximation of
the number of ways in which an arbitrary solution ofC can be engineered to satisfyC∧D∧ I .
We compared the performance ofLayer2with a BDD based alternative technique to per-
form this check. We implemented a procedureBddBasedLayer2for this purpose.BddBas-
edLayer2computes BDDs for∃x.(C) and∃x.(C∧D∧ I), and then checks if these BDDs
are the same.∃x.(C)≡ ∃x.(C∧D∧ I) holds iff the BDDs for∃x.(C) and∃x.(C∧D∧ I) are
the same. We then implemented procedureProjectWithBddBasedLayer2which is a variant
of Project that usesBddBasedLayer2in place ofLayer2.

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

B
D

D
B

as
ed

La
ye

r2
 T

im
e

Layer2 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

B
D

D
B

as
ed

La
ye

r2
 T

im
e

Layer2 Time

Fig. 14 Plot comparingLayer2andBddBasedLayer2(All times are in milli seconds)

We performed QE from the 100 conjunction-level problem instances usingProjectWithB-
ddBasedLayer2. For each problem instance, we then compared the time consumed byLayer2
in Project with that consumed byBddBasedLayer2in ProjectWithBddBasedLayer2(see
Fig. 14).Layer2outperformed the BDD based alternative technique in all the100 problem
instances.

5.3 Evaluation of QE Techniques for Boolean Combinations ofLMCs

5.3.1 Evaluation of QESMT, QELMDD, and QECombined

We measured the time taken byQE SMT, QE LMDD, andQE Combinedfor QE from each
benchmark. ForQE LMDD andQE Combined, this included the time to build the initial
LMDD. We observed that each approach performed better than the others for some bench-
marks (see Fig. 15 and Fig. 16). Note that the points in Fig. 16are scattered, while the points
in Fig. 15(a) and 15(b) are more clustered near the 45◦ line. This shows thatDD andSMT
based approaches are incomparable, whereas the hybrid approach inherits the strengths of
bothDD andSMTbased approaches. Hence, given a problem instance, we recommend the
hybrid approach, unless the approach which will perform better is known a-priori.

Recall that inQE Combined, we converted∃X. f , where f is an LMDD, into an equiv-
alent disjunction of sub-problems, and then gave these sub-problems toQE LMDD Mod
separately. Our analysis revealed that this helped in identifying redundant sub-problems.
However, it was observed that splitting∃X. f into sub-problems and computing the sub-
problems separately, reduced scope for reuse of results through dynamic programming when

44 John-Chakraborty

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_C
om

bi
ne

d
Q

E
 T

im
e

QE_SMT QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_C
om

bi
ne

d
Q

E
 T

im
e

QE_SMT QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_C
om

bi
ne

d
Q

E
 T

im
e

QE_LMDD QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_C
om

bi
ne

d
Q

E
 T

im
e

QE_LMDD QE Time

Fig. 15 Plots comparing (a)QE SMT andQE Combinedand (b)QE LMDD andQE Combined(All times
are in seconds)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_L
M

D
D

 Q
E

 T
im

e

QE_SMT QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_L
M

D
D

 Q
E

 T
im

e

QE_SMT QE Time

Fig. 16 Plot comparingQE SMTandQE LMDD (All times are in seconds)

compared to computing∃X. f directly usingQE LMDD. We could also observe that using
a more eager strategy for splitting into subproblems (i.e.,a strategy that generates more
sub-problems) in place ofsimplify, further reduced scope for reuse of results, although it
improved opportunity for identifying redundant sub-problems. On the other hand, using a
less eager strategy improved reuse of results, but gave lessopportunity for identifying re-
dundant sub-problems. Hence, although both reuse of results and splitting into subproblems
contribute towards success of the hybrid approach, they actagainst each other. In our exper-
iments, we found that the splitting scheme insimplifyachieves a trade-off between them.

