
Noname manuscript No.
(will be inserted by the editor)

Symbolic Trajectory Evaluation for Word-Level
Verification: Theory and Implementation

Supratik Chakraborty · Zurab Khasidashvili ·
Carl-Johan H. Seger · Rajkumar Gajavelly ·
Tanmay Haldankar · Dinesh Chhatani ·
Rakesh Mistry

Abstract Symbolic trajectory evaluation (STE) is a model checking technique
that has been successfully used to verify many industrial designs. Existing imple-
mentations of STE reason at the level of bits, allowing signals in a circuit to take
values from a lattice comprised of three elements: 0, 1, and X. This limits the
amount of abstraction that can be achieved, and presents limitations to scaling
STE to even larger designs. The main contribution of this paper is to show how
much more abstract lattices can be derived automatically from register-transfer
level (RTL) descriptions, and how a model checker for the general theory of STE
instantiated with such abstract lattices can be implemented in practice. We discuss
several implementation issues, including how word-level circuits can be symboli-
cally simulated using a new encoding for words that allows representing X values
of sub-words succinctly. This gives us the first practical word-level STE engine,
called STEWord. Experiments on a set of designs similar to those used in industry
show that STEWord scales better than bit-level STE, as well as word-level bounded
model checking.

Keywords symbolic trajectory evaluation · word-level verification · SMT
solving · X-based abstraction · hardware verification · RTL verification ·
invalid-bit encoding · symbolic simulation

S. Chakraborty
Department of Computer Science and Engineering, IIT Bombay, India
Tel: +91-22-25767721
Fax: +91-22-25720022
E-mail: supratik@cse.iitb.ac.in

Z. Khasidashvili
Intel IDC, Haifa, Israel
E-mail: zurab.khasidashvili@intel.com

C.-J. H. Seger
was at Intel, Portland, Oregon, USA when working on this project
E-mail: cjhseger@gmail.com

R. Gajavelly · T. Haldankar · D. Chhatani · R. Mistry
were at Department of Computer Science and Engineering, IIT Bombay, India when working
on this project.

2 Supratik Chakraborty et al.

1 Introduction

Symbolic Trajectory Evaluation (STE) is a model checking technique that grew out
of multi-valued logic simulation on the one hand, and symbolic simulation on the
other hand [5]. Among various formal verification techniques in use today, STE
comes closest to functional simulation and is among the most successful formal
verification techniques used in the industry. In STE, specifications take the form of
symbolic trajectory formulas that mix Boolean expressions and the temporal next-
time operator. The Boolean expressions provide a convenient means of describing
different operating conditions in a circuit in a compact form. By allowing only
the most elementary of temporal operators, the class of properties that can be
expressed is fairly restricted as compared to other temporal logics (see [14] for a
nice survey). Nonetheless, experience has shown that many important aspects of
synchronous digital systems at various levels of abstraction can be captured using
this restricted logic. For example, it is quite adequate for expressing many of the
subtleties of system operation, including clocking schemas, pipelining control, as
well as complex data computations [24,19,18].

In return for the restricted expressiveness of STE specifications, the STE model
checking algorithm provides significant computational efficiency. As a result, STE
can be applied to much larger designs than any other model checking technique. For
example, STE is routinely used in the industry today to carry out complete formal
input-output verification of designs with several hundred thousand latches [19,
18]. Unfortunately, this still falls short of providing an automated technique for
formally verifying modern system-on-chip designs, and there is clearly a need to
scale up the capacity of STE even further.

The first approach that was pursued in this direction was structural decompo-
sition. In this approach, the user must break down a verification task into smaller
sub-tasks, each involving a distinct STE run. After this, a deductive system can
be used to reason about the collections of STE runs and verify that they to-
gether imply the desired property of the overall design [17]. In theory, structural
decomposition allows verification of arbitrarily complex designs. However, in prac-
tice, the difficulty and tedium of breaking down a property into small enough
sub-properties that can be verified with an STE engine limits the usefulness of
this approach significantly. In addition, managing the structural decomposition in
the face of rapidly changing register-transfer level (RTL) descriptions limits the
applicability of structural decomposition even further.

A different approach to increase the scale of designs that can be verified is to
use aggressive abstraction beyond what is provided automatically by current STE
implementations. If we ensure that our abstract model satisfies the requirements
of the general theory of STE, then a property that is verified on the abstract
model holds on the original model as well. Although the general theory of STE
allows a very general circuit model [23], all STE implementations so far have used
a four valued circuit model. Thus, every bit-level signal is allowed to take one of
four values: 0, 1, X or >, where X represents “either 0 or 1” and > represents
“neither 0 nor 1”. This limits the amount of abstraction that can be achieved. The
main contribution of this paper is to show how much more abstract lattices can be
derived automatically from RTL descriptions, and how the general theory of STE
can be instantiated with such a lattice to give a practical word-level STE engine
that provides significant gains in capacity and efficiency on a set of benchmarks.

Title Suppressed Due to Excessive Length 3

Operationally, word-level STE bears some similarities with word-level bounded
model checking (BMC). However, there are important differences, the most sig-
nificant one being the use of X-based abstractions on entire words or on multi-bit
slices of words in word-level STE. This allows a wide range of abstraction possibil-
ities, including a combination of user-specified and automatic abstractions – often
a necessity for complex verification tasks. Our preliminary experimental results
indicate that by carefully using X-based abstractions in word-level STE, it is in-
deed possible to strike a good balance between accuracy (by cautious propagation
of X’s) and performance (by liberal propagation of X).

The remainder of the paper is organized as follows. We begin with an overview
of the general theory of STE, and of existing STE implementations in Section 2.
This leads to the question of whether we can build a practical STE engine that rea-
sons about multi-bit words directly without bit-blasting [12] them. In Section 3,
we discuss how words in an RTL design can be split into slices, or atoms, such
that (most) RTL operators either read or write an entire atom or no part of it.
Atoms form the basis of abstracting groups of bits in our work. In Section 4, we
elaborate on the lattice of values that this atomization and resulting abstraction
generates. Section 5 presents a new way of encoding values of atoms in this lattice.
We also discuss how to symbolically simulate RTL operators and compute least
upper bounds using this encoding. Section 6 presents an instantiation of the gen-
eral theory of STE using the above lattice, and discusses an implementation. In
Section 7, we discuss various implementation issues that contribute to building a
practical word-level STE engine. Experimental results on a set of RTL benchmarks
are presented in Section 8, and we conclude in Section 9.

2 An overview of STE

In this section, we briefly review the general theory of STE [23], and discuss existing
STE implementations. A digital design M consists of primary inputs, primary
outputs, state-holding elements and computational blocks (also called gates or
operators) driving internal signals or state-holding elements. Let Sig denote the
collection of primary inputs, primary outputs, state elements and internal signals of
M . For convenience of exposition, we refer to all elements of Sig as “signals” in the
following discussion. In general, signals can be multi-bit wide, and are assumed to
take values from a bounded lattice (D,vD,tD,uD,>D,⊥D), where D denotes the
set of possible values, vD denotes a partial ordering of the “information content”
of values, the operators tD and uD denote least upper bound and greatest lower
bound respectively, >D represents an unachievable over-constrained value, and ⊥D
represents an unconstrained value with no information content. As an example, if
all signals are 1-bit wide, the relevant lattice has four elements {0, 1, X,>}, where
0 and 1 denote the usual binary values of bit-level signals, X (representing ⊥)
denotes “either 0 or 1”, and > denotes an unachievable over constrained value or
“neither 0 nor 1”. The ordering of information in the values 0, 1, X, and > is as
shown in the Hasse diagram in Fig. 1, where a value lower in the order has “less
information” than one higher up in the order.

A state of the design M is a mapping s : Sig → D. Let S denote the set of
all states of the design. Clearly S forms a lattice – one that is isomorphic to the

4 Supratik Chakraborty et al.

product of lattices of values of signals in Sig. In the subsequent discussion, we use
(S,v,t,u,>,⊥) to denote this lattice of states of M .

X

0 1

T

Fig. 1 Ternary
lattice

To model the behavior ofM over time, we define a sequence

of states as a mapping σ : ℵ → S, where ℵ denotes the set of
natural numbers. Given two sequences σ1 and σ2, we abuse
notation and say that σ1 v σ2 iff for every t ∈ ℵ, σ1(t) v σ2(t).
Let TrM : S→ S define the transition function of design M .
Thus, given a state s of M at time t, the next state of the
design at time t + 1 is given by TrM (s). A trajectory for M
is a sequence σ such that for all t ∈ ℵ, we have TrM (σ(t)) v
σ(t+ 1). Note that not all sequences are trajectories for M .

The symbolic trajectory evaluation logic of Seger and Bryant [23] provides a
simple yet useful language to specify properties of trajectories. Specifically, let P
denote a set of simple predicates over S (set of states), and let V denote a set of
symbolic Boolean variables. A predicate p is simple if there is a unique state s ∈ S
such that (i) p(s) is true, and (ii) for every state s′ such that p(s′) is true, s v s′.
The unique state s referred to above is also called the defining value of p, and
is denoted def(p). A symbolic trajectory formula can now be defined as a formula
generated by the following grammar:

ϕ ::= p, where p ∈ P | ϕ ∧ ϕ | G→ ϕ | Nϕ,

where G is a Boolean formula over the variables in V, and N denotes the next-
time operator. Formulas like G in the grammar above are also called guards in
STE parlance. The depth of a formula ϕ is one greater than the number of nested
next-time operators in ϕ. For example, the depth of the formula Np∧N(Np) is 3,
if p is a simple predicate.

An assignment φ : V → {0, 1} assigns a truth value (0 for false and 1 for true) to
every variable in V. We say that φ satisfies a Boolean formula G, denoted φ |= G, if
substituting every variable v ∈ V that appears in G with φ(v) causes G to evaluate
to true. A sequence of states σ is said to satisfy a symbolic trajectory formula ψ

with respect to an assignment φ, denoted σ |= ψ(φ), if the following hold, where
σi refers to the ith state in the sequence σ.

– σ0σ̃ |= p(φ) iff def(p) v σ0.
– σ |= (ψ1 ∧ ψ2)(φ) iff σ |= ψ1(φ) and σ |= ψ2(φ)
– σ |= (G→ ψ)(φ) iff φ 6|= G, or σ |= ψ(φ)
– σ0σ̃ |= (Nψ)(φ) iff σ̃ |= ψ(φ)

The defining sequence of a symbolic trajectory formula ψ with respect to an assign-
ment φ, denoted [ψ]φ, can now be inductively defined as follows. In the following,
t ∈ ℵ denotes a time instant, and b ∈ Sig denotes a signal in the design M .

– [p]φ(t)(b) , def(p)(b) if t = 0, and is ⊥ otherwise.
– [ψ1 ∧ ψ2]φ(t)(b) , [ψ1]φ(t)(b) t [ψ2]φ(t)(b)
– [G→ ψ]φ(t)(b) , [ψ]φ(t)(b) if φ |= G, and is ⊥ otherwise.
– [Nψ]φ(t)(b) , [ψ]φ(t− 1)(b) if t 6= 0, and is ⊥ otherwise.

By a key result of the general theory of STE [23], for every assignment φ and
for every symbolic trajectory formula ψ, the defining sequence [ψ]φ is the uniquely
defined weakest (least with respect to v) sequence satisfying ψ, assuming variables
in V are assigned values as given by φ. Note that this may not be a trajectory for
the design M .

Title Suppressed Due to Excessive Length 5

The defining trajectory of ψ with respect to M and assignment φ, denoted [[ψ]]φM ,
is similarly the weakest (least with respect to v) trajectory of M satisfying ψ, given
that variables in V are assigned values as specified by φ. The defining trajectory
is defined as follows, where t ∈ ℵ denotes time and b denotes a signal in M .

– [[ψ]]φM (0)(b) , [ψ]φ(0)(b)

– [[ψ]]φM (t+ 1)(b) , [ψ]φ(t+ 1)(b) t TrM ([[ψ]]φM (t))(b) for every t ∈ ℵ.

Symbolic trajectory evaluation concerns checking whether a design satisfies a
symbolic trajectory assertion, for all valuations of the symbolic variables in V. For
purposes of this paper, we focus on iteration-free symbolic trajectory assertions, as
defined in [23]. Specifically, such an assertion is inductively defined as follows: if
A (antecedent) and C (consequent) are symbolic trajectory formulas of the same
depth, [A⇒ C] is a symbolic trajectory assertion; in addition, if F is a symbolic
trajectory assertion, then so is [A⇒ C] ;F .

A design M is said to satisfy [A⇒ C] if every trajectory of M that satisfies A
also satisfies C. The central theorem of the theory of symbolic trajectory evalua-
tion [23] asserts that checking the above satisfaction is equivalent to checking if for

every assignment φ of symbolic variables in V, we have [C]φ v [[A]]φM . In case the
above ordering doesn’t hold for all assignments φ, symbolic trajectory evaluation
also determines the set of assignments (represented as a Boolean expression over

V) under which [C]φ v [[A]]φM holds.
Existing implementations of STE reason at the level of bits, i.e. each signal in

the design is assumed to be 1-bit wide. The corresponding lattice of values has
three non-> elements, 0 1 and X, as shown in Fig. 1. In order to symbolically
reason about ternary values, STE tools usually use dual-rail encoding, in which
every bit-level signal v is encoded using two binary variables v0 and v1. Intuitively,
vi indicates whether v can take the value i, for i in {0, 1}. Thus, 0, 1 and X

are encoded by the valuations (0, 1), (1, 0) and (1, 1), respectively, of (v1, v0). By
convention, (v1, v0) = (0, 0) denotes >.

The semantics of logical operators like AND and NOT can be easily extended to
work over the {0, 1, X,>} lattice. Specifically, let u0, u1, v0, v1 be binary values such
that (u1, u0) and (v1, v0) encode ternary values using dual-rail encoding. It is easy
to see that (u1, u0)AND (v1, v0) = (u1 ∧ v1, u0 ∨ v0) and NOT(u1, u0) = (u0, u1),
where ∨ and ∧ denote Boolean conjunction and disjunction respectively.

It should be noted, however, that the extension of semantics of logical operators
is not unique. In fact the only requirement it must satisfy is monotonicity, i.e.,
given an n-argument Boolean operator ◦ and ai vD bi for 1 ≤ i ≤ n, we must have
◦(a1, ..., an) vD ◦(b1, ..., bn). The least pessimistic extension • of ◦ is defined as:

∀a1, . . .an ∈ D, •(a1, . . .an) = uD{◦(a1, . . . an) | ai ∈ {0, 1} ∧ ai vD ai}

Although this provides an extension that is as accurate as possible, while still
satisfying the monotonicity requirements, in practice computing this extension for
an operator taking many inputs can be prohibitively expensive. As a pragmatic
solution, the extension of complex operators are derived by first expressing the
operator in terms of AND and NOT and then using the extensions of these primitive
operators. However, it should be noted that for some situations, this simplistic
approach is insufficient. For example, consider an if-then-else operator, denoted
as ite(c, t, e). If we use the least pessimistic extension, the output will be 1 if

6 Supratik Chakraborty et al.

both the t and e inputs are 1 and c is X. However, if we use the expression
NOT(NOT(c AND t) AND NOT(NOT(c) AND e)), it is easy to see that the result
will be X for this assignment.