In order to evaluate the effectiveness of our simplifications inQE LMDD, we compared
the time taken byQE LMDD with that taken byAll Path QElim for QE from each bench-
mark (see Fig. 17(a)).All Path QElim succeeded only in a few cases. This is not surpris-
ing, as the LMDDs for the benchmarks contained a huge number of paths. InQE LMDD,
the single variable elimination strategy and the simplification of LMDDs using simpli-
fyLMDD helped in achieving significant reuse of results through dynamic programming.
This helped in avoiding path enumeration, which resulted inconsiderable performance gains
overAll Path QElim.

In order to evaluate the effectiveness of our generalization technique based on analysis of
Boolean skeleton of formulae inGeneralize2, we implemented a variant ofQE SMTcalled
QE SMTMod. QE SMTMod is the same asQE SMTexcept that it uses the implementation
of Generalize2as proposed in [42]. Recall from Subsection 4.2 that the implementation
of Generalize2in [42] makes use of SMT solver calls to identify unnecessaryLMCs. We
compared the time taken byQE SMTandQE SMTMod for QE from each benchmark (see

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 45

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_L
M

D
D

 Q
E

 T
im

e

All_Path_QElim QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_L
M

D
D

 Q
E

 T
im

e

All_Path_QElim QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_S
M

T
 Q

E
 T

im
e

QE_SMT_Mod QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_S
M

T
 Q

E
 T

im
e

QE_SMT_Mod QE Time

Fig. 17 Plots comparing (a)All Path QElim andQE LMDD and (b)QE SMTandQE SMTMod (All times
are in seconds)

Fig. 17(b)).QE SMT outperformedQE SMTMod except in a few cases. On profiling, we
found that most of the time taken byQE SMTMod was spent in the SMT solver calls
in Generalize2. In the few cases whereQE SMTMod performed better thanQE SMT, the
SMT solver based generalization inQE SMTModwas more effective which helped in faster
termination of the All-SMT loop.

5.3.2 Comparison with Alternative QE Techniques

We wanted to understand howQE SMT would perform if a bit-blasting or linear integer
arithmetic based alternative QE algorithm is used in place of Project. In order to do this,
we first computed the average times taken byProject for QE from conjunction-level prob-
lem instances arising fromQE SMT when QE is performed on each benchmark. We also
computed the average times taken byLayer1Blast, Layer1OT, and Layer2OT for QE
from these conjunction-level problem instances. For each benchmark, we then compared
the average QE times taken byProjectagainst those taken byLayer1BlastandLayer1OT
(see Fig. 18(a) and 18(b)). Subsequently, for each benchmark, we compared the average
time consumed byLayer3 in the Project calls with that consumed by Omega Test in the
Layer2OT calls (see Fig. 19). For a large number of benchmarks, we observed that the
bit-blasting or linear integer arithmetic based alternative QE algorithm was unsuccessful in
eliminating quantifiers from the conjunction-level problem instances. These benchmarks are
indicated by the topmost green circles in Fig. 18(a), Fig. 18(b), and Fig. 19. Note that, for
these benchmarks we could not compute the average times consumed by the bit-blasting or
linear integer arithmetic based alternative QE algorithm,as the algorithm was unsuccessful
in eliminating quantifiers from the conjunction-level problem instances. There were a few
cases where Omega Test performed better thanLayer3. This was due to the relatively larger
number of recursiveProjectcalls in these cases.