Using dual-rail encoding, the least upper bound of (u1, u0) and (v1, v0) is given
by (u1 ∧ v1, u0 ∧ v0). To check whether (u1, u0) vD (v1, v0), it suffices to check if
v0 → u0 and v1 → u1, where → denotes logical implication. State-of-the-art bit-
level STE tools, viz. Forte [24], use dual-rail encoding to effectively reason about
ternary-valued signals via their binary encoding. This makes it possible to solve
bit-level STE problems by leveraging the significant advances made in Boolean rea-
soning engines over the past three decades, viz. Binary Decision Diagram (BDD)
packages [6,25], And-Inverter-Graph (AIG) packages [3] and propositional satisfi-
ability (SAT) solvers [13].

3 Atomizing words

While dual-rail encoding provides an elegant way to harness the power of Boolean
reasoning engines to reason about ternary-valued signals, it has an undesired con-
sequence as well. Specifically, if there are n binary signals in a circuit, post dual-rail
encoding, we must deal with 2n binary variables in the encoded circuit. This can
pose serious scalability issues when verifying designs with wide datapaths, large
memories, etc. Attempts to scale STE to large designs must therefore raise the
level of abstraction beyond that of individual bits. Raising the level of abstraction
in STE has other associated benefits as well. In recent years, there has been signif-
icant progress in the development of Satisfiability Modulo Theories (SMT) solvers
that incorporate highly sophisticated word-level reasoning engines. Examples of
such solvers include Z3 [10], CVC4 [2], Boolector [4], Beaver [15], MathSAT [9],
Yices [11] and the like. Therefore, an STE engine that reasons about words can
harness the power of word-level reasoning in modern SMT solvers. For circuits
with wide datapaths (words), this can lead to significant computational efficiency
vis-a-vis bit-level STE engines, when checking symbolic trajectory assertions.

In order to use word-level STE, we must first define a lattice of values for
words, and then instantiate the general theory of STE [23] with this lattice. For
an m-bit word, two extreme choices for the lattice of values are as follows.

1. A “cautious” lattice that keeps track of the ternary value of each bit in the word
independently. Elements of this lattice are m-dimensional vectors of values from
{0, 1, X,>} (see Fig. 1), where the ith component of the vector gives the value
of the ith bit in the word. Since > represents an unachievable value for a signal,
a vector having > in at least one component represents an unachievable value
for the word. Therefore, all vectors with one or more components set to > can
be collapsed to a single unachievable value for the entire word (top element of
the lattice of values).

2. A “liberal” lattice that keeps track of the values of individual bits only if these
values are in {0, 1}. If any bit has the value X, the value of the entire word
is liberally treated as unknown (bottom element of the lattice of values). For
example, in a 2-bit word, this lattice doesn’t make a distinction between the
first bit being X and the second bit being X – in both cases, the word is
considered to have an unknown value. As in the previous case, if any bit in the

Title Suppressed Due to Excessive Length 7

word has the value >, the entire word is considered to have an unachievable
value (top element of the lattice of values).

Unfortunately, both the above lattices present practical difficulties in imple-
mentation. In the case of the cautious lattice, there are 3m+1 values in the lattice
for an m-bit word. Symbolically representing values from such a large lattice and
reasoning about them is likely to incur overheads similar to that incurred in bit-
level STE. Thus, while the cautious lattice promises to maintain a high degree of
precision when reasoning about words, the scalability of an STE engine using this
lattice will be poor. The liberal lattice, on the other hand, has only 2m + 2 values
for an m-bit word. This is almost the same as the count of values the word can
take if we allow only {0, 1} values for the individual bits. An STE engine using
this lattice is therefore likely to scale much better. However, the precision of the
analysis will be poor, since any bit being unknown in a wide word renders the
value of the entire word unknown. For example, consider a 128-bit word w, whose
least significant bit has the value X, while all other bits have the value 0. In the
liberal lattice, we must represent the value of w using the bottom element (i.e.,
unknown value). Extracting the most significant 64 bits of w therefore gives us an
unknown value using the liberal lattice, although the extracted bits are really all
0s. Therefore, the lattice of values of words must be carefully chosen to strike a fine
balance between precision and scalability. We propose one such approach below in
which we split a word into appropriate sub-words, and use a liberal lattice for each
sub-word, while keeping track of the values of different sub-words independently,
as in a cautious lattice.

The idea of splitting words into sub-words for the purpose of simplifying analy-
sis is not new (see e.g. [16]). An aggressive approach to splitting (e.g., bit-blasting)
can lead to proliferation of narrow sub-words, making our technique vulnerable to
the same scalability problems that arise with dual-rail encoding. Therefore, we
adopt a more controlled approach to splitting. Specifically, we wish to split words
in such a way that we can speak of an entire sub-word having an unknown value
without having to worry about which individual bits in the sub-word have the
value X. Towards this end, we partition every word in an RTL design into sub-
words, which we henceforth call atoms, such that every RTL statement (except a
few discussed later) that reads or updates a word either does so for all bits in an
atom, or for no bit in an atom. In other words, no RTL statement (except the few
discussed at the end of this section) reads or updates an atom partially.

Formalizing atomization: Let w be a word of width m in an RTL design M . Let
0 denote the least significant and rightmost bit position, and m − 1 denote the
most significant and leftmost bit position of w. For integer constants p, q such
that 0 ≤ p ≤ q ≤ m − 1, we say that the sub-word of w from bit position p

to q is a slice of w, and denote it by w[q : p]. Let SliceOp(w, q, p) be a generic
RTL operator that either reads or writes the slice w[q : p]. Concrete instances of
SliceOp are commonly used in RTL designs, e.g. in the SystemVerilog [1] statement
c[4:1] = a[10:7] + b[5:2]. We say that SliceOp(w, q, p) induces an atomization of
w, as shown in Table 1, where Atomsw denotes the set of atoms into which w is
partitioned.

Note that different RTL statements may refer to different slices of the same
word w. Consequently, atomizations of w induced by different operators in these

8 Supratik Chakraborty et al.

Condition Atomsw
q < m− 1 and p > 0 {w[m− 1 : q + 1], w[q : p], w[p− 1 : 0]}
q < m− 1 and p = 0 {w[m− 1 : q + 1], w[q : 0]}
q = m− 1 and p > 0 {w[m− 1 : p], w[p− 1 : 0]}
q = m− 1 and p = 0 {w[m− 1 : 0]} = {w}

Table 1 Computing atoms induced by SliceOp(w, q, p)

RTL statements may not coincide. We consolidate different atomizations of the

same word by computing their coarsest refinement. Given two sets of atoms, Atoms
(1)
w

and Atoms
(2)
w , of an m-bit word w, their coarsest refinement, denoted Atoms

(1)
w ⇓

Atoms
(2)
w , is a set of atoms of w with the following property: for every m1,m2 ∈

{0, . . .m− 1}, the 1-bit slices w[m1 : m1] and w[m2 : m2] belong to the same atom

in Atoms
(1)
w ⇓ Atoms

(2)
w iff they belong to the same atom in both Atoms

(1)
w and

Atoms
(2)
w . It is easy to verify that the coarsest refinement is uniquely defined, and

is a commutative and associative operator. This suggests a simple algorithm for
determining the coarsest refinement of all atomizations of a word w induced by
operators in various statements in an RTL design. For every word w[m − 1 : 0]
in the RTL design, we maintain a working set, WSetAtomsw, of atoms. Initially,
WSetAtomsw is initialized to {w[m−1 : 0]}. For every operator SliceOp that refers to
a slice of w in an RTL statement, we compute Atomsw using Table 1, and determine
the coarsest refinement of Atomsw and WSetAtomsw. The working set WSetAtomsw
is then updated to the coarsest refinement thus computed, and the above process
repeated for every RTL statement in the design.

We illustrate the result of applying the above atomization algorithm on a simple
example below. Fig. 2(a) shows a SystemVerilog code fragment, and Fig. 2(b)
shows the resulting coarsest refinement of atomization of words, where the solid
vertical bars represent the boundaries of atoms. Note that every SystemVerilog
statement in Fig. 2(a) either reads or writes all bits in an atom, or no bit in an
atom.

Since we wish to reason at the granularity of atoms, we must interpret word-
level reads and writes in terms of the corresponding atom-level reads and writes.
This can be done either by modifying the RTL, or by taking appropriate care
when symbolically simulating the RTL. For simplicity of presentation, we show in
Fig. 2(c) how the code fragment in Fig. 2(b) would appear if we were to use only the
atoms identified in Fig. 2(b). Note that no statement in the modified RTL updates
or reads a slice of an atom. However, a statement may be required to read a slice
of the result obtained by applying an RTL operator to atoms (see, for example,
Fig. 2(c) where we read a slice of the result obtained by adding concatenated
atoms). In our implementation, we do not modify the original RTL. Instead, we
symbolically simulate the original RTL, but take care to generate the expressions
for various atoms as if they were obtained from simulating the modified RTL.

Once the boundaries of all atoms are determined, we choose to disregard values
of atoms in which some bits are set to X, and the others are set to 0 or 1. This choice
is justified since all bits in an atom are read or written together. Thus, either all
bits in an atom are considered to have values in {0, 1}, or all of them are considered

Title Suppressed Due to Excessive Length 9

to have the value X. This implies that values of an m-bit atom can be encoded
using m+ 1 bits, instead of using 2m bits as in dual-rail encoding. Specifically, we
can associate an extra “invalid” bit with every m-bit atom. Whenever the “invalid”
bit is set, all bits in the atom are assumed to have the value X. Otherwise, all bits
are assumed to have values in {0, 1}. We show later in Sections 5.2.1 and 5.2.2 how
the value and invalid bit of an atom can be recursively computed from the values
and invalid bits of the atoms on which it depends.

reg [3:0] x;
reg [7:0] y;
reg [7:0] z;
reg [3:0] w;
...
z[4:1] = x + y[5:2];
w = z[3:0] + y[3:0];
...

x

y

z

w

reg [3:0] x;
reg [1:0] y_1_0; reg [1:0] y_3_2;
reg [1:0] y_5_4; reg [1:0] y_7_6;
reg z_0_0; reg [2:0] z_3_1;
reg z_4_4; reg [2:0] z_7_5;
reg [3:0] w;
...
z_4_4 = (x + {y_5_4, y_3_2})[3:3];
z_3_1 = (x + {y_5_4, y_3_2})[2:0];
w = ({z_3_1, z_0_0} + {y_3_2, y_1_0});
...

Bitpositions
7 6 5 4 3 2 1 0

(a) (b)

(c)

Concatenation

Fig. 2 Illustrating atomization

Memories and arrays in an RTL
design are usually indexed by vari-
ables instead of by constants. This
makes it difficult to atomize mem-
ories and arrays statically, and we
do not atomize them. Similarly, if
a design has a logical shift opera-
tion, where the amount of shift is
specified by a variable, it is difficult
to statically identify sub-words that
are not split by the shift operation.
We ignore all such RTL operations
during atomization, and instead use
special techniques to reason about
them. Section 5.2.2 discusses this in
further detail.

4 Lattice of atom values

Recall that our primary motivation for atomizing words was to have a liberal
lattice for atoms. In other words, if any bit in an atom has the value X, we want
to represent the entire atom as having an unknown value, without keeping track of
which which bits in the atom had the value X. Therefore, we let an m-bit atom a

take values from the set {
m bits︷ ︸︸ ︷

0 · · · 00, . . .

m bits︷ ︸︸ ︷
1 · · · 11,X}, where X is a single abstract value

that denotes an assignment of X to at least one bit of a. Note the conspicuous
absence of values like 0X1 · · · 0 in the above set. Fig. 3(a) shows the lattice of
values for a 3-bit atom, ordered by information content. The > element is added
to complete the lattice, and represents an unachievable over-constrained value.
Fig. 3(b) shows the lattice of values of the same atom if we allow each bit to take
values in {0, 1, X}. Clearly, the lattice in Fig. 3(a) is shallower and sparser than
that in Fig. 3(b).

Consider an m-bit word w that has been partitioned into non-overlapping
atoms of widths m1, . . .mr, where

∑r
j=1mj = m. The lattice of values of w is

given by the product of r lattices, each corresponding to the values of an atom
of w. For convenience of representation, we simplify the product lattice by col-
lapsing all values that have at least one atom set to > (and therefore represent
unachievable over-constrained values), to a single > element. It can be verified
that the height of the product lattice (after the above simplification) is given by
r + 1, the total number of elements in it is given by

∏r
j=1

(
2mj + 1

)
+ 1 and the

number of elements at level i from the bottom is given by (ri)
∏i
j=1 2mj , where

10 Supratik Chakraborty et al.

XXX

XX0 X0X 0XX 1XX X1X XX1

X00 0X0 00X 0X1 01X X01 X10 10X 1X0 11X 1X1 X11

000 001 010 011 100 110 101 111

TTT
(subsumes T01, T1T, ...)

A deep and dense lattice
 Height: 4; # Elements: 28

X

000 001 010 011 100 101 110 111

T

A shallow and sparse lattice
 Height: 2; # Elements: 10

(b)

(a)

Fig. 3 Atom-level and bit-level lattices

0 < i ≤ r. It is not hard to see from these expressions that atomization using few
wide atoms (i.e., small values of r and large values of mj) gives shallow and sparse
lattices compared to atomization using many narrow atoms (i.e., large values of r
and small values of mj). The special case of a bit-blasted lattice (see Fig. 3(b)) is
obtained when r = m and mj = 1 for every j ∈ {1, . . .m}.

Using a sparse lattice is advantageous in symbolic reasoning since we need
to encode a small set of values. Using a shallow lattice helps in converging fast
when computing least upper bounds – an operation that is crucially needed when
performing symbolic trajectory evaluation. However, making the lattice of values
sparse and shallow comes at the cost of losing precision of reasoning. By atomizing
words based on their actual usage in an RTL design, and by abstracting values of
atoms wherein some bits are set to X and the others are set to 0 or 1, we strike a
balance between depth and density of the lattice of values, which in turn impacts
scalability, on one hand, and precision of reasoning on the other.

5 Symbolic simulation with invalid-bit encoding

As mentioned earlier, an m-bit atom can be encoded with m+1 bits by associating
an “invalid bit” with the atom. For notational convenience, we use val(a) to denote
the value of the m bits constituting atom a, and inv(a) to denote the value of its
invalid bit. Thus, an m-bit atom a is encoded as a pair (val(a), inv(a)), where val(a)
is a bit-vector of width m, and inv(a) is of Boolean type. Given (val(a), inv(a)),
the value of a is given by ite(inv(a),X, val(a)), where “ite” denotes the usual “if-
then-else” operator. For convenience of exposition, we call this encoding “invalid-
bit encoding”. Note that invalid-bit encoding differs from dual-rail encoding even
when m = 1. Specifically, if a 1-bit atom a has the value X, we can use either
(0, true) or (1, true) for (val(a), inv(a)) in invalid-bit encoding. In contrast, there is
a single value, namely (a0, a1) = (1, 1), that encodes the value X of a in dual-
rail encoding. We will see in Sections 5.2.2 and 7.3 how this degree of freedom
in invalid-bit encoding of X can be exploited to simplify the symbolic simulation

Title Suppressed Due to Excessive Length 11

of word-level operations on invalid-bit-encoded operands, and also to simplify the
computation of least upper bounds.

Symbolic simulation and computation of least upper bounds (lub) are key com-
ponents of symbolic trajectory evaluation. We discuss below how to compute the
lub of two invalid-bit encoded values. In order to symbolically simulate an RTL
design in which every atom is invalid-bit encoded, we must first determine the se-
mantics of word-level RTL operators with respect to invalid-bit encoding. Towards
this end, we present below a generic technique for computing the value component
of the invalid-bit encoding of the result of applying a word-level RTL operator.
Subsequently, we discuss how the invalid-bit component of the encoding is com-
puted. All terms and formulas used in the following discussion are assumed to be
in the theory of bit-vectors with equality.