We also wanted to understand howQE SMTwould perform if the BDD based alterna-
tive techniqueBddBasedLayer2is used in place ofLayer2insideProject. In order to do this,
for each benchmark, we first computed the average time consumed byLayer2when QE is
performed usingQE SMT. For each benchmark, we then computed the average time con-
sumed byBddBasedLayer2whenBddBasedLayer2is used in place ofLayer2insideProject.
Fig. 20(a) compares these times. Many points correspondingto different benchmarks are
merged in Fig. 20(a), since the average times consumed inLayer2were significantly small
compared those consumed inBddBasedLayer2. We provide a comparison of the total times
in Fig. 20(b) for better exposition. The plots clearly demonstrate thatQE SMT performs

46 John-Chakraborty

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 L
ay

er
1_

B
la

st
 T

im
e

Average Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 L
ay

er
1_

B
la

st
 T

im
e

Average Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 L
ay

er
1_

B
la

st
 T

im
e

Average Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 L
ay

er
1_

O
T

 T
im

e

Average Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 L
ay

er
1_

O
T

 T
im

e

Average Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 L
ay

er
1_

O
T

 T
im

e

Average Project Time

Fig. 18 Plots comparing average times consumed by (a)Project and Layer1Blast and (b) Project and
Layer1OT when used insideQE SMT (All times are in milli seconds). Topmost green circles indicate the
benchmarks for whichLayer1Blastor Layer1OT was unsuccessful.

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 O
m

eg
a

T
es

t T
im

e

Average Layer3 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 O
m

eg
a

T
es

t T
im

e

Average Layer3 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 O
m

eg
a

T
es

t T
im

e

Average Layer3 Time

Fig. 19 Plot comparing average times consumed byLayer3 and Omega Test when used insideQE SMT
(All times are in milli seconds). Topmost green circles indicate the benchmarks for which Omega Test was
unsuccessful.

poorly when the BDD based alternative technique is used in place ofLayer2. Note that here
again, topmost green circles in Fig. 20(a) and Fig. 20(b) indicate the benchmarks for which
QE was unsuccessful whenBddBasedLayer2was used in place ofLayer2.

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 B
D

D
B

as
ed

La
ye

r2
 T

im
e

Average Layer2 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 B
D

D
B

as
ed

La
ye

r2
 T

im
e

Average Layer2 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

A
ve

ra
ge

 B
D

D
B

as
ed

La
ye

r2
 T

im
e

Average Layer2 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

T
ot

al
 B

D
D

B
as

ed
La

ye
r2

 T
im

e

Total Layer2 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

T
ot

al
 B

D
D

B
as

ed
La

ye
r2

 T
im

e

Total Layer2 Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

T
ot

al
 B

D
D

B
as

ed
La

ye
r2

 T
im

e

Total Layer2 Time

Fig. 20 Plot comparing (a) average times and (b) total times consumed byLayer2 and BddBasedLayer2
when used insideQE SMT (All times are in milli seconds). Topmost green circles indicate the benchmarks
for whichBddBasedLayer2was unsuccessful.

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 47

5.4 Utility of our QE algorithms in verification

5.4.1 Utility in Bounded Model Checking

Recall that thevhdl benchmarks were obtained by quantifying out a subset of internal vari-
ables from the symbolic transition relations of word-levelVHDL designs. The quantifier
eliminated formulae give abstract transition relations ofthe VHDL designs. In order to eval-
uate the utility of our QE algorithms, we usedQE LMDD to compute these abstract transi-
tion relations, and then used these abstract transition relations for checking safety properties
of the VHDL designs using bounded model checking.

In order to check if the safety property holds for the firstN cycles of operation, we first
unrolled the transition relationN times, and conjoined the unrolled relation with the nega-
tion of the property. The resulting formula was then given toan SMT solver for checking
satisfiability. Next, we obtained an abstract transition relation R′ usingQE LMDD. The ab-
stract transition relation was then unrolledN times and was conjoined with the negation of
the property to obtain a formula, which was given to the SMT solver to check satisfiability.

Table 3 Experimental results on VHDL programs

Design LOC TR
N=500

NA QL

machine1 363 (592, 22, 580) TO(TO) 52(7, 23)
machine2 373 (594, 22, 436) TO(TO) 30(6, 1)
machine3 383 (620, 25, 439) TO(TO) 33(6, 3)
machine4 253 (439, 26, 677) 1471(1441) 24(2, 0)
machine5 253 (439, 26, 509) 1443(1413) 25(2, 0)
machine6 363 (406, 17, 64) 78(53) 17(1, 1)
machine7 379 (440, 22, 69) 221(196) 22(1, 3)
machine8 251 (286, 20, 157) 193(177) 13(2, 0)
machine9 251 (286, 20, 485) 331(315) 13(2, 0)
machine10 363 (406, 17, 420) TO(TO) 16(0, 1)
machine11 363 (593, 22, 96) TO(TO) 40(8, 4)
machine12 363 (406, 17, 420) TO(TO) 220(4, 187)

board1 404 (400, 24, 194) 1442(1424) 21(12, 1)
board2 373 (420, 24, 194) TO(TO) 14(5, 1)
board3 503 (573, 54, 361) TO(TO) 16(5, 1)
board4 415 (422, 28, 198) 241(223) 62(9, 2)

All times are in seconds. TO: > 1800 seconds,LOC : Lines of code,TR: Transition relation details (dag
size, number of variables, number of bits),NA: Without abstraction : total time (simplifyingSTP time),QL :
With QE LMDD for abstraction : total time (QE LMDD time, simplifyingSTP time),N: Number of BMC

unrollings

All the SMT solver calls were unsatisfiable, which implies that the properties hold for the
first N cycles of operation of the designs, and the abstract transition relations are sufficient
to prove the properties. Table 3 gives a summary of the results for 16 designs. machine1 to
machine12 are modified versions of benchmarks from ITC99 benchmark suite [22]. The re-
maining designs are proprietary. The table clearly shows the significant performance benefit
of using abstract transition relations computed byQE LMDD in these verification exercises.

For all the designs except machine12, all the internal variables were eliminated from
the transition relation in order to obtain the abstract transition relation. For machine12, a
manually chosen subset of internal variables were eliminated. It was observed that in all

48 John-Chakraborty

the cases,Layer1andLayer2were sufficient to eliminate the variables, without any call
to Layer3. Layer2was needed only in five cases: machine6 through machine10. In these
casesLayer2eliminated 12.5% to 40% of the quantified variables.

5.4.2 Utility in Other Applications

We performed preliminary experiments to evaluate the utility of Layer1andLayer2as pre-
processing steps for conjunctions of LMCs before solving them. Towards this end, we gen-
erated 9 sets of random benchmarks. Each set included 5 benchmarks that are randomly gen-
erated conjunctions of LMCs with the same number of variables, LMEs, LMDs and LMIs.
The modulus of all LMCs in all benchmarks was fixed to 224. The number of variables
varied from 20 to 50. The number of LMCs was chosen as twice thenumber of variables.

We first measured the time taken by simplifyingSTP to solve each benchmark. We then
eliminated variables in the support of each benchmark usingLayer1andLayer2. This yields
a potentially simplified benchmark with lesser variables inthe support. We then measured
the time taken by simplifyingSTP to solve each preprocessedbenchmark. Table 4 gives a
summary of the results. Preprocessing helped in cases of benchmark sets set2, set5, and
set8. Note that 80% of LMCs in these benchmarks were LMDs and the remaining were
LMIs. Preprocessing in these cases completely solved the problem instances. In other cases
preprocessing either caused additional overhead or was of not much use.