5.1 Computing least upper bounds

Let a = (val(a), inv(a)) and b = (val(b), inv(b)) be invalid-bit encoded elements in
the lattice of values for an m-bit atom. Let c be an element of the same lattice,
defined as follows.

(i) If (¬inv(a) ∧ ¬inv(b) ∧ (val(a) 6= val(b)), then c = >.
(ii) Otherwise, inv(c) = inv(a) ∧ inv(b) and val(c) = ite(inv(a), val(b), val(a)) (or

equivalently val(c) = ite(inv(b), val(a), val(b))).

Lemma 1 The least upper bound of a and b in the lattice of values for an m-bit atom,

is c.

Proof In case (i), lub(a, b) is clearly >, which is also the value of c. If the condition
in case (i) does not hold, we have three sub-cases.

– inv(a) is true and inv(b) is false: Since the value of a is X, we must have lub(a, b) =
b. The invalid-bit encoding of c in this case is (val(b), false). Clearly, lub(a, b) = c.

– inv(a) is false and inv(b) is true: Similar to the above sub-case.
– Both inv(a) and inv(b) are false and val(a) = val(b): In this case, the values of a

and b are identical and non-X. Therefore, lub(a, b) = a (or equivalently b). The
invalid-bit encoding of c in this case has false for the invalid bit component,
and val(a) (or val(b)) for the value component. Therefore, lub(a, b) = c. ut

Note the freedom in defining val(c) in case (ii) above. This freedom comes from
the observation that if inv(c) = true, the actual value of val(c) is irrelevant. Fur-
thermore, if the condition in case (i) is not satisfied and if both inv(a) and inv(b)
are false, then val(b) = val(a), even if the symbolic representations of val(a) and
val(b) are different. This allows us to simplify the expression for val(c) by replacing
it with val(b) or val(a), depending on which is simpler to represent.

5.2 Symbolically simulating RTL operators

Let op be a word-level RTL operator of arity k, and let rexpr be the result of
applying op on v1, v2, . . . vk, i.e., rexpr = op(v1, v2, . . . vk). For each i in {1, . . . k},
suppose the bit-width of operand vi is mi, and suppose the bit-width of rexpr

12 Supratik Chakraborty et al.

is mrexpr. In general, rexpr is an expression in the theory of bit-vectors with
equality, and the bit-width of rexpr is defined in the standard way (see, for
example, Chapter 6 of [20]). We assume that each operand is invalid-bit en-
coded, and we are interested in computing the invalid-bit encoding of a spec-
ified slice of the result, say rexpr[q : p], where 0 ≤ p ≤ q ≤ mrexpr − 1. Let
〈op〉 : {0, 1}m1 × · · · × {0, 1}mk → {0, 1}mrexpr denote the RTL semantics of op.
For example, if op denotes 32-bit unsigned addition, then 〈op〉 is the function that
takes two 32-bit operands and returns their 32-bit unsigned sum. In the following
discussion, for notational convenience, we abuse notation and use inv(expr) and
val(expr) to denote the invalid bit and value of a bit-vector expression expr.

5.2.1 Computing the value component

The value component of the invalid-bit encoding of rexpr[q : p], i.e. val(rexpr[q : p]),
can be computed if we know 〈op〉 and val(vi), for every i ∈ {1, . . . k}. Significantly,
we do not need inv(vi) for any i ∈ {1, . . . k} to compute val(rexpr[q : p]). The
following lemma formalizes this, assuming 〈op〉(val(v1), val(v2), . . . val(vk))

)
[q : p] is

well-defined. Note that this precludes some corner cases for specific operators, viz.
division by zero. For purposes of our discussion, we assume that these cases are
handled by separate checks, and do not consider them below.

Lemma 2 Let vexpr =
(
〈op〉(val(v1), val(v2), . . . val(vk))

)
[q : p]. Then vexpr correctly

computes val(rexpr[q : p]), where rexpr = op(v1, v2, . . . vk).

Proof By definition of invalid-bit encoding, if inv(rexpr[q : p]) is true, the value of
val(rexpr[q : p]) does not matter. Hence, we focus on the case where inv(rexpr[q : p])
is false. By definition, in this case, rexpr[q : p] has a value in {0, 1}q−p+1. If the
invalid bits of all operands vi are false, then

(
〈op〉(val(v1), val(v2), . . . val(vk))

)
[q : p]

clearly computes the value of val(rexpr[q : p]). Otherwise, suppose inv(vi) = true for
some i ∈ {1, . . . k}. By the definition of invalid-bit encoding, vi can have any value in
{0, 1}mi . However, since inv(rexpr[q : p]) is false, it must be the case that rexpr[q : p]
evaluates to the same value in {0, 1}q−p+1, regardless of what value vi takes in
{0, 1}mi . Therefore, we can set vi to any value in {0, 1}mi , and specifically to val(vi),
in order to obtain the correct value of val(rexpr[q : p]). By repeating this argument
for all vi such that inv(vi) is true, we see that

(
〈op〉(val(v1), val(v2), . . . val(vk))

)
[q : p]

correctly computes val(rexpr[q : p]). ut

Example 1 Consider four invalid-bit encoded atoms, a = (00, false), b = (00, true),
c = (01, false) and d = (01, true), where each atom is 2 bits wide. We wish to
compute the invalid-bit encoding of a +2 c, b +2 c, a +2 d and b +2 d, where +2

denotes the two-bit arithmetic sum of its operands. Note that in only one of the
four cases (i.e. a +2 c) is the invalid bit of the sum false. However, by Lemma 2,
the value 01 (computed as 00 +2 01) correctly gives the value component of the
sum in each of the four cases. Indeed, when the invalid bit of the sum is true, the
value component is irrelevant, and 01 is as good as any other value.

Lemma 2 tells us that when computing val(rexpr[q : p]), we can effectively
assume that invalid-bit encoding is not used. This significantly simplifies symbolic
simulation with invalid-bit encoding. Note that this simplification would not have
been possible if we did not have the freedom to ignore val(rexpr[q : p]) when
inv(rexpr[q : p]) is true.

Title Suppressed Due to Excessive Length 13

5.2.2 Computing the invalid bit component

We now turn to computing inv(rexpr[q : p]), where rexpr = op(v1, v2, . . . vk). In
general, this depends on inv(vi) for all i ∈ {1, . . . k}, and on val(vj) for all j such
that inv(vj) = false. We first discuss how to obtain the invalid bit precisely. Unfor-
tunately, the resulting formula involves quantifiers, and eliminating the quantifiers
or reasoning about them may not always be computationally efficient in practice.
Hence, we also present sound and simple approximations of inv(op(v1, . . . vk)[q : p])
for several commonly occurring RTL operators (i.e. op).

Every argument vi in op(v1, v2, . . . vk) can be thought of as representing the
value of an mi-bit wide atom, and hence is an element in the lattice defined by
{0,1, . . . 2mi − 1,X,>}. Let um and vm denote the greatest lower bound and
partial ordering, respectively, in the lattice of values for an m-bit atom. The least
pessimistic value of rexpr[q : p] is then given by uq−p+1{〈op〉(u1, u2, . . . uk)[q :
p] | ui ∈ {0, 1}mi ∧ vi vmi ui}. If we use invalid-bit encoding, the formula
for inv(rexpr[q : p]) must evaluate to true whenever the least pessimistic value of
rexpr[q : p], as given above, is X.

We assume that 〈op〉(u1, u2, . . . uk)[q : p] evaluates to a value in {0, 1}q−p+1 if
ui ∈ {0, 1}mi for all i ∈ {1, . . . k}. This assumption can be easily verified to hold
for all RTL operators op in a language like SystemVerilog, with the exception of
a few corner cases, viz. division by zero. As mentioned earlier, we assume that
such corner cases are handled by separate checks, and do not worry about them
in the subsequent discussion. Recalling the structure of the lattice of values for a
(q−p+1)-bit atom, it is now easy to see that the least pessimistic value of rexpr[q :
p] is X iff 〈op〉(u1, u2, . . . uk)[q : p] evaluates to two distinct values in {0, 1}q−p+1,
for two different tuples (u1, u2, . . . uk), where ui ∈ {0, 1}mi and vi vmi ui for all
i ∈ {1, . . . k}. We formalize this idea below to obtain a formula for inv(rexpr[q : p]).

Let µ ∈ {0, 1}k denote a k-dimensional vector, and let µj denote the jth com-
ponent (1 ≤ j ≤ k) of µ. For example, if k = 5 and µ = 10010, then µ2 = µ5 = 1
and µ1 = µ3 = µ4 = 0. For every µ ∈ {0, 1}k, define χµ to be the formula(∧

i:µi=1 inv(vi)
)
∧
(∧

j:µj=0 ¬inv(vj)
)

. Furthermore, define Y to be the sequence

of free variables (y1, y2, . . . yk), where each yi is a free variable of bit-width mi (i.e.
bit-width of vi) that does not occur in any of val(v1), . . . , val(vk). We use Y and Z

to denote two such distinct sequences, where yi and zi are distinct free variables
for every i. As a natural extension, we also use 〈op〉(Y) to denote the bit-vector
term obtained by applying the semantics of op on arguments that are the newly
introduced free variables yi; the interpretation of 〈op〉(Z) is analogous. For exam-
ple, if k = 5, then 〈op〉(Y) = 〈op〉(y1, y2, y3, y4, y5). Using the above notation, we
can now give a formula for inv(rexpr[q : p]).

Lemma 3 Let rexpr = op(v1, v2, . . . vk). Then inv(rexpr[q : p]) is given by

∨
µ∈{0,1}k

χµ ∧ ∃Y ∃Z
∧i:µi=0 ((yi = zi) ∧ (yi = val(vi)))

∧(
〈op〉(Y)[q : p] 6= 〈op〉(Z)[q : p]

)

Proof Consider any tuple ((val(v1), inv(v1)), . . . (val(vk), inv(vk))) of invalid-bit en-
coded values of (v1, . . . vk). Without loss of generality, and using the notation intro-
duced above, let µ ∈ {0, 1}k be a k-dimensional vector such that inv(vi) = true iff

14 Supratik Chakraborty et al.

µi = 1. It follows that χµ is true, and χλ is false for all λ ∈ {0, 1}k\{µ}. The formula

for inv(rexpr[q : p]) therefore simplifies to ∃Y ∃Z

∧i:µi=0 ((yi = zi) ∧ (yi = val(vi)))

∧(
〈op〉(Y)[q : p] 6= 〈op〉(Z)[q : p]

)
.

Denote this formula by Φµ.
From the semantics of first-order logic, Φµ evaluates to true iff there exist two

tuples of values Y ∗ = (y∗1 , . . . y
∗
k) and Z∗ = (z∗1 , . . . z

∗
k) such that the following

conditions hold: (i) y∗i , z
∗
i ∈ {0, 1}

mi for all i ∈ {1, . . . k}, (ii) y∗i = z∗i = val(vi) for
all i such that µi = 0, and (iii) 〈op〉(y∗1 , . . . y∗k)[q : p] 6= 〈op〉(z∗1 , . . . z∗k)[q : p]. Given
condition (i), condition (iii) is equivalent to requiring that (〈op〉(y∗1 , . . . y∗k)[q : p])
uq−p+1 (〈op〉(z∗1 , . . . z∗k)[q : p]) = X; it also implies that Y ∗ and Z∗ are necessarily
distinct. Since µi = 1 iff inv(vi) = true, and since inv(vi) = true iff vi represents the
value X (bottom of the lattice of values of an mi-bit atom), it follows that given
condition (i), condition (ii) is equivalent to asserting that vi vmi y

∗
i and vi vmi z

∗
i

for every i ∈ {1, . . . k}. It is now straightforward to see that Φµ evaluates to true

iff uq−p+1{〈op〉(u1, u2, . . . uk)[q : p] | ui ∈ {0, 1}mi ∧ vi vmi ui} is X. Since the
choice of µ, i.e. which inv(vi) is false and which is true, was arbitrary, the formula
in Lemma 3 evaluates to true iff the least pessimistic value of rexpr[q : p] is X.
Thus, the formula gives the correct value of inv(rexpr[q : p]). ut

Unfortunately, eliminating the quantifiers in the formula for inv(op(v1, v2, . . . vk)[q :
p]) may not always be easy. Reasoning about such quantified formulas in down-
stream analysis, viz. when finding satisfying assignments using an SMT solver,
may also be computationally inefficient in general. Therefore, we approximate
inv(op(v1, v2, . . . vk)[q : p]) in a sound manner for some RTL operators op. Infor-
mally, we allow inv(rexpr[q : p]) to evaluate to true (denoting rexpr[q : p] = X)
even in cases where a careful calculation would have shown that rexpr[q : p] is not
X. Formally, a value v in the lattice of values for rexpr[q : p] is said to be a sound

approximation for rexpr[q : p] if v is lower than or equal to the least pessimistic
value of rexpr[q : p] in the lattice order vq−p+1. Let iexpr be a formula in the
theory of bit-vectors with equality, and vexpr be the bit-vector expression given by
Lemma 2. It is easy to see that (vexpr , iexpr) soundly approximates rexpr[q : p] us-
ing invalid-bit encoding if and only if the following condition, henceforth denoted
SoundCond, holds.
SoundCond: Whenever iexpr evaluates to false, the least pessimistic value of rexpr[q :

p] is non-X.

Note that SoundCond is equivalent to saying that the formula for inv(rexpr[q : p]),
as given in Lemma 3, logically implies iexpr . A sound approximation of rexpr[q : p]
may set iexpr to true even when the least pessimistic value of rexpr[q : p] is non-
X. As a degenerate case, if iexpr is identically set to true, we obtain a sound,
but hopelessly conservative, approximation of rexpr[q : p]. Striking a fine balance
between conservativeness and computational efficiency of the approximation is
key to building a practically useful symbolic simulator using invalid-bit encoding.
Lemma 2 gives an easy way to obtain vexpr . Our experience indicates that simple
approximations of inv(rexpr[q : p]) can also be carefully chosen when the formula
in Lemma 3 is not amenable to easy simplification, to yield a sound approximation
of rexpr[q : p]. We have derived templates for calculating inv(op(v1, . . . vk) either
exactly or approximately for all word-level RTL operators op that appear in our
benchmarks. We present below a discussion of how this is done for a subset of im-

Title Suppressed Due to Excessive Length 15

portant RTL operators; the cases for the other operators is similar. Importantly,
we use a recursive formulation for calculating/approximating inv(rexpr[q : p]). This
allows us to recursively compute invalid bits of atoms obtained by applying com-
plex sequences of word-level operations to a base set of atoms.

For notational convenience, we say that a formula computes the invalid bit of
an RTL operation exactly if it is semantically equivalent to the formula given in
Lemma 3. If, on the other hand, a formula satisfies SoundCond, but is not equivalent
to the formula in Lemma 3, we say that it computes a sound approximation of the
invalid bit.

Bit-wise logical operations: Let ¬m and ∧m denote bit-wise negation and con-
junction operators respectively, for m-bit words. If a, b, c and d are m-bit words
such that c = ¬ma and d = a∧mb, the following formulas can be used for computing
inv(c[q : p]) and approximating inv(d[q : p]) respectively.

inv(c[q : p]) = inv(a[q : p]) (1)

inv(d[q : p]) =
(
inv(a[q : p]) ∨ inv(b[q : p])

)
∧
(
inv(a[q : p]) ∨ (val(a[q : p]) 6= 0)

)
∧
(
inv(b[q : p]) ∨ (val(b[q : p]) 6= 0)

)
(2)

Proposition 1 Equation (1) computes the invalid bit of (¬ma)[q : p] exactly, and

equation (2) gives a sound approximation of the invalid bit of (a ∧m b)[q : p].