Table 4 Experimental results on preprocessing usingLayer1andLayer2

Set V E D I NP PR AP

set1 20 14 13 13 1763 1572 2688
set2 20 0 36 4 3270 251 0
set3 20 0 4 36 3208 655 3245

set4 30 20 20 20 8415 4769 9216
set5 30 0 54 6 7423 533 0
set6 30 0 6 54 7203 1651 7218

set7 40 28 26 26 223880 11255 171207
set8 40 0 72 8 14115 1150 0
set9 40 0 8 72 14343 3561 13238

All times are in milliseconds. V: Number of variables,E: Number of LMEs,D: Number of LMDs,I :
Number of LMIs,NP: Average time in simplifyingSTP for solving the benchmarks in the set without
preprocessing,PR: Average time for preprocessing the benchmarks in the set,AP: Average time in

simplifyingSTP for solving the benchmarks in the set after preprocessing

We also performed preliminary experiments to evaluate the utility of our QE techniques
for computing Craig interpolants for Boolean combinationsof LMCs. Towards this end, we
generated a set of interpolation benchmarks in the following way. First, we selected a subset
of vhdlbenchmarks. Recall that eachvhdlbenchmark is a Boolean combination of LMCsϕ
with a subsetX of variables in its support existentially quantified. We computed∃X.ϕ using
one of our algorithms for QE from Boolean combinations of LMCs. Letα be the quantifier-
free version of∃X.ϕ thus computed, and letY be the set of variables in the support ofα.
We then created a formulaβ on variables inY∪Z, whereZ is a set of fresh variables. Letψ
be the formula¬α ∧β . Note thatϕ andψ are mutually inconsistent. The final interpolation
benchmark generated was(ϕ,ψ).

For each interpolation benchmark(ϕ,ψ) as above, we first used Mathsat to compute an
interpolant (Mathsat makes use of work in [29] for interpolant computation). We then com-

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 49

pared the time taken by Mathsat to compute interpolant with that taken byQE Combinedto
compute∃X.ϕ. Note that∃X.ϕ serves as an interpolant for(ϕ,ψ). Table 5 gives a summary
of the results for 10 benchmarks. The results show that the two techniques are incompara-
ble: Mathsat outperformedQE Combinedin some cases, whereasQE Combinedcomputed
interpolants in cases where Mathsat timed out.

Table 5 Experimental results on computing interpolants

Benchmark |X| |Y| |Z| W MS QC

benchmark1 5 16 12 16 12 36
benchmark2 6 15 8 16 45 44
benchmark3 8 10 6 8 0 3
benchmark4 17 23 11 32 7 275
benchmark5 17 23 10 32 6 142
benchmark6 21 25 8 32 TO TO
benchmark7 12 7 7 22 TO 16
benchmark8 10 17 8 32 0 29
benchmark9 3 10 3 32 TO 12
benchmark10 4 14 3 16 TO 7

All times are in seconds. TO: > 1800 seconds,|X|: Number of variables in set X,|Y|: Number of variables
in set Y,|Z|: Number of variables in set Z,W: Maximum bit-width of a variable,MS: Time taken by

Mathsat,QC: Time taken byQE Combined

6 Conclusions and Future Work

We presented a practically efficient and bit-precise algorithm for QE from conjunctions of
LMCs. Our algorithm made use of a layered framework – incomplete and cheaper layers
are applied first, expensive and complete layers are called only when required. Each of our
layers is motivated by QE problem instances that occur in practice. Our studies revealed
that using a layered framework allows us to solve such problem instances efficiently using
incomplete and cheaper techniques rather than resorting toexpensive and complete tech-
niques. Our layers make use of properties of modular arithmetic and keep the quantifier-
eliminated formula in modular arithmetic. We extended thisalgorithm to work with arbitrary
boolean combinations of LMCs. Experiments demonstrated that our techniques significantly
outperform alternative QE techniques.

There are several promising directions for future work. Ourexperiments showed that
Layer3 is significantly expensive compared to Layer2. As part of future work, we will ex-
plore development of new cheaper layers between Layer2 and Layer3. It is interesting to
study how our techniques can be extended to QE from full bit-vector arithmetic. Other than
linear modular arithmetic operations, bit-vector arithmetic primarily includes extractions,
concatenations, non-linear multiplications and bit-wiseoperations. Many QE problem in-
stances that arise in practice frequently mix expressions from different theories. It is in-
teresting to understand how our techniques can be extended to work in combined theories
such as combination of linear modular arithmetic and equality over uninterpreted functions,
combination of linear modular arithmetic and array logic etc. Another interesting direction
in future work is to integrate our QE techniques with SMT solvers, which will allow SMT
solvers to use these techniques to reason about quantified bit-vector formulas.

50 John-Chakraborty

We showed the utility of our techniques in computing abstract symbolic transition rela-
tions for improving the scalability of bounded model checking of word-level RTL designs.
We also presented preliminary experiments that demonstrate the utility of our techniques
in solving conjunctions of LMCs and computing Craig interpolants for Boolean combina-
tions of LMCs. There are many other applications that can potentially benefit from our QE
techniques. Our techniques can be used for computation of predicate abstractions, compu-
tation of strongest post-conditions and image computationin the verification of word-level
RTL designs and embedded programs. In a Counterexample-Guided Abstraction Refine-
ment (CEGAR) [14] framework, our techniques can be used to compute Craig interpolants
from spurious counterexamples. We plan to explore these applications in future.

References

1. Ax J, Kochen S (1965) Diophantine problems over local fields II. A complete set of
axioms for p-adic number theory. American Journal of Mathematics 87(3):631–648

2. Babic D, Musuvathi M (2005) Modular arithmetic decision procedure. Technical Report
TR-2005-114, Microsoft Research

3. Bierre A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic modelchecking without
BDDs. In: Proceedings of International Conference on Toolsand Algorithms for the
Construction and Analysis of Systems (TACAS), pp 193–207

4. Bjørner N (2010) Linear quantifier elimination as an abstract decision procedure. In:
Proceedings of International Joint Conference on Automated Reasoning (IJCAR), pp
316–330

5. Bjørner N, Janota M (2015) Playing with quantified satisfaction. In: Proceedings of
International Conferences on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR) - Short Presentations, pp 15–27

6. Bjørner N, Pichora M (1998) Deciding fixed and non-fixed size bit-vectors. In: Pro-
ceedings of International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pp 376–392

7. Bjørner N, Blass A, Gurevich Y, Musuvathi M (2008) Modulardifference logic is hard.
CoRR abs/0811.0987

8. Brinkmann R, Drechsler R (2002) RTL-datapath verification using integer linear pro-
gramming. In: Proceedings of IEEE VLSI Design Conference, pp 741–746

9. Bruttomesso R, Sharygina N (2009) A scalable decision procedure for fixed-width bit-
vectors. In: Proceedings of International Conference on Computer-Aided Design (IC-
CAD), pp 13–20

10. Bryant R (1986) Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8):677–691

11. Cavada R, Cimatti A, Franzen A, Kalyanasundaram K, Roveri M, Shyamasundar RK
(2007) Computing predicate abstractions by integrating BDDs and SMT solvers. In:
Proceedings of International Conference on Formal Methodsin Computer-Aided De-
sign (FMCAD), pp 69–76

12. Chaki S, Gurfinkel A, Strichman O (2009) Decision diagrams for linear arithmetic.
In: Proceedings of International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pp 53–60

13. Clarke EM, Grumberg O, Peled D (1999) Model checking. MITPress

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 51

14. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided ab-
straction refinement. In: Proceedings of International Conference on Computer Aided
Verification (CAV), pp 154–169

15. Cohen P (1969) Decision procedures for real and p-adic fields. Communications in Pure
and Applied Logic 25:213–231

16. Cooper D (1972) Theorem proving in arithmetic without multiplication. Machine Intel-
ligence 7:91–99

17. Craig W (1957) Linear reasoning: A new form of the Herbrand-Gentzen theorem. Jour-
nal of Symbolic Logic 22(3):250–268

18. Cyrluk D, Möller M, Rueß H (1997) An efficient decision procedure for thetheory of
fixed-sized bit-vectors. In: Proceedings of InternationalConference on Computer Aided
Verification (CAV), pp 60–71