Proof The correctness of equation (1) follows from the definition of bit-wise nega-
tion. The soundness of the approximation in equation (2) follows from the ob-
servation that if the Boolean expression on the right hand side of the equation
evaluates to false, the result of the bit-wise and operation is necessarily non-X.
Hence, SoundCond holds. ut

Example 2 Consider the following 2-bit wide invalid-bit encoded atoms: a1 =
(00, false), a0 = (11, true), b1 = (01, true) and b0 = (00, false). We use a1a0 to de-
note the 4-bit wide word obtained by concatenating a1 and a0, with (a1a0)[3 :
2] = a1 and a1a0[1 : 0] = a0. The interpretation of b1b0 is similar. Suppose
d = a1a0 ∧4 b1b0. Using Lemma 2 and equation (2), the invalid-bit encoding
of d[3 : 2] is obtained as follows.

– val (d[3 : 2]) = (0011 ∧4 0100)[3 : 2] = 00.
– inv (d[3 : 2]) = (false ∨ true) ∧ (false ∨ (00 6= 00)) ∧ (true ∨ (01 6= 00)) = false

Note that we have used inv ((a1a0)[3 : 2]) = inv(a1) = false in the above calcu-
lation. Similarly, we have used inv ((b1b0)[3 : 2]) = inv(b1) = true. To obtain the
least pessimistic value of d[3 : 2], we must compute the bit-wise conjunction of
each element of {0000, 0001, 0010, 0011} (i.e. values of a1a0) with each element of
{0000, 0100, 1000, 1100} (i.e. values of b1b0), and then find the greatest lower bound
of the (·) [3 : 2] slices of the results of the conjunctions. It is easy to see that each
of the above conjunctions yields 0000, and therefore all the (·) [3 : 2] slices are 00.
It follows that their greatest lower bound is also 00. Observe that this matches the
invalid-bit encoding of d[3 : 2] obtained above, i.e. (00, false).
Suppose we now wish to compute the invalid-bit encoding of d[3 : 0]. Following the
same reasoning as above, the least pessimistic value of d[3 : 0] is 0000. However,
equation (2) gives the following:

16 Supratik Chakraborty et al.

– val (d[3 : 0]) = (0011 ∧4 0100)[3 : 0] = 0000.
– inv (d[3 : 0]) = (true ∨ true) ∧ (true ∨ (0011 6= 0000)) ∧ (true ∨ (0100 6= 0000)) =

true

Note that we have used inv ((a1a0)[3 : 0]) = true since inv(a0) = true. Similarly, we
have used inv ((b1b0)[3 : 2]) = true. Clearly, the invalid-bit encoding of d[3 : 0], i.e.
(0000, true) is a sound approximation of the least pessimistic value.

The invalid bits of other bit-wise logical operators (like or, xor, nor, nand, etc.)
can be obtained by first expressing them in terms of ¬m and ∧m and then using
the above approximations. Alternatively, they can also be computed directly such
that SoundCond holds.

If-then-else statements: Consider an RTL conditional assignment statement “if
(BExpr) then x = Exp1; else x = Exp2;”. Symbolically simulating this statement
gives x = ite(BExpr,Exp1,Exp2), where BExpr is a Boolean expression (or bit-vector
expression of bit-width 1), and Exp1 and Exp2 are bit-vector expressions of the
same bit-width as that of x. The formula for inv(x[q : p]), as given by Lemma 3,
can now be simplified as follows.

inv(x[q : p]) = ite(inv(BExpr), temp1, temp2), where (3)

temp1 = inv(Exp1[q : p]) ∨ inv(Exp2[q : p]) ∨ (val(Exp1[q : p]) 6= val(Exp2[q : p]))

temp2 = ite(val(BExpr), inv(Exp1[q : p]), inv(Exp2[q : p]))

Proposition 2 Equation (3) computes the invalid bit of ite(BExpr,Exp1,Exp2)[q : p]
exactly.

Proof We consider two cases.

– If inv(BExpr) = false, then inv(x[q : p]), as given by Lemma 3, is semantically
equivalent to ite(val(BExpr), inv(Exp1[q : p]), inv(Exp2[q : p])).

– If inv(BExpr) = true, then the value of BExpr can be either true or false. The
following four sub-cases arise.
– If both inv(Exp1[q : p] and inv(Exp2[q : p]) are false and if val(Exp1[q : p]) =

val(Exp2[q : p]), i.e. Exp1[q : p] and Exp2[q : p] have identical non-X values,
then regardless of the value of BExpr, we have x = Exp1 (or equivalently,
Exp2). Hence the formula in Lemma 3 evaluates to false, and the least
pessimistic value of x[q : p]) is non-X. In this case, equation (3) correctly
computes inv(x[q : p]) as false.

– If inv(Exp1)[q : p] is true, then by letting BExpr take the value true, it is
easy to see that the formula in Lemma 3 evaluates to true, and the least
pessimistic value of x[q : p] is the same as that of Exp1[q : p], i.e. X. Note
that equation (3) correctly computes inv(x[q : p]) as true in this case.

– If inv(Exp2)[q : p] is true, then by letting BExpr take the value false, the same
argument as above shows that equation (3) correctly computes inv(x[q : p])
as true.

– Suppose inv(Exp1)[q : p] = inv(Exp2)[q : p] = false, but val(Exp1[q : p]) 6=
val(Exp2[q : p]). The formula in Lemma 3 simplifies in this case to

∃y∃z (ite(y, val(Exp1[q : p]), val(Exp2[q : p])) 6= ite(z, val(Exp1[q : p]), val(Exp2[q : p])) .

Title Suppressed Due to Excessive Length 17

It is easy to see that this simplifies further to true. In other other words,
the least pessimistic value of x[q : p] is X. Note that equation (3) correctly
computes inv(x[q : p]) as true in this case. ut

Example 3 Consider a = (001, false), b = (000, false) and c = (0, true), where a

and b are 3-bits wide, and c is 1-bit wide. Using Lemma 2 and equation (3), the
invalid-bit encoding of d = ite(c, a, b)[2 : 1] is computed as follows.

– val(d) = ite(0, 001, 000)[2 : 1] = 00.
– inv(d) = ite(true, temp1, temp2), where temp1 = inv(a[2 : 1])∨ inv(b[2 : 1])∨ (00 6=

00) = false, and temp2 = ite(0, false, false) = false. Therefore, inv(d) = false.

Note that the least pessimistic value of d is

u2(ite(0, 001, 000)[2 : 1], ite(1, 001, 000)[2 : 1]) = u2 (00, 00) = 00.

This matches the invalid-bit encoded value of d computed above, i.e. (00, false).

Word-level addition: Let +m denote an m-bit addition operator. Thus, if a and
b are m-bit operands, a +m b generates an m-bit sum and a 1-bit carry. Let the
carry generated after adding the least significant r bits of the operands be denoted
carryr. We discuss below how to compute sound approximations of inv(sum[q : p])
and inv(carryr), where 0 ≤ p ≤ q ≤ m− 1 and 1 ≤ r ≤ m.

It is easy to see that the value of sum[q : p] is completely determined by a[q : p],
b[q : p] and carryp. Therefore, we can compute inv(sum[q : p]) as follows.

inv(sum[q : p]) = inv(a[q : p]) ∨ inv(b[q : p]) ∨ inv(carryp) (4)

Proposition 3 Equation (4) computes the invalid bit of sum[q : p] exactly

Proof Since the ith bit of sum is obtained by XOR-ing the ith bit of a, the ith bit
of b and the carry out from the (i− 1)st bit position, if any, it follows that if any
of a[q : p], b[q : p] or carryp is X, sum[q : p] can have at least two distinct values,
and hence its least pessimistic value is X. On the other hand, if all of inv(a[q : p]),
inv(b[q : p]) and inv(carryp) are false, then a[q : p], b[q : p] and carryp have non-X
values. Hence, there is no uncertainty in the value of sum[q : p], i.e. sum[q : p] is
non-X. Therefore, the formula for inv(sum[q : p]) in equation (4) is equivalent to
that in Lemma 3. ut

The computation of inv(carryp) (or inv(carryr) in general) is more interesting,
and deserves special attention. We identify three cases below, and argue that
inv(carryp) is false in each of these cases. In the following, 0 denotes the p-bit
constant 00 · · · 0.

1. If
(
inv(a[p − 1 : 0]) ∨ inv(b[p − 1 : 0])

)
= false, then both inv(a[p − 1 : 0]) and

inv(b[p − 1 : 0]) must be false. Therefore, there is no uncertainty in the values
of either a[p− 1 : 0] or b[p− 1 : 0], and inv(carryp) = false.

2. If
(
¬inv(a[p − 1 : 0]) ∧ (val(a[p − 1 : 0]) = 0)

)
, then the least significant p

bits of val(a) are all 0. Regardless of val(b), it is easy to see that in this case,
val(carryp) = 0 and inv(carryp) = false.

3. This is the symmetric counterpart of the case above, i.e.,
(
¬inv(b[p − 1 : 0]) ∧

(val(b[p− 1 : 0]) = 0)
)
.

18 Supratik Chakraborty et al.

We now approximate inv(carryp) by combining the conditions corresponding to
the three cases above. In other words,

inv(carryp) =
(
inv(a[p− 1 : 0])∨inv(b[p− 1 : 0])

)
∧(

inv(a[p− 1 : 0])∨(val(a[p− 1 : 0]) 6=0)
)
∧(

inv(b[p− 1 : 0])∨(val(b[p− 1 : 0]) 6=0)
)

(5)

Proposition 4 Equation (5) gives a sound approximation of inv(carryp).

Proof It follows from the arguments given above that if the right-hand side of
equation (5) evaluates to false, then the value of carryp is necessarily non-X. Hence,
SoundCond holds. ut

Example 4 Consider the following 2-bit wide invalid-bit encoded atoms: a0 =
(11, true), a1 = (00, false), b0 = (00, false) and b1 = (11, false), with the usual
interpretations of a1a0 and b1b0. Let sum = a1a0 +4 b1b0. Using Lemma 2 and
equations (4) and (5), the invalid-bit encoding of sum[3 : 2] is approximated as
follows.

– val(sum[3 : 2]) = (0011 +4 1100)[3 : 2] = (1111)[3 : 2] = 11.
– inv(sum[3 : 2]) = inv(a1) ∨ inv(b1) ∨ inv(carry2) = inv(carry2). To obtain a

sound approximation of inv(carry2), we use equation (5). Therefore, inv(sum[3 :
2]) = (inv(a0) ∨ inv(b0)) ∧ (inv(a0) ∨ (val(a0) 6= 0)) ∧ (inv(b0) ∨ (val(b0) 6= 0)).
Since b0 = (00, false), this gives inv(sum[3 : 2]) = false.

Note that the least pessimistic value of (a1a0 +4 b1b0)[3 : 2] is

u2
(

(0000 +4 1100)[3 : 2], (0001 +4 1100)[3 : 2],
(0010 +4 1100)[3 : 2], (0011 +4 1100)[3 : 2]

)
= 11.

This is exactly what (val(sum[3 : 2]), inv(sum[3 : 2])) = (11, false) represents using
invalid-bit encoding.

Suppose we now wish to calculate inv(carry3). Using equation (5), we obtain
this as (inv(a[3 : 0]) ∨ inv(b[3 : 0])) ∧ (inv(a[3 : 0]) ∨ (val(a[3 : 0]) 6= 0)) ∧(inv(b[3 :
0]) ∨ (val(b[3 : 0]) 6= 0)). Since inv(a0) = true, we use inv(a[3 : 0]) = true. Similarly,
since val(b1) = 11, we have val(b[3 : 0]) 6= 0. Therefore, inv(carry3) = true by
equation (5). However, from the least pessimistic value analysis done above, we
know that the least pessimistic value of carry3 is 0. Thus, equation (5) gives a
sound approximation of inv(carry3) in this case.

Word-level division: Let ÷m denote an m-bit division operator; this is among
the most complex word-level RTL operators for which we have derived an ap-
proximation of the invalid bit expression. If a and b are m-bit operands, a ÷m b

generates an m-bit quotient, say quot, and an m-bit remainder, say rem. Further-
more, a is called the dividend and b is called the divisor in a ÷m b. We wish to
compute inv(quot[q : p]) and inv(rem[q : p]), where 0 ≤ p ≤ q ≤ m−1. For notational
convenience, we represent constant bit vectors by their unsigned integer interpre-
tations. Since division by zero is undefined, we assume that the value 0 is excluded
from the lattice of values of b for purposes of the following discussion. The case of
a÷m b with (val(b), inv(b)) = (0, false) leads to a “divide-by-zero” exception, and is
assumed to be handled separately.

Title Suppressed Due to Excessive Length 19

The following expressions give approximations for inv(quot[q : p]) and inv(rem[q :
p]). In these expressions, we assume that i is a non-negative integer that does not
appear in the RTL and is such that 2i ≤ val(b) < 2i+1. Note that this assumption
precludes the possibility of b taking the value 0 from its lattice of values.

inv (quot[q : p]) = temp1 ∧ (inv(b) ∨ temp2) , where (6)

temp1 = inv (a[m− 1 : p]) ∨ (val (a[m− 1 : p]) 6= 0) and

temp2 = ite
(
val(b) = 2i, temp3, (i < p) ∨ inv (a[m− 1 : p])

)
, where

temp3 = (p+ i ≤ m− 1) ∧ inv (a[min(q + i,m− 1) : p+ i])

inv (rem[q : p]) = temp1 ∧ (inv(b) ∨ temp4) , where (7)

temp4 = ite
(
val(b) = 2i, (i > p) ∧ inv (a[min(q, i− 1) : p]) , i ≥ p

)
Although equations (6) and (7) are formulated assuming 2i ≤ val(b) < 2i+1, the
assumption itself does not appear in the equations, and must be taken into account
separately. We will see later that a word-level STE problem is solved by generating
a formula in the theory of bit-vectors with equality, such that every satisfying
assignment of the formula gives a counterexample to the verification problem.
We incorporate assumptions like 2i ≤ val(b) < 2i+1 in the final bit-vector formula
representing the verification condition for an STE problem. This ensures that every
assignment of i and val(b) in a counterexample satisfies the assumptions made with
respect to them.

Proposition 5 Equations (6) and (7) give sound approximations of quot[q : p] and

rem[q : p], respectively.

Proof We first claim that if temp1 in equations (6) and (7) evaluates to false,
then both inv(quot[q : p]) and inv(rem[q : p]) are false, regardless of the value of
b (assuming b does not take the value 0). To see why this is true, note that if
val(a[m − 1 : p]) = 0 and inv(a[m − 1 : p]) = false, then val(a) < 2p. Since dividing
an unsigned integer by another unsigned integer can neither yield a quotient nor a
remainder that exceeds the dividend, it follows that both quot and rem are < 2p.
Therefore, quot[q : p] = rem[q : p] = 0, and both inv(quot[q : p]) and inv(rem[q : p])
are false.

If temp1 evaluates to true, then for the right-hand side of equations (6) and (7)
to evaluate to false, we must have inv(b) = false. Hence, we focus only on the case
when b 6= X. We consider two sub-cases below.

– val(b) = 2i : In this case, a÷m b effectively shifts a right by i bit positions, and
the least significant i bits of a forms the remainder. Therefore, val(quot[q : p])
is a[q + i : p + i] if q + i ≤ m − 1; it is a[m − 1 : p + i] padded to the left with
q + i − (m − 1) 0s if q + i > m − 1 ≥ p + i, and it is 0 if p + i > m − 1. It
follows that if p+ i > m−1, then val(quot[q : p]) = 0 and inv(quot[q : p]) = false.
Otherwise, inv(quot[q : p]) = inv(a[k : p+ i]), where k = min(q + i,m− 1).
It is also easy to see that val(rem[q : p]) is a[q : p] if i > q; it is a[i − 1 : p]
padded with q− (i− 1) 0s to the left if q ≥ i > p, and it is 0 if i ≤ p. Therefore,
if i ≤ p, we have inv(rem[q : p]) = false; otherwise, inv(rem[q : p]) = inv(a[k : p]),
where k = min(q, i− 1).

20 Supratik Chakraborty et al.

– 2i < val(b) < 2i+1 : In this case, we claim the following propositions are true.
P1: If i ≥ p, then inv(quot[q : p]) can be approximated by inv(a[m− 1 : p]).
P2: If i < p, then inv(rem[q : p]) = false

To see why these claims are true, note that val(a) can be written as a1 ·2p+a2,
where a1 and a2 are the integer representations of a[m− 1 : p] and a[p− 1 : 0],
respectively. Clearly, 0 ≤ a2 < 2p. Considering quotients and remainders on
division by val(b), suppose a1 = k1 · val(b) + r1 and a2 = k2 · val(b) + r2, where
0 ≤ r1, r2 < val(b) and k1, k2 ≥ 0. Suppose further that 2p·r1+r2 = k3·val(b)+r3,
where 0 ≤ r3 < val(b) and k3 ≥ 0. It is an easy exercise to see that the quotient
obtained on dividing val(a) by val(b) is 2p ·k1 +k2 +k3, and the remainder is r3.
Thus, val(quot) = 2p ·k1 +k2 +k3 and val(rem) = r3. We discuss what happens
when i ≥ p and i < p.
– If i ≥ p, then val(b) > 2i ≥ 2p > a2. Since val(b) > a2, we have k2 = 0 and
r2 = a2 < 2p. It follows that quot = 2p · k1 + k3. If k3 < 2p, then quot[q : p]
depends only on k1, which in turn, depends only on a[m− 1 : p] and val(b).
Therefore, if inv(a[m − 1 : p]) is false (i.e. a[m − 1 : p] is non-X), there is
no uncertainty in the value of quot[q : p]. Hence inv(quot[q : p]) is false if
(i ≥ p) ∧ ¬inv(a[m− 1 : p]) holds.
We now show that k3 is indeed strictly less than 2p. Since 2p · r1 + r2 =
k3 · val(b) + r3, after rearranging terms, we get k3 · val(b)− 2p · r1 = r2 − r3.
If possible, let k3 = 2p + d, where d ≥ 0. Substituting for k3, we get 2p ·
(val(b) − r1) + d · val(b) = r2 − r3. Since val(b) > r1, the left hand side of
the above equation is at least as large as 2p, while the right hand side is
at most r2, which, in turn, is less than 2p. This gives a contradiction, and
therefore, k3 must be strictly less than 2p.

– If i < p, we have rem = r3 < val(b) < 2i+1 ≤ 2p. Therefore, val(rem[q : p]) =
0, and inv(rem[q : p]) is false in this case.

The above arguments show that when the right-hand side of equation (6) is false,
then quot[q : p] is indeed non-X. Similarly, when the right-hand side of equation (7)
is false, rem[q : p] is non-X. Hence, SoundCond is satisfied in both cases. ut

Example 5 Consider a0 = (11, true), a1 = (00, false) and b = (0101, true). Let a1a0
denote the 4-bit word formed by concatenating a1 and a0, as in Example 4. Clearly,
if we use a cautious lattice, the value of a1a0 would be 00XX and that of b would
be XXXX (with the restriction that b cannot take the value 0000). Therefore, a1a0
represents an unsigned integer in the interval [0, 3], and b represents an unsigned
integer in the interval [1, 15]. Let quot and rem denote the quotient and remainder
obtained on dividing a1a0 by b, i.e. a1a0 ÷4 b. We assume that b, being the divisor,
cannot take the value 0000 in its lattice of values. The invalid-bit encodings of
quot[3 : 2] and rem[3 : 2] can be obtained using Lemma 2 and equations (6) and
(7) as follows. Note that p = 2, q = 3 and m = 4 in this example. In addition,
since val(b) = 5, we have i = 2.

– val(quot[3 : 2]) = (quotient of (0011 ÷4 0101))[3 : 2] = (0000)[3 : 2] = 00.
– inv(quot[3 : 2]) = temp1 ∧ (true ∨ temp2), where temp1 = inv(a1) ∨ (val(a1) 6=

0) = false. Therefore, inv(quot[3 : 2] = false.
– val(rem[3 : 2]) = (remainder of (0011 ÷4 0101))[3 : 2] = (0011)[3 : 2] = 00.
– inv(rem[3 : 2]) = temp1 ∧ (true ∨ temp4) = false, since temp1 = false.

Thus, quot[3 : 2] = (00, false) and rem[3 : 2] = (00, false). The least pessimistic value
of quot[3 : 2] is obtained by computing the greatest lower bound of the (·)[3 : 2]

Title Suppressed Due to Excessive Length 21

slices of quotients obtained on dividing elements in the set {0000, 0001, 0010, 0011}
by elements in the set {0001, 0010, . . . 1111}. It is easy to see that each of the slices
thus obtained is 00; hence their greatest lower bound is 00. Similarly, the least
pessimistic value of rem[3 : 2] can also be seen to be 00. These values coincide
with those obtained above, i.e. (00, false) for both quot[3 : 2] and rem[3 : 2], using
invalid-bit encoding.

In the above example, both quot[3 : 2] and rem[3 : 2] ended up having no
uncertainty in their values although both the divisor and quotient had uncertain
values. This was because temp1 evaluated to false. In the next example, we show
that the same thing can happen even when temp1 evaluates to true.

Example 6 Consider a0 = (11, true), a1 = (01, false) and b = (0100, false). We wish
to compute quot[3 : 2] and rem[3 : 2], obtained on dividing a1a0 by b, as in the
previous example. Note that p = 2, q = 3, m = 4 and i = 2 in this example.

Proceeding as in Example 5, we get:

– val(quot[3 : 2]) = (quotient of (0111 ÷4 0100))[3 : 2] = (0001)[3 : 2] = 00.
– inv(quot[3 : 2]) = temp1 ∧ (false ∨ temp2), where temp1 = inv(a1) ∨ (val(a1) 6=

0) = true, and temp2 = ite
(
(0100 = 22), temp3, false ∨ inv(a1)

)
= temp3.

In turn, temp3 = (2 + 2 ≤ 4 − 1) ∧ inv(a1[1 : 1]) = false. Therefore, inv(quot[3 :
2] = false.

– val(rem[3 : 2]) = (remainder of (0111 ÷4 0100))[3 : 2] = (0011)[3 : 2] = 00.
– inv(rem[3 : 2]) = temp1 ∧ (false ∨ temp4) = temp4, since temp1 = true. Since
temp4 = ite

(
(0100 = 22), (2 > 2) ∧ inv(a0[1 : 1])

)
= false, we have inv(rem[3 :

2]) = false.

Therefore, quot = (00, false) and rem = (00, false). It can be verified that this
matches exactly the least pessimistic values obtained using a cautious lattice.

The next example shows that equations (6) and (7) can give true for inv(quot[q :
p]) and inv(rem[q : p]), even when the corresponding least pessimistic values are
non-X.

Example 7 Consider a0 = (00, false), a1 = (01, true), b0 = (00, true) and b1 =
(11, false). Let a = a1a0 and b = b1b0, as before. Clearly, a represents an un-
signed integer in {0, 4, 8, 12} and b represents an unsigned integer in {12, 13, 14, 15}.
Suppose we wish to compute a ÷4 b, and are interested in inv(quot[1 : 1]) and
inv(rem[1 : 1]). It is easy to see that the set of possible values of the quotient is
{0, 1} and that for the remainder is {0, 4, 8, 12}. Therefore, the least pessimistic
values for quot[1 : 1] and rem[1 : 1] are both 0, i.e. non-X.

Let us now compute inv(quot[1 : 1]) and inv(rem[1 : 1]) from equations (6) and
(7). Since inv(b0) = true, we have inv(b) = true. Similarly, since inv(a1) = true, we
have inv(a[3 : 1]) = true. Furthermore, p = 1, q = 1, m = 4 and i = 3 in this case.
Using equations (6) and (7), it is now easy to see that inv(quot[1 : 1]) = inv(rem[1 :
1] = true.

Memory/array reads and updates: Let A be a 1-dimensional array, i be an index
expression, and x be a variable and Exp be an expression of the base type of A.
On symbolically simulating the RTL statement “x = A[i];”, we update the value
of x to read(A, i), where the read operator is as in the extensional theory of arrays
(see [26] for details). Similarly, on symbolically simulating the RTL statement

22 Supratik Chakraborty et al.

“A[i] = Exp”, we update the value of array A to update(Aorig, i,Exp), where Aorig

is the (array-typed) expression for A prior to simulating the statement, and the
update operator is as in the extensional theory of arrays.

Since the expression for a variable or array obtained by symbolic simulation
may now have read and update operators, we must find ways to compute sound
approximations of the invalid bit for expressions of the form inv(read(A, i)[q : p]).
Note that since A is an array, the symbolic expression for A is either (i) Ainit, i.e.
the initial value of A at the start of symbolic simulation, or (ii) update(A′, i′,Exp′)
for some expressions A′, i′ and Exp′, where A′ has the same array-type as A, i′ has
an index type, and Exp′ has the base type of A. For simplicity of exposition, we
assume that all arrays are either completely initialized or completely uninitialized
at the start of symbolic simulation. The invalid bit in case (i) is then easily seen
to be true if Ainit denotes an uninitialized array, and false otherwise. In case (ii),
let v denote read(A, i). The invalid bit of v[q : p] can then be approximated as:

inv(v[q : p]) = inv(i) ∨ inv(i′) ∨ ite
(
val(i) = val(i′), inv(Exp′[q : p]), temp

)
,where(8)

temp = inv(read(A′, i)[q : p]).

Proposition 6 Equation (8) gives a sound approximation of inv(read(A, i)[q : p]).

Proof If neither i nor i′ is X, i.e. the corresponding invalid bits are false, there are
two cases to consider.

– If val(i) = val(i′), then read(update(A′, i′,Exp′), i) = Exp′. Hence, the required
invalid bit is inv(Exp′[q : p]).

– If val(i) 6= val(i′), then read(update(A′, i′,Exp′), i) = read(A′, i). Hence, the re-
quired invalid bit is inv(read(A′, i)[q : p]).

Hence, SoundCond is satisfied in this case. ut

Example 8 Let A be a 1-dimensional array of size 4, where each element of A
is a 4-bit word. Let b0 = (00, false) and b1 = (11, true) be two 2-bit atoms,
and let b = b1b0 be the 4-bit atom obtained by concatenating b1 and b0 in the
usual way. Suppose A has been updated twice, and its symbolic expression is
update(update(Ainit, 00, b), 01, 0000). Thus, the least pessimistic value of some ar-
ray elements (e.g. A[00]) are X, while that for some other array elements (e.g.
A[01]) are non-X. Let i = (00, false) be a 2-bit atom representing an array index.
Clearly, the least pessimistic value for read(A, i)[1 : 0] is 00. Using equation (8), we
obtain inv(read(A, i)[1 : 0]) = inv(read(update(Ainit, 00, b), i)[1 : 0]) = inv(b0) = false.
Similarly, val(read(A, i)[1 : 0]) can be seen to be 00 from Lemma 2. Thus, the
invalid-bit encoded value of read(A, i)[1 : 0] is (00, false). This matches exactly the
least pessimistic value of read(A, i)[1 : 0], i.e. 00.

We now provide an example that illustrates why equation (8) may yield true, even
when the least pessimistic value of read(A, i)[q : p] is non-X.

Example 9 Let A be a 1-dimensional array of size 4, where each element of A is
a 4-bit word. Suppose A has been updated twice, and its symbolic expression
is update(update(Ainit, 00, 0000), 01, 0000). Thus, the array elements at indices 00
and 01 have the same value, i.e. 0000. Let i0 = (1, true) and i1 = (0, false), and let
i = i1i0 be a 2-bit atom representing an array index. Clearly, the least pessimistic
value for read(A, i)[3 : 0] is 0000. However, since inv(i0) = true, we have inv(i) = true.
Therefore, equation (8) gives inv(read(A, i)[3 : 0]) = true.

Title Suppressed Due to Excessive Length 23

If the RTL design has multi-dimensional arrays, we simply treat them as arrays
of arrays, and apply the same reasoning as above. For example, if B is a two-
dimensional array, the RTL statement “B[i][j] = Exp;” updates the symbolic
value of array B to update(Borig, i, update(read(Borig, i), j,Exp)), where Borig is the
symbolic expression for B prior to simulating the RTL statement. Similarly, the
RTL statement “x = B[i][j];”updates the symbolic value of x to read(read(B, i), j).

Shift operations: We discuss below the left-shift operation; the case of the right-
shift operation can be analyzed similarly. A shift operation can specify either a
constant number of bit positions to shift, or a variable number of positions to
shift. We analyze these two cases separately since shifting by a variable number of
positions does not allow us to statically identify the operand’s bit-slices of interest.
In either case, we assume that a left shift operation pads 0s in the least significant
shifted positions. Let�k denote a unary left-shift operator of the first kind, where
k is a positive integer constant, and let � denote a binary left-shift operator of
the second kind. Let a, b, c, d be m-bit words such that b = �k a and c = a� d.
For simplicity of presentation, we assume no wrap-around in shifting; the case
of wrap-around can be analyzed in a similar way. The following equations give
inv(b[q : p]) and a sound approximation of inv(c[q : p]), where 0 ≤ p ≤ q ≤ m− 1.

inv(b[q : p]) = ite(p ≥ k, inv(a[q − k : p− k]), temp), where (9)

temp = ite(q ≥ k, inv(a[q − k : 0]), false)

inv(c[q : p]) = temp1 ∧ temp2,where (10)

temp1 = inv(d) ∨ (inv(a[q : 0]) ∧ (val(d) ≤ q)),
temp2 = inv(a[q : 0]) ∨ (val(a[q : 0]) 6= 0)

Proposition 7 Equation (9) computes inv((�k a)[q : p]) exactly, and equation (10)

gives a sound approximation of inv((a� d)[q : p]).

Proof If p ≥ k, then clearly (�k a)[q : p] = a[q − k : p − k]. If p < k, there are two
cases to consider.

– If q ≥ k, then (�k a)[q : p] is simply a[q − k : 0] padded with k − p 0s to the
right. Hence, inv((�k a)[q : p]) = false.

– If k > q, then (�k a)[q : p] consists of only the 0s padded at the right. Hence,
(�k a)[q : p] = 0.

It follows that the formula in equation (9) is semantically equivalent to that in
Lemma 3.

Suppose inv(a[q : 0]) is false, i.e. a[q : 0] is non-X. If inv(d) is also false, i.e. d has
a unique value, then then clearly (a� d)[q : p] has no uncertain bits, regardless of
the value of d. Similarly, if val(a[q : 0]) has all 0’s, then once again (a � d)[q : p]
is non-X, regardless of the value of d. Hence, in these cases, inv ((a� d)[q : p]) is
false. Finally, if inv(d) is false and val(d) > q, then since the rightmost d bits of
(a� d) are always 0, we have val(a� d)[q : p] = 0 and inv(a� d)[q : p] = false.