19. Damm W, Dierks H, Disch S, Hagemann W, Pigorsch F, Scholl C, Waldmann U, Wirtz
B (2012) Exact and fully symbolic verification of linear hybrid automata with large
discrete state spaces. Science of Computer Programming 77(10-11):1122–1150

20. Dantzig GB, Eaves BC (1973) Fourier-Motzkin elimination and its dual. Journal of
Combinatorial Theory, Series A 14(3):288–297

21. Das S (2003) Predicate abstraction. PhD thesis, Stanford University
22. Davidson S (1999) Characteristics of the ITC’99 benchmark circuits.

cerc.utexas.edu/itc99-benchmarks/bench.html

23. Déharbe D, Fontaine P, Berre DL, Mazure B (2013) Computing prime implicants. In:
Proceedings of International Conference on Formal Methodsin Computer-Aided De-
sign (FMCAD), pp 46–52

24. Ferrante J, Rackoff C (1975) A decision procedure for thefirst order theory of real
addition with order. Society for Industrial and Applied Mathematics (SIAM) Journal on
Computing 4(1):69–76

25. Ganesh V, Dill D (2007) A decision procedure for bit-vectors and arrays. In: Proceed-
ings of International Conference on Computer Aided Verification (CAV), pp 519–531

26. Ganesh V, Berezin S, Dill D (2002) Deciding Presburger arithmetic by model checking
and comparisons with other methods. In: Proceedings of International Conference on
Formal Methods in Computer-Aided Design (FMCAD), pp 171–186

27. Gange G, Søndergaard H, Stuckey P, Schachte P (2013) Solving difference constraints
over modular arithmetic. In: Proceedings of InternationalConference on Automated
Deduction (CADE), pp 215–230

28. Gotlieb A, Leconte M, Marre B (2010) Constraint solving on modular integers. In: Pro-
ceedings of Ninth International Workshop on Constraint Modelling and Reformulation
(ModRef) co-located with International Conference on Principles and Practice of Con-
straint Programming (CP)

29. Griggio A (2011) Effective word-level interpolation for software verification. In: Pro-
ceedings of International Conference on Formal Methods in Computer-Aided Design
(FMCAD), pp 28–36

30. Hadarean L, Bansal K, Jovanovic D, Barret C, Tinelli C (2014) A tale of two solvers:
Eager and lazy approaches to bit-vectors. In: Proceedings of International Conference
on Computer Aided Verification (CAV), pp 680–695

31. Howell JA, Gregory RT (1969) An algorithm for solving linear algebraic equations
using residue arithmetic I. BIT Numerical Mathematics 9(3):200–224

32. Huang C, Cheng K (2000) Assertion checking by combined word-level ATPG and mod-
ular arithmetic constraint-solving techniques. In: Proceedings of ACM/IEEE Design
Automation Conference (DAC), pp 118–123

cerc.utexas.edu/itc99-benchmarks/bench.html

52 John-Chakraborty

33. Jain H, Clarke EM, Grumberg O (2008) Efficient Craig interpolation for linear dio-
phantine (dis)equations and linear modular equations. In:Proceedings of International
Conference on Computer Aided Verification (CAV), pp 254–267

34. John A, Chakraborty S (2011) A quantifier elimination algorithm for linear modular
equations and disequations. In: Proceedings of International Conference on Computer
Aided Verification (CAV), pp 486–503

35. John A, Chakraborty S (2013) Extending quantifier elimination to linear inequalities on
bit-vectors. In: Proceedings of International Conferenceon Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pp 78–92

36. Kapur D (2006) A quantifier-elimination based heuristicfor automatically generat-
ing inductive assertions for programs. Journal of Systems Science and Complexity
19(3):307–330

37. Komuravelli A, Gurfinkel A, Chaki S (2014) SMT-based model checking for recursive
programs. In: Proceedings of International Conference on Computer Aided Verification
(CAV), pp 17–34