The above argument shows that when the right-hand side of equation (10)
evaluates to false, the least pessimistic value of inv((a� d)[q : p]) is indeed non-X.
Hence SoundCond holds. ut

24 Supratik Chakraborty et al.

Example 10 Suppose a = (1000, false) and d = d1d0, where d1 = (1, true) and
d0 = (0, false). Clearly, d can only take values in the set {00, 10}, representing either
0 or 2. It turns out that for either of these values of d, we have (a� d)[2 : 2] = 0.
Therefore, the least pessimistic value of (a � d)[2 : 2] is 0. Let us now evaluate
equation (10). Since inv(d1) = true, we have inv(d) = true, and hence temp1 = true.
Similarly, since val(a[2 : 0] = 000, we have temp2 = false as well. Therefore, inv(a�
d)[2 : 2] is false. From Lemma 2, we also have val(a � d)[2 : 2] = 0. Therefore,
the invalid-bit encoded value of (a � d)[2 : 2] is (0, false). Note that this matches
exactly the least pessimistic value obtained above.

To see why equation (10) may yield true even when the least pessimistic value
of (a � d)[q : p] is non-X, consider the same example as above, but suppose
a = (1010, false) now. It turns out that the least pessimistic value of (a� d)[2 : 2]
is still 0. However, inv(a � d)[2 : 2], obtained from equation (10), is true in this
case.

6 Word-level STE

A word-level RTL design M consists of (potentially multi-bit) inputs, outputs,
memory elements and internal signals. For notational simplicity, we treat bit-level
signals as 1-bit words, and uniformly talk of words. Every word in the circuit is
assumed to be atomized as described in Section 3. An m-bit wide atom takes values
from the set {0 . . .2m − 1,X}, where constant bit-vectors have been represented
in bold face by their integer values. The values themselves are ordered in a lattice
as discussed in Section 4. Let A denote the collection of all atoms in the design
M , and let DA denote the collection of values of all atoms in A. A state of the
design is a mapping s : A → DA ∪ {>} such that if a ∈ A is an m-bit atom, then
s(a) is a value in the set {0, . . .2m − 1,X,>}. As discussed in Section 2, the set
of all states, S, of the design forms a lattice that is isomorphic to the product of
lattices of values of atoms in A. In the following, we use v to denote the partial
order in the lattice of states.

We adapt the definition of symbolic trajectory formulas given in Section 2 for
purposes of word-level STE (henceforth called WSTE). Let V be a set of symbolic
bit-vector variables. A simple word predicate is a predicate of the form “a is vexpr”,
where a is an atom in the design M , and vexpr is an expression in the theory of
bit-vectors with (zero or more) variables in V. The predicate “a is vexpr” is said
to be well-formed if the bit-widths of a and vexpr are equal. The defining value of
“a is vexpr” is the unique state in which a is set to the value of vexpr and all other
atoms are set to X. An assignment φ : V → {0, 1}∗ is a mapping of variables in V
to {0, 1}-vectors such that for every v ∈ V, the bit-widths of v and φ(v) match.

Following the convention used in STE tools like Forte, we specify a symbolic
trajectory formula as a set of tuples (g, a, vexpr , t1, t2), where g (the guard) is a
quantifier-free formula in the theory of bit-vectors with free variables in V, a is the
name of an atom in the design, vexpr is a bit-vector expression over variables in V
such that vexpr has the same bit-width as a, and t1, t2 are natural numbers denoting
time instants such that t2 ≥ t1 + 1. For convenience of exposition, let N0ϕ denote
ϕ, and let Nkϕ denote k nested applications of the next-time operator on ϕ, for
every natural number k. The tuple f = (g, a, vexpr , t1, t2) represents the symbolic
trajectory formula ϕf ≡

∧t2−1
k = t1

Nk (g → (a is vexpr)). Note that the simple word

Title Suppressed Due to Excessive Length 25

predicate “a is vexpr” can also be specified in the tuple notation by letting the
guard g be true. A set F of tuples like the one above represents the symbolic
trajectory formula ϕF =

∧
f∈F (ϕf).

Let Ant be a set of antecedent tuples, and Cons be a set of consequent tuples
for the design M under verification. The pair (Ant,Cons) represents the symbolic
trajectory assertion [ϕAnt ⇒ ϕCons]. In WSTE, we wish to determine if for every

assignment φ of variables in V, we have [ϕCons]
φ v [[ϕAnt]]

φ
M . Often, we want to

restrict the set of assignments φ to those that satisfy some constraints. In such
cases, we specify the constraints as a quantifier-free formula Constr in the theory of
bit-vectors, and ask if [ϕCons]

φ v [[ϕAnt]]
φ
M for every φ such that φ |= Constr. If Constr

is unsatisfiable, or if the defining trajectory [[ϕAnt]]
φ
M has > (an unachievable value)

as the value of an atom at any time instant, the symbolic trajectory assertion is
vacuously satisfied. We avoid such cases by requiring Constr to be satisfiable and
by requiring [[ϕAnt]]

φ
M to not have > as the value of any atom at any time.

WSTE using invalid-bit encoding: We have developed a tool called STEWord that
uses symbolic simulation with invalid-bit encoding to construct a formula ξAnt,Cons,M
in the theory of bit-vectors, such that ξAnt,Cons,M is valid iff the symbolic trajectory
assertion [ϕAnt ⇒ ϕCons] holds on the design M . If we wish to check the symbolic
trajectory assertion only for those assignments φ that satisfy a specified constraint
Constr, we must check the validity of Constr→ ξAnt,Cons,M . We describe below how
to construct the formula ξAnt,Cons,M from the sets of tuples Ant and Cons, and from
the design M . Once ξAnt,Cons,M is constructed, we use an off-the-shelf SMT solver
with advanced word-level reasoning, viz. Boolector [4], to check the validity of
Constr→ ξAnt,Cons,M , or equivalently, the unsatisfiability of Constr ∧ ¬ξAnt,Cons,M .

We first describe how the defining trajectory of ϕAnt is computed using invalid-
bit encoding. Let T denote the depth of ϕAnt. For every t ∈ {0, . . . T − 1} and for
every atom a ∈ A, the value of a in the defining trajectory at time t is obtained
as follows. Let Za,t be the set of all tuples of the form (g, a, vexpr , t1, t2) in Ant,
where t1 ≤ t < t2. If Za,t is non-empty, given an assignment φ of variables in V,
every tuple τ = (g, a, vexpr , t1, t2) in Za,t requires that if φ |= g, the value of a at
time t should be set to the value of vexpr evaluated on the assignment φ. If, on the
other hand, φ 6|= g, the tuple τ does not constrain the value of a at time t. These
two cases can be summarized by saying that the value of a at time t, as required
by the tuple (g, a, vexpr , t1, t2), is (vexpr ,¬g) using invalid-bit encoding. Note that
¬g represents the invalid bit of the encoded value. If there are multiple tuples in
Za,t, the value of a at time t, as required by the antecedent ϕAnt, is simply the
least upper bound of the values computed for each tuple τ in Za,t. The invalid-bit
encoding of the least upper bound can be computed as described in Section 5.1. In
the following discussion, we use aAntt to refer to the value of a at time t, as required
by the antecedent ϕAnt.

If Za,t is empty, the value of a at time t is not constrained by ϕAnt. This
is equivalent to having a single antecedent tuple with a false guard in Za,t. An
example of such a tuple is (false, a,0, t, t + 1), where 0 is an arbitrarily chosen
constant vector (all 0s) with the same bit-width as a. Note that since the guard is
false, we could have used any other bit-vector expression of the same bit-width as
a for the value. In the following, we assume without loss of generality that Za,t is
non-empty.

26 Supratik Chakraborty et al.

If a is a primary input atom or if t = 0, the antecedent tuples in Za,t effectively
specify how the atom must be driven at time t. In these cases, the value of a in the
defining trajectory at time t is set to aAntt . If a is not a primary input atom and
if t > 0, determining the value of a in the defining trajectory at time t requires
us to compute the least upper bound of the value driven by the design M on a at
time t, and aAntt . The value driven by M at time t, say aMt , can be computed by
symbolic simulation using invalid-bit encoding, as explained in Sections 5.2.1 and
5.2.2. The least upper bound of aAntt and aMt can then be computed as described
in Section 5.1. The above procedure yields a unique invalid-bit encoded value for
every atom a in the design M at every time instant t ∈ {0, . . . T − 1}. This gives us
the defining trajectory of ϕAnt for M .

In the above discussion, we implicitly assumed that whenever a least upper
bound is computed, the result is not >. We now make this assumption explicit.
Note that if computing a least upper bound yields > while constructing the defining
trajectory, we must set the value of an atom to an unachievable over-constrained
value in the defining trajectory. Clearly, this is not very meaningful, and is called
antecedent failure in STE parlance. We collect all constraints (conditions for case
(a) in Section 5.1) under which antecedent failure occurs in a set AntFail. The
assumption that no least upper bound computation yields > is equivalent to as-
suming that every constraint in AntFail is unsatisfiable. Depending on the mode of
analysis, we then do one of the following.

– If we want non-vacuous satisfaction of the symbolic trajectory assertion for
all assignments φ, then we check for unsatisfiability of the disjunction of con-
straints in AntFail. If the disjunction is satisfiable, we conclude that there is an
assignment φ of variables in V that leads to an antecedent failure. This is then
viewed as a failed run of verification.

– If we want the symbolic trajectory assertion to hold only for assignments φ that
do not cause an antecedent failure, then we negate every constraint in AntFail

and take their conjunction to obtain a constraint, say NoAntFail, that defines all
assignments φ that do not lead to any antecedent failure. If Constr represents
the user-provided constraint for restricting assignments φ, we can now check if
[Cons]φ v [[Ant]]φM holds for assignments that satisfy (Constr ∧ NoAntFail).

We now describe how the defining sequence of ϕCons is computed using invalid-
bit encoding. As in the case of ϕAnt, let T denote the depth of ϕCons. For every
t ∈ {0, . . . T − 1} and for every atom a ∈ A, let Ya,t be the set of all tuples of
the form (g, a, vexpr , t1, t2) in Cons, where t1 ≤ t < t2. We now have two cases to
consider:

– If Ya,t is empty, ϕCons imposes no requirement on the value of a at time t. In this
case, the weakest admissible value of a at time t is X, which can be encoded as
(0, true) using invalid-bit encoding. Note that since the invalid bit is true, the
value is an arbitrarily chosen bit-vector (0 in this case) of the same bit-width
as a.

– If Ya,t is non-empty, every consequent tuple τ = (g, a, vexpr , t1, t2) ∈ Ya,t speci-
fies that given an assignment φ, if φ |= g, then atom a must have its invalid bit
set to false and value set to vexpr evaluated on the assignment φ, at time t. If
φ 6|= g, the tuple τ imposes no requirement on the value of a at time t.

The above two cases can be summarized by saying that the weakest admissible
value of a at time t, as required by the tuple τ , is (vexpr ,¬g), using invalid-bit

Title Suppressed Due to Excessive Length 27

encoding. In case Ya,t has multiple tuples, the weakest admissible value is obtained
by taking the least upper bound of the weakest admissible values of a at time t, as
obtained from each tuple τ ∈ Ya,t. The above procedure gives a unique invalid-bit
encoding of the value of every atom a at every time instant t ∈ {0, . . . T −1} in the
defining sequence of ϕCons.

Let aAnt,Mt be the invalid-bit encoded value of atom a at time t in the defining
trajectory of ϕAnt for design M . Let aConst be the invalid-bit encoded weakest ad-
missible value of a at time t in the defining sequence of ϕCons. We are now ready
to define the formula ξAnt,Cons,M referred to earlier in this section. Specifically, let
ξAnt,Cons,M be the following formula in the theory of bit-vectors with equality:∧
a∈A , t∈{0,...T−1}

(
¬inv

(
aConst

)
→
(
¬inv

(
aAnt,Mt

)
∧
(
val
(
aConst

)
= val

(
aAnt,Mt

))))
.

We claim that symbolic trajectory evaluation on the design M reduces to checking
validity of the formula ξAnt,Cons,M .

Theorem 1 The symbolic trajectory assertion [ϕAnt ⇒ ϕCons] holds for design M iff

the bit-vector formula ξAnt,Cons,M is valid.

Proof By the central theorem of the general theory of STE [23], the symbolic

trajectory assertion [ϕAnt ⇒ ϕCons] holds for design M iff [ϕCons]
φ v [[ϕAnt]]

φ
M holds

for all assignments φ of variables in V. For every atom a in M , let bw(a) denote
the bit-width of a, and let vbw(a) denote the partial order in the lattice of values

of a. The requirement [ϕCons]
φ v [[ϕAnt]]

φ
M is then equivalent to the requirement

aConst vbw(a) a
Ant,M
t , for every atom a in M and for every time instant t ∈ {0, . . . T −

1}. It therefore suffices to show that aConst vbw(a) aAnt,Mt holds iff the formula(
¬inv(aConst)→

(
¬inv(aAnt,Mt) ∧

(
val(aConst) = val(aAnt,Mt)

)))
is valid. However, this

follows directly from the interpretation of the invalid-bit encoded values aConst and
aAnt,Mt , and from the definition of vbw(a). ut

Note that if sound approximations of invalid bits are used (as discussed in Sec-
tion 5.2.2), then the “iff” in Theorem 1 must be replaced by “if”. Furthermore, if
we wish to focus only on assignments φ that do not cause any antecedent failure
and also satisfy a user specified constraint Constr, our verification goal is modified
to checking the validity of NoAntFail∧Constr→ ξAnt,Cons,M . Recall from Section 5.2
that auxiliary variables and assumptions/constraints on these variables may need
to be introduced when symbolically simulating RTL operators with invalid-bit
encoding (an example being the simulation of division). Let Aux denote the con-
junction of all assumptions/constraints on auxiliary variables needed during sym-
bolic simulation. The verification goal is then refined to checking the validity of
NoAntFail∧Constr∧Aux→ ξAnt,Cons,M .In our implementation, we use Boolector [4], a
state-of-the-art solver for bit-vectors and the theory of arrays, to check the validity
of the verification conditions generated by STEWord.

7 Implementation issues

In this section, we discuss several implementation related issues that contribute
to making STEWord efficient and useful in practice.

28 Supratik Chakraborty et al.

7.1 Compile once, evaluate many times

Symbolically simulating an RTL design requires taking into account details of the
simulation semantics, as defined in the language reference manual, in each simu-
lated time step. In WSTE, we are often required to simulate a design for a large
number of time steps. Instead of expending the computational effort required to
stay faithful to the detailed simulation semantics repeatedly, we “compile” the
design by symbolically simulating it for only a single time step, but with fresh
symbolic variables for the invalid-bits and values of all primary input atoms and
atoms at the outputs of state-holding elements. This gives generic symbolic expres-
sions for the invalid bits and values of all atoms in the design. In order to obtain
the invalid bit and value expressions for an atom in a specific step of symbolic
simulation, it suffices to evaluate (or interpret) the generic expressions obtained
above for that atom with specific expressions/values of primary input and state
atoms, as obtained from the simulation context.

Since no assumptions are made about the symbolic invalid bits and values
of primary input and state atoms during the compilation step, any expression-
level optimization done in the compilation step continues to be applicable in every
step of symbolic simulation. We save ourselves the computational effort required
to apply these optimizations in every step of symbolic simulation by doing it
only once in the compilation step, and using the optimized expressions repeatedly.
Furthermore, as discussed in Section 6, to construct the formula ξAnt,Cons,M , we
need the symbolic expressions for the invalid bits and values of only those atoms
that appear in either an antecedent tuple or a consequent tuple. The symbolic
expressions for atoms at the inputs of state-holding elements are also required in
order to simulate the copying of values from the inputs of state-holding elements to
their outputs at appropriate cycle boundaries. The expressions for all other atoms
are not needed and may be discarded after the compilation step. This can lead to
significant savings in both time and space required to symbolically simulate the
design, especially if a large number of time steps are involved.

7.2 Weakening atoms

In practical verification scenarios, it often becomes desirable to inject values at
the outputs of state-holding elements or on internal signals of a design at specified
time points. State-of-the-art bit-level STE tools like Forte allow this by permitting
signals to be weakened at specific time points. If a signal is weakened at time t,
during the course of symbolic simulation, its value at t is not determined by the
simulation semantics; instead it is set to the injected value, often specified through
an antecedent. We adopt the same approach for WSTE, and use weakening tuples to
specify weakening of signals. A weakening tuple is of the form (g, a, t1, t2), where g
(the guard) is a quantifier-free expression in the theory of bit-vectors with variables
in V, a is the name of an atom in the design, and t1, t2 ∈ N are time instants with
t2 ≥ t1 + 1. A weakening tuple specifies that if the guard g evaluates to true for
the given assignment φ of variables in V, then the atom a is weakened at all time
instants t ∈ {t1, . . . t2 − 1}, and takes its value directly from the antecedent. The
complete specification of weakened signals is provided by a set, Weak, of weakening
tuples.

Title Suppressed Due to Excessive Length 29

Fig. 4 Computing weakened value of sig-
nal a.

To implement weakening during sym-
bolic simulation, we modify the symbolic
expressions for weakened atoms as fol-
lows. Let a be an atom of the design M ,
and let T be the depth of the antecedent
or consequent in the symbolic trajectory
assertion under consideration. For every
time instant t ∈ {0, . . . T −1}, let Wa,t be
the set of weakening tuples of the form
(g, a, t1, t2) in Weak such that t1 ≤ t < t2.
Let wkGuarda,t denote the disjunction of
guards g from all weakening tuples in
Wa,t. If Wa,t is empty, we let wkGuarda,t
be false. Clearly, if an assignment φ of

variables in V renders wkGuarda,t true, then a is weakened at time t. Using notation
introduced in Section 6, let aMt = (val(aMt), inv(aMt)) be the invalid-bit encoding
of the value of a, as obtained from symbolic simulation of the design M with-

out considering weakening of a. Similarly, let aAntt = (val(aAntt), inv(aAntt)) denote the
invalid-bit encoding of the value of a at time t, as required by the antecedent Ant.
The invalid-bit encoding of the value of a at time t after considering weakening,
denoted aAnt,Weak,M

t , is then obtained as follows.

val(aAnt,Weak,M
t) = ite

(
wkGuarda,t, val

(
aAntt

)
, val

(
lub
(
aMt , aAntt

)))
(11)

inv(aAnt,Weak,M
t) = ite

(
wkGuarda,t, inv

(
aAntt

)
, inv

(
lub
(
aMt , aAntt

)))
(12)

The computation of aAnt,Weak,M
t is pictorially depicted in Fig. 4. Note that the

invalid-bit encoding of lub
(
aMt , aAntt

)
can be easily computed from the invalid-

bit encodings of aMt and aAntt , as described in Section 5.1. Equations 11 and 12
therefore give the invalid-bit encoding of the value of a at time t in the defining
trajectory of Ant for the design M , with signals weakened as specified in Weak.

The above discussion and the one in Section 6 assumed that the sets Wa,t and
Za,t were non-empty for every atom a, and for every time instant t ∈ {0, . . . T −1}.
In our implementation of STEWord, we do not augment the user-provided sets Ant

and Weak to ensure this. Instead, for every atom a that appears in an antecedent
tuple, we introduce an auxiliary Boolean input, named inAnta. Similarly, for every
atom a that appears in a weakening tuple, we introduce an auxiliary Boolean
input, named inWeaka. These inputs are then assigned values from {true, false} at
every time instant t ∈ {0, . . . T − 1} as follows.

– If there exists a weakening tuple (g, a, t1, t2) ∈ Weak such that t1 ≤ t < t2, we
set inWeaka to true at time t; otherwise inWeaka is set to false at time t.

– If there exists an antecedent tuple (g, a, vexpr , t1, t2) ∈ Ant such that t1 ≤ t < t2,
we set inAnta to true at time t; otherwise inAnta is set to false at time t.

If atom a appears in some weakening tuple, and if inWeaka is false at time t, the
value of wkGuarda,t in Equations 12 and 11 is set to false during symbolic simulation.
If a doesn’t appear in any weakening tuple, Equations 12 and 11 are simplified
assuming wkGuarda,t is false at all time instances t. Similarly, if a appears in some

30 Supratik Chakraborty et al.

antecedent tuple, and if inAnta is false at time t, the value of invAnta,t in Equations 12
and 11 is set to true during symbolic simulation. Finally, if a doesn’t appear in any
antecedent tuple, Equations 12 and 11 are simplified assuming invAnta,t is true at all
time instants t.

7.3 On-the-fly simplifications of invalid-bit encoded values

Recall from Section 5 that if the invalid-bit encoding of the value of an atom is
(vexpr , true), i.e. the invalid bit in the encoding is set to true, then the expres-
sion vexpr used in the first component of the encoding is of no consequence. This
provides us an opportunity to simplify invalid-bit encoded values significantly on-
the-fly. Specifically, if at any time during symbolic simulation, the invalid-bit en-
coding of an atom a becomes (vexpr , true), we can replace vexpr with an arbitrary
bit-vector constant having the same bit-width as a. Since constants are among the
simplest forms of symbolic expression, this can lead to significant simplifications
in the subsequent simulation and reasoning.

In general, different constants can be chosen to replace vexpr in different con-
texts to simplify subsequent symbolic computations. For example, if the atom a

is an input to a word-level multiplication operator in the design M , then since 0
is the annihilator for multiplication, it is beneficial to replace vexpr with 0, where
0 denotes the bit-vector of all 0s having the same bit-width as a. On the other
hand, if a is an input to a bit-wise logical OR operator, then since the bit-wise OR

of any bit-vector with a vector of all 1s gives a vector of all 1s, it is beneficial to
replace vexpr with 2m − 1, where 2m − 1 denotes the bit-vector of all 1s having the
same bit-width (m) as a. In general, finding the optimal constant to replace vexpr

is an interesting problem. However, in the interests of efficiency and simplicity,
our implementation of STEWord uses 0 for the value component of the invalid bit
encoding of an atom whose invalid bit is set to true. In case this leads to a divisor
in a division operation being assigned the value (0, true), we replace the divisor
with (1, true).

In practical WSTE-based verification scenarios, often several primary input
and state atoms are left unconstrained (i.e. X), since they are not relevant to
the property being verified. This can cause several internal atoms and atoms at
the inputs of state-holding elements to have unconstrained values (i.e. X) during
symbolic simulation. Since values at the inputs of state-holding elements must be
copied to the outputs of these elements in each simulation time step, the complex-
ity of symbolic expressions can increase significantly if we symbolically simulate
over a large number of time steps without simplifying the value components of
invalid-bit encodings of state atoms that evaluate to X. By replacing these value
components by 0 whenever the invalid bit of the encoding simplifies to true, we
obtain significant savings in both time and space required for symbolic simulation.
Yet another opportunity for on-the-fly simplifications arises when computing the
least upper bound of two invalid-bit encoded values. This was explained at the
end of Section 5.1.

Title Suppressed Due to Excessive Length 31

7.4 Managing symbolic expressions

Despite the optimizations discussed above, word-level STE spanning a large num-
ber of cycles can result in significant sizes of symbolic expressions. In order to
manage and share symbolic expressions efficiently, we have developed a symbolic
expression manager to work with STEWord. Our expression manager represents
symbolic expressions as dynamically allocated directed acyclic graphs, and pro-
vides several useful functionalities through APIs to reason about these expressions.
It also manages dynamically allocated memory efficiently during symbolic simu-
lation. The expression manager uses structural hashing to identify equivalence of
two expressions and re-uses already existing expressions whenever possible. Struc-
tural hashing ensures that no two expressions in the manager are structurally the
same. This results in significant re-use of expressions during the course of symbolic
simulation. Another important feature of the expression manager is a rule-based
DAG rewrite facility. This allows the developer (and also verification engineer) to
incrementally define complex transformation rules that can be used to simplify ex-
pressions represented as DAGs on-the-fly. Every time a new expression is created
in the expression manager, a compact signature for the expression is created. This
is then used to efficiently search a collection of DAG rewrite rules to determine if
any rule can be used to simplify the expression. If the answer is in the affirmative,
the rewrite rule is applied to simplify the expression, and the expression manager’s
data structures and hash tables are updated to reflect the transformation. Note
that the onus of verifying the semantic equivalence of the transformed expression
and the original expression lies with the developer/user specifying the transforma-
tion rules. Currently, our implementation has a core set of approximately 20 rules
whose correctness has been manually verified. These rules play a very important
role in simplifying symbolic expressions and keeping their sizes under control.

Table 2 presents a small sampling of our DAG rewrite rules, where $e1, $e2

etc. represent placeholders for (not necessarily distinct) sub-DAGs. In this ta-
ble, a DAG fragment rooted a node n is specified in the format “(node-label-of-n
child-dag-1 child-dag-2 ...)”. If each child-dag-i represents an expression expri
and if node-label-of-n is the operator op, then (node-label-of-n child-dag-1

child-dag-2 ...) is assumed to represent the expression op(expr1, expr2, . . .). Each
re-write rule also has an associated condition, which must be satisfied before the
re-write rule is applied. For example, the last rule in Table 2 is applied only if both
$e1 and $e2 are DAG nodes representing constants.

Expression Expression Condition
before re-write after re-write
(and true $e1) $e1 None
(not (not $e1)) $e1 None

(ite false $e1 $e2) $e2 None
(ite true $e1 $e2) $e1 None

(ite $e1 (ite (not $e1) $e2 $e3) $e4) (ite $e1 $e3 $e4) None
(select (bitnot $e1) $e2 $e3) (bitnot (select $e1 $e2 $e3)) None

(add (mult $e1 $e2) (mult $e1 $e3)) (mult $e1 (add $e2 $e3)) $e2, $e3
are constants

Table 2 A subset of re-write rules for DAGs

32 Supratik Chakraborty et al.

7.5 Handling structurally cyclic combinational circuits

Combinational circuits with structural cycles are not uncommon in high-performance
designs. Carefully designed cyclic circuits can enhance performance without caus-
ing instabilities on internal signals. Hence, we support reasoning about such designs
in STEWord.

Fig. 5 Cutting an atom to break cy-
cles.

When simulating a design with struc-
turally cyclic combinational circuits, special
care has to be taken to generate the symbolic
expressions for the outputs of these circuits.
In our implementation of STEWord, we pro-
ceed initially with symbolic simulation with-
out assuming anything about the presence of
structural cycles in the design. For some de-
signs, even when a structural cycle is present,
the values of different atoms in the cycle may

be such that there is no cyclic dependency in the symbolic expressions generated
for various atoms. Such cases do not require any special handling. However, if
the expression manager detects a cyclic dependency when constructing symbolic
expressions for atoms along a cycle, additional processing must be done. In such
cases, STEWord continues to symbolically simulate operators along the structural
cycle for a pre-determined number k of iterations (currently, k = 2 in our expression
manager). This is equivalent to unrolling the cycle k times and then symbolically
simulating the unrolled circuit. If the symbolic expression for each atom along a
cycle remains unchanged in the last two of the k iterations (this can be detected
through structural hashing in the expression manager), we conclude that the cir-
cuit stabilizes in at most k iterations of cyclic dependencies, and proceed with
symbolically simulating other parts of the design. Otherwise, we explicitly break
cycles by cutting an atom in each cycle, thereby generating new paired internal
atoms. We explain this in some detail below.

Suppose a cycle is broken by cutting an internal atom a. This generates two
new atoms, denoted aout and ain, where aout is driven by some gate/operator in
the circuit, and ain drives some (possibly different) gate/operator in the circuit.
Figure 5 depicts an example of this, where the dotted line represents an atom a

that has been cut to break a cycle in a combinational sub-circuit. The symbolic
simulator maintains the information that (aout, ain) is a paired set of internal
atoms, generated by breaking a cycle. The atom aout may be considered as a
primary output of the design after breaking the cycle. Similarly, the atom ain may
be thought of as a primary input, except that its invalid-bit encoded value in each
time step is not determined by the antecedents, unlike actual primary inputs of
the design. Instead, the invalid bit and value expression of ain are assigned new
symbolic variables in every simulation time step.

Once all cycles are broken, we proceed with symbolic simulation of the trans-
formed circuit (i.e., original circuit with cycles broken) as usual. However, for
each time step t of symbolic simulation, we assert that the values of aout and
ain are the same modulo invalid-bit encoding. Let (val(aout,t), inv(aout,t)) and
(val(ain,t), inv(ain,t)) represent the invalid-bit encodings of aout and ain respectively
at time t, during symbolic simulation of the design. Define the bit-vector formula
cycleEqa,t ≡ (inv(aout,t) = inv(ain,t)) ∧ (¬inv(aout,t)→ (val(aout,t) = val(ain,t)) that

Title Suppressed Due to Excessive Length 33

asserts that the invalid bits of aout and ain are the same at time t, and their
values are also the same if aout doesn’t evaluate to X at time t. Let CycleCuts

denotes the set of atoms that are cut to break all cycles in the design. The formula
CycleConstr ≡

∧
a∈CycleCuts, t∈{0,...T−1} cycleEqa,t asserts the equality of all paired

internal atoms generating by breaking cycles at all time steps. Clearly, we must
consider only those assignments φ of variables in V that satisfy CycleConstr during
symbolic trajectory evaluation. Every such assignment φ gives rise to fixed points
in the evaluation of structurally cyclic combinational circuits in the design. Using
notation introduced in Section 6, the bit-vector formula CycleConstr must be con-
joined with the user-provided set of constraints Constr and the constraints Aux on
auxiliary variables, to obtain the final set of constraints restricting assignments
φ. Thus, for designs with structurally cyclic combinational circuits, checking the
validity of the symbolic trajectory assertion [ϕAnt ⇒ ϕCons] reduces to checking the
validity of NoAntFail ∧ Constr ∧ Aux ∧ CycleConstr→ ξAnt,Cons,M

8 Experiments

We used STEWord to verify properties of a set of SystemVerilog word-level bench-
mark designs. Bit-level STE tools are often known to require user-guidance with
respect to problem decomposition and variable ordering (for BDD based tools),
when verifying properties of designs with moderate to wide datapaths. Similarly,
BMC tools need to introduce a fresh variable for each input in each time frame
when the value of the input is unspecified. Our benchmarks were intended to stress
bit-level STE tools, and included designs with control and datapath logic, where
the width of the datapath was parameterized. Our benchmarks were also intended
to stress BMC tools by providing relatively long sequences of inputs that could
either be X or a specified symbolic value, depending on a symbolic condition. In
each case, we verified properties that were satisfied by the system and those that
were not. For comparative evaluation, we implemented word-level bounded model
checking as an additional feature of STEWord itself. Below, we first give a brief
description of each design, followed by a discussion of our experiments. In the
following, designs 1 through 4 are obtained from our work in [8].