38. Kroening D, Strichman O (2008) Decision procedures: An algorithmic point of view.
Springer

39. Lahiri S, Nieuwenhuis R, Oliveras A (2006) SMT techniques for fast predicate ab-
straction. In: Proceedings of International Conference onComputer Aided Verification
(CAV), pp 424–437

40. Loos R, Weispfenning V (1993) Applying linear quantifierelimination. Computer Jour-
nal 36(5):450–462

41. Mishchenko A, Chatterjee S, Jiang R, Brayton R (2005) FRAIGs: A unifying repre-
sentation for logic synthesis and verification. Technical Report, EECS Department, UC
Berkeley

42. Monniaux D (2008) A quantifier elimination algorithm forlinear real arithmetic. In:
Proceedings of International Conference on Logic for Programming Artificial Intelli-
gence and Reasoning (LPAR), pp 243–257

43. Monniaux D (2010) Quantifier elimination by lazy model enumeration. In: Proceedings
of International Conference on Computer Aided Verification(CAV), pp 585–599

44. de Moura L, Bjørner N (2007) Relevancy propagation. Technical Report TR-2007-140,
Microsoft Research

45. de Moura L, Bjørner N (2008) Z3: An efficient SMT solver. In: Proceedings of In-
ternational Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pp 337–340

46. Müller-Olm M, Seidl H (2007) Analysis of modular arithmetic.ACM Transactions on
Programming Languages and Systems (TOPLAS) 29(5)

47. Niemetz A, Preiner M, Biere A (2014) Turbo-charging lemmas on demand with don’t
care reasoning. In: Proceedings of International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp 179–186

48. Nipkow T (2008) Linear quantifier elimination. In: Proceedings of International Joint
Conference on Automated Reasoning (IJCAR), pp 18–33

49. Owre S, Rushby J, Shankar N (1992) PVS: A prototype verification system. In: Pro-
ceedings of International Conference on Automated Deduction (CADE), pp 748–752

50. Phan A, Bjørner N, Monniaux D (2012) Anatomy of alternating quantifier satisfiability
(work in progress). In: Proceedings of SMT Workshop at International Joint Conference
on Automated Reasoning (SMT@IJCAR), pp 120–130

51. Pugh W (1992) The Omega Test: A fast and practical integerprogramming algorithm
for dependence analysis. Communications of the ACM 35(8):102–114

A Layered Algorithm for Quantifier Elimination from Linear Modular Constraints 53

52. Pugh W (2013) The Omega Project: Frameworks and algorithms for the analysis and
transformation of scientific programs.www.cs.umd.edu/projects/omega

53. Somenzi F (2015) CUDD: Colorado university decision diagram package release 3.0.0.
vlsi.colorado.edu/~fabio/CUDD

54. Szabo N, Tanaka R (1967) Residue arithmetic and its applications to computer technol-
ogy. McGraw-Hill

55. Tew N, Kalla P, Shekhar N, Gopalakrishnan S (2008) Verification of arithmetic dat-
apaths using polynomial function models and congruence solving. In: Proceedings of
International Conference on Computer-Aided Design (ICCAD), pp 122–128

56. Veanes M, Bjørner N, Nachmanson L, Bereg S (2014) Monadicdecomposition. In:
Proceedings of International Conference on Computer AidedVerification (CAV), pp
628–645

57. Wintersteiger C, Hamadi Y, de Moura L (2010) Efficiently solving quantified bit-vector
formulas. In: Proceedings of International Conference on Formal Methods in Computer-
Aided Design (FMCAD), pp 239–246

www.cs.umd.edu/projects/omega
vlsi.colorado.edu/~fabio/CUDD

	Introduction
	Related Work
	QE for Conjunctions of LMCs
	Extending QE to Boolean Combinations
	Experimental Results
	Conclusions and Future Work