Design 1: Our first design was a three-stage pipelined circuit that read four
pairs of k-bit words in each cycle, computed the absolute difference of each pair,
and then added the absolute differences with a current running sum. Alternatively,
if a reset signal was asserted, the pipeline stage that stored the sum was reset to
the all-zero value, and the addition of absolute differences of pairs of inputs started
afresh from the next cycle. In order to reduce the stage delays in the pipeline, the
running sum was stored in a redundant format and carry-save-adders were used to
perform all additions/subtractions. Only in the final stage was the non-redundant
result computed. In addition, the design made extensive use of clock gating to
reduce its dynamic power consumption – a characteristic of most modern designs
and that significantly complicates formal verification. Because of the non-trivial
control and clock gating, the STE verification required a simple datapath invariant.
Furthermore, in order to reduce the complexity in specifying the correctness, we
broke down the overall verification goal into six properties, and verified these
properties using several datapath widths.

34 Supratik Chakraborty et al.

Design 2: Our second design was a pipelined serial multiplier that read two
k-bit inputs serially from a single k-bit input port, multiplied them and made the
result available on a 2k-bit wide output port in the cycle after the second input
was read. The entire multiplication cycle was then re-started afresh. By asserting
and de-asserting special input flags, the control logic allowed the circuit to wait
indefinitely between reading its first and second inputs, and also between reading
its second input and making the result available. We verified several properties
of this circuit, including checking whether the result computed was indeed the
product of two values read from the inputs, whether the inputs and results were
correctly stored in intermediate pipeline stages for various sequences of asserting
and de-asserting of the input flags, etc. In each case, we tried the verification runs
using different values of the bit-width k.

Design 3: Our third design was an implementation of the first stage in a
typical (but simplified) digital camera pipeline. The design is fed as a stream of
data from the output of a single CCD/CMOS sensor array whose pixels have
different color filters in front of them in a Bayer mosaic pattern [21]. The design
takes these values and performs a “de-mosaicing” of the image, which basically
uses a fairly sophisticated interpolation technique (including edge detection) to
estimate the missing color values. The circuit computes three streams of data for
the computed red, green, and blue values. The challenge here was not only verifying
the computation, which entailed adding a fairly large number of scaled inputs, but
also verifying that the correct pixel values were used. In fact, most non-STE based
formal verification engines will encounter difficulty with this design since the final
result depends on a large number of 8-bit quantities. For this test case, we focused
on one particular (internal) cell and verified that the computed values for the
“missing” pixel for that cell was correct. For a complete verification, one would
have to repeat this verification for every cell in the design.

Design 4: Our fourth design was a more general version of Design 3. Here we
used the same design as in 3, but now we verified in one single STE run that all
the cells in the output stream had the correct value. This was done by using a
vector of Boolean variables to select the particular cell in the picture array and
thus the time in the input stream when the relevant data (and the data for all
its relevant neighbors) was needed, as well as when it should be produced in the
output streams. Analyzing this example with BMC would require providing new
inputs every cycle for over 200 cycles, leading to a blow-up in the number of
variables used.

For each benchmark design, we experimented with a bug-free version, and with
several buggy versions. For bit-level verification, we used both a BDD-based STE
tool [24] and propositional SAT based STE tool [22]; specifically, the public-domain
version of the tool Forte was used for bit-level STE. We also ran word-level BMC
to verify the same properties.

In all our benchmarks, we found that Forte and STEWord successfully verified
the properties within a few seconds when the bit-width was small (8 bits). However,
the running time of Forte increased significantly with increasing bit-width, and for
bit-widths of 16 and above, Forte could not verify the properties without serious
user intervention. In contrast, STEWord required practically the same time to verify
properties of circuits with wide datapaths, as was needed to verify properties of the
same circuits with narrower datapaths, and required no user intervention. In fact,
the word-level SMT constraints generated for a circuit with a narrow datapath

Title Suppressed Due to Excessive Length 35

are almost identical to those generated for a circuit with a wider datapath, except
for the bit-widths of atoms. This is not surprising, since once atomization is done,
symbolic simulation is agnostic to the widths of various atoms. An advanced SMT
solver like Boolector is often able to exploit the word-level structure of the final
set of constraints and solve it without resorting to bit-blasting.

The BMC runs required adding a fresh variable in each time frame when the
value of an input was not specified or conditionally specified. This resulted in
a significant blow-up in the number of additional variables, especially when we
have long sequences of conditionally driven inputs. This in turn adversely affected
SMT-solving time, causing BMC to timeout in some cases.

To illustrate how the verification effort with STEWord compared with the effort
required to verify the same property with a bit-level BDD- or SAT-based STE tool,
and with word-level BMC, we present a sampling of our observations in Table 3,
where no user intervention was allowed for any tool. Here “-” indicates more than
2 hours of running time, and all times are on an Intel Xeon E7520 1.86GHz CPU,
using a single core. In the column labeled “Benchmark”, Designi-Pj corresponds
to verifying property j (from a list of properties) on Design i. The column labeled
“Word-level latches (# bits)” gives the number of word-level latches and the total
number of bits in those latches for a given benchmark. The column labeled “Sim
Cycles” gives the total number of time-frames for which STE and BMC was run.
The column labeled “(Partial) Atomization Profile” gives the partial profile of how
words were atomized into atoms of different widths by our atomization step. An
entry like 32 + 1(4) in this column indicates that there were 4 words of bit-width
33, each of which got atomized into a 32-bit atom and a 1-bit atom. Similarly, an
entry like 32(37) indicates that there were 37 words of bit-width 32, each of which
remained intact as a 32-bit atom. Designs 3 and 4 had long atomization profiles,
and only part of the profile for these designs has been presented in Table 3. Clearly,
atomization did not bit-blast all words, allowing us to reason at the granularity of
multi-bit atoms in STEWord. In fact, for some designs, viz. Design 2, none of the
words were atomized into thinner slices. This is indeed possible, since as discussed
in Section 3, the atomization of a word strongly depends on how the RTL has been
written.

Our experiments indicate that when a property is not satisfied by a circuit,
Boolector finds a counterexample quickly due to powerful search heuristics imple-
mented in modern SMT solvers. BDD-based bit-level STE engines are, however,
likely to suffer from BDD size explosion in such cases, especially when the bit-
widths are large. In cases where there are long sequences of conditionally driven
inputs (e.g., design 4) BMC performs worse compared to STEWord, presumably
because of the added complexity of solving constraints with significantly larger
number of variables. In other cases, the performance of BMC is comparable to that
of STEWord. An important observation is that the abstractions introduced by at-
omization and by approximations of invalid-bit expressions do not cause STEWord

to produce conservative results in any of our experiments. Thus, STEWord strikes a
good balance between accuracy and performance. Another interesting observation
is that for correct designs and properties, SMT solvers (all we tried) sometimes fail
to verify the correctness (by proving unsatisfiability of a formula). This points to
the need for further developments in SMT solving, particularly for proving unsatis-
fiability of complex formulas. Overall, our experiments, though limited, show that

36 Supratik Chakraborty et al.

Benchmark STEWord Forte BMC Word-level Sim (Partial)
(BDD & latches Cycles Atomization

SAT) (# bits) Profile
Design1-P1 2.38s - 3.71s 14 latches 12 1(24), 1+1+1(2),

(32 bits) - (235 bits) 1+1+1+1(2), 32(37),
1+31(1), 33(6), 1+32(4)

Design1-P1 2.77s - 4.53s 14 latches 12 1(24), 1+1+1(2),
(64 bits) - (463 bits) 1+1+1+1(2), 32(2), 64(35),

1+63(1), 65(6), 1+64(4)
Design2-P2 1.56s - 1.50s 4 latches 6 1(7), 16(5), 32(3)

(16 bits) - (96 bits)
Design2-P2 1.65s - 1.52s 4 latches 6 1(7), 32(7), 64(1)

(32 bits) - (128 bits)
Design3-P3 24.06s - - 54 latches 124 1(7), 5(1), 1+3(2),

(16 bits) - (787 bits) 1+1+1+1+1(7), 7(1), 4+16(4),
16(26), 32(4),

16+16+16+16(1),
16+16+16+16+16(1), . . .

Design4-P4 56.80s - - 54 latches 260 1(29), 4(6), 1+3(8), 5(1)
(16 bits) - (787 bits) 1+1+1+1+1(7), 7(1), 16(43),

20(15), 4+16(4), 1+19(4),
16+16+16+16(1),

16+16+16+16+16(1), . . .
Design4-P4 55.65s - - 54 latches 260 1(29), 4(6), 1+3(8), 5(1)

(32 bits) - (1555 bits) 1+1+1+1+1(7), 7(1), 32(43),
36(15), 4+32(4), 1+35(4),

32+32+32+32(1),
32+32+32+32+32(1), . . .

Table 3 Comparing verification effort (time) with STEWord, Forte and BMC

word-level STE can be beneficial compared to both bit-level STE and word-level
BMC in real-life verification problems.

A web-based interface to STEWord, along with a usage document and the bench-
marks reported in this paper, is available for interested users. The authors may be
contacted for more details about using the tool.

9 Conclusion

Increasing the level of abstraction from bits to words is a promising approach to
scaling STE to large designs with wide datapaths. In this paper, we proposed a
methodology and presented a tool to achieve this automatically. Our approach
lends itself to a counterexample guided abstraction refinement (CEGAR) frame-
work, where refinement corresponds to reducing the conservativeness in invalid-bit
expressions, and to splitting existing atoms into finer bit-slices. We intend to build
a CEGAR-style word-level STE tool as part of future work.

For our approach to work well, we rely on an effective SMT solver that does
not resort to bit-blasting word-level expressions. Unfortunately, our experience
with current state-of-the-art SMT solvers [10,2,4,15,9,11] has been somewhat
disappointing. The primary problem has been the hit-and-miss behavior of the
solvers. If a solver can successfully handle a WSTE problem (either by finding a
satisfying assignment of ¬ξAnt,Cons,M , or by proving ξAnt,Cons,M to be a tautology),
it usually does so very quickly. However, if it cannot, the solvers simply never
return and this behavior is far more common than what we would like to see
in a practical verification system. We believe this is partly due to the lack of
tuning of the heuristics to hardware examples, but it is clear that much more

Title Suppressed Due to Excessive Length 37

work is needed on improving SMT solvers before WSTE is ready for prime time. A
recent work [7] has proposed initial steps in this direction, drawing its inspiration
from the difficulties encountered in using WSTE to prove properties of circuits
with various multiplier implementations. Related to the above difficulty of solving
SMT problems, is the question whether the style in which the RTL is written and
properties specified affects the ability of the SMT solver to solve the resulting SMT
problem. Clearly, if the design is described at the bit-level, it will not be efficient for
a word level engine to reason about the resulting verification conditions. However,
there are often many ways of capturing a design at a word level. Our experience
so far indicates that there is a very big difference in the behavior of SMT solvers
depending on which of these (superficially equally valid) versions the designer
selected. We plan on pursuing this further. Finally, an intriguing possibility would
be to create a two step verification system that would first, potentially with user
guidance, create a word-level design from a bit-level design, and then apply WSTE
on the resulting word-level design. The advantage with such an approach is that
the “collapsing” of some bit-level constructs could be done locally and thus use
very powerful, but low capacity, decision procedures.

Acknowledgements We thank Taly Hocherman and Dan Jacobi for their help and advice
in designing a SystemVerilog symbolic simulator. We thank Ashutosh Kulkarni and Soumyajit
Dey for their help in implementing and debugging STEWord. Rajkumar Gajavelly, Tanmay
Haldankar, Dinesh Chhatani and Rakesh Mistry were supported by a research grant from Intel
Corporation, which is gratefully acknowledged. Funding was provided by Intel Corporation as
a research grant to IIT Bombay.

References

1. IEEE standard for SystemVerilog–unified hardware design, specification, and verification
language. IEEE Std 1800-2012 (Revision of IEEE Std 1800-2009), pages 1–1315, Feb
2013.

2. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Computer Aided Verifica-
tion - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, pages 171–177, 2011.

3. Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength verification
tool. In Proceedings of the 22nd International Conference on Computer Aided Verification,
CAV’10, pages 24–40. Springer-Verlag, 2010.

4. R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors and arrays.
In TACAS, pages 174–177, 2009.

5. R. E. Bryant and C.-J. H. Seger. Formal verification of digital circuits using symbolic
ternary system models. In CAV, pages 33–43, 1990.

6. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

7. S. Chakraborty, A. Gupta, and R. Jain. Matching multiplications in bit-vector formulas.
In Verification, Model Checking and Abstract Interpretation (VMCAI), pages 131–150.
Springer, 2017.

8. S. Chakraborty, Z. Khasidashvili, C.-J. H. Seger, R. Gajavelly, T. Haldankar, D. Chhatani,
and R. Mistry. Word-level symbolic trajectory evaluation. In Computer-Aided Verification
(CAV), pages 128–143. Springer, 2015.

9. Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani. The
MathSAT5 SMT Solver. In Nir Piterman and Scott Smolka, editors, Proceedings of
TACAS, volume 7795 of LNCS. Springer, 2013.

10. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In 14th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, 2008.

38 Supratik Chakraborty et al.

11. Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-Aided
Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science, pages 737–
744. Springer, 2014.

12. Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at http://yices.
csl. sri. com/tool-paper. pdf, 2(2), 2006.

13. Niklas Eén and Niklas Sörensson. The minisat page. 2012.
14. E. A. Emerson. Temporal and modal logic. In Hanbook of Theoretical Computer Science,

pages 995–1072. Elsevier, 1995.
15. Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. Beaver: Engineering an efficient

SMT solver for bit-vector arithmetic. In Computer Aided Verification, 21st International
Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, pages
668–674, 2009.

16. P. Johannsen. Reducing bitvector satisfiability problems to scale down design sizes for rtl
property checking. In HLDVT, pages 123–128, 2001.

17. R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. Aagaard, and T. F. Melham. Practical
formal verification in microprocessor design. IEEE Design & Test of Computers, 18(4):16–
25, 2001.

18. R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slo-
bodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik. Replacing Testing with Formal
Verification in Intel CoreTM i7 Processor Execution Engine Validation. In CAV, pages
414–429, 2009.

19. V. M. A. KiranKumar, A. Gupta, and R. Ghughal. Symbolic trajectory evaluation: The
primary validation vehicle for next generation intel R© processor graphics fpu. In FMCAD,
pages 149–156, 2012.

20. Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point of
View. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2008.

21. H. S. Malvar, H. Li-Wei, and R. Cutler. High-quality linear interpolation for demosaicing
of Bayer-patterned color images. In ICASSP, volume 3, pages 485–488, 2004.

22. J.-W. Roorda and K. Claessen. A new SAT-based algorithm for symbolic trajectory
evaluation. In CHARME, pages 238–253, 2005.

23. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods in System Design, 6(2):147–189, 1995.

24. C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. F. Melham, M. Aagaard, C. Barrett, and
D. Syme. An industrially effective environment for formal hardware verification. IEEE
Trans. on CAD of Integrated Circuits and Systems, 24(9):1381–1405, 2005.

25. Fabio Somenzi. Cudd: Cu decision diagram package-release 2.5.0. University of Colorado
at Boulder, 2012.

26. A. Stump, C. W. Barrett, and D. L. Dill. A decision procedure for an extensional theory
of arrays. In Logic in Computer Science (LICS), pages 29–37. IEEE Computer Society,
2001.

