
Noname manuscript No.
(will be inserted by the editor)

Boolean Functional Synthesis: Hardness and Practical1

Algorithms2

S. Akshay · Supratik Chakraborty ·3

Shubham Goel · Sumith Kulal · Shetal Shah4

5

the date of receipt and acceptance should be inserted later6

Abstract Given a relational specification between Boolean inputs and outputs,7

Boolean functional synthesis seeks to synthesize each output as a function of the8

inputs such that the specification is met. Despite significant algorithmic advances9

in Boolean functional synthesis over the past few years, there are relatively small10

specifications that have remained beyond the reach of all state-of-the-art tools. In11

trying to understand this behaviour, we show that unless some hard conjectures in12

complexity theory are falsified, Boolean functional synthesis must generate large13

Skolem functions in the worst-case. Given this inherent hardness, what does one14

do to solve the problem? We present a two-phase algorithm, where the first phase15

is efficient in practice both in terms of time and size of synthesized functions,16

and solves a large fraction of our benchmarks. This phase is also guaranteed to17

solve the problem when the representation of the input specification satisfies some18

structural requirements. For those cases where the first phase doesn’t suffice, we19

present a second phase of our synthesis algorithm that uses a special class of al-20

gorithms, called expansion-based algorithms, to generate correct Skolem functions.21

This may require exponential time and generate exponential-sized Skolem func-22

tions in the worst-case. Detailed experimental evaluation shows that our overall23

synthesis algorithm performs better than other techniques for a large number of24

benchmarks.25

The authors wish to acknowledge funding support from DST/CEFIPRA/INRIA project
EQuaVE and DST/SERB Matrices grant MTR/2018/000744 for S. Akshay, and from
MHRD/IMPRINT-1/Project 5496(FMSAFE) for Supratik Chakraborty and Shetal Shah.

Most of this work was done when Shubham Goel and Sumith Kulal were at Indian Institute
of Technology Bombay, India.

S. Akshay · Supratik Chakraborty · Shetal Shah
Indian Institute of Technology Bombay, India

Shubham Goel
University of California, Berkeley, USA

Sumith Kulal
Stanford University, USA

2 S. Akshay et al.

Keywords Boolean functional synthesis, Skolem functions, expansion-based26

algorithms27

1 Introduction28

Automatically synthesizing systems that always work as specified is one of the29

holy grails of computer-aided design. In many situations, it is unwieldy or even30

technically difficult to specify the desired behaviour of a system by expressing31

outputs as functions of inputs. Instead, it may be easier to specify the behaviour as32

a relation between inputs and outputs. Such specifications are also called relational33

specifications.34

As an interesting example, consider a system with a single 2n-bit unsigned35

integer input Y, and two n-bit unsigned integer outputs Z1 and Z2. Suppose the36

relational specification is given as Ffact(Y,Z1,Z2) ≡ ((Y = Z1 ×[n] Z2) ∧ (Z1 6=37

1) ∧ (Z2 6= 1)), where ×[n] denotes n-bit unsigned integer multiplication. This38

specification requires that Z1 and Z2 are non-trivial factors of Y. Note, however,39

that if Y represents a prime number, there are no values of Z1 and Z2 that satisfy40

the specification. Therefore, we are interested in obtaining values of Z1 and Z2 that41

satisfy the specification, whenever possible. The easy part here is checking whether42

the specification is satisfiable for a given Y, whereas the hard part is to synthesize43

concrete outputs as functions of given inputs. Significantly, the above specification44

can be encoded as a Boolean formula of size O(n2) over the individual bits of Y, Z145

and Z2. However, if we want to express Z1 and Z2 directly as Boolean functions of46

Y, our task would be significantly harder. In fact, there are no known polynomial-47

sized Boolean functions that can express individual bits of Z1 and Z2 directly in48

terms of the individual bits of Y1. This illustrates how relational specifications49

can be more natural and succinct than expressing outputs directly as functions of50

inputs. However, having conveniently represented specifications isn’t good enough.51

We need to know how difficult is it to synthesize systems whose behaviour is specified52

relationally? In this paper, we investigate this question both from theoretical and53

practical perspectives.54

Synthesizing Boolean functions from relational specifications has long been of55

interest to logicians and computer scientists. Formally, given a Boolean formula56

F (Z,Y) specifying a desired relation between inputs Y and outputs Z, we wish to57

synthesize each output in Z as a function of the inputs Y such that F (Z,Y) is sat-58

isfied, whenever possible. Such functions have also been called Skolem functions in59

the literature [28, 23], and the quest for synthesizing Skolem functions and variants60

goes back long in history. In fact, Boole [8] and Löwenheim [32] studied variants61

of this problem in the context of finding most general unifiers. While these studies62

are theoretically elegant, implementations of the underlying techniques have been63

found to scale poorly beyond small problem instances [33]. More recently, synthesis64

of Boolean functions has found important applications in a wide range of contexts65

including reactive strategy synthesis [4, 47], certified QBF-SAT solving [39, 7, 35],66

automated program synthesis [44, 42], circuit repair and debugging [27], disjunc-67

tive decomposition of symbolic transition relations [46] and the like. This has68

1 Otherwise, we could efficiently factorize products of n-bit prime numbers, rendering cryp-
tographic systems vulnerable to attacks.

Boolean Functional Synthesis: Hardness and Practical Algorithms 3

spurred a lot of interest in developing practically efficient Boolean function syn-69

thesis algorithms. The resulting new generation of tools [23, 28, 1, 19, 45, 39, 38]70

have enabled synthesis of Boolean functions from much larger and more complex71

relational specifications than those that could be handled by earlier techniques,72

viz. [25, 7, 33].73

In this paper, we study the Boolean functional synthesis problem from both74

theoretical and practical perspectives. Our investigation shows that unless some75

long-standing conjectures in computational complexity theory are falsified, Boolean76

functional synthesis must necessarily generate super-polynomial or even exponential-77

sized Skolem functions, thereby requiring super-polynomial or exponential time, in78

the worst-case. Therefore, it is unlikely that an efficient algorithm exists for solv-79

ing all instances of Boolean functional synthesis. There are two ways to address80

this hardness in practice: (i) design algorithms that are provably efficient but may81

give “approximate” Skolem functions that are correct only on a fraction of all pos-82

sible input assignments, or (ii) design an algorithm with worst-case exponential83

behaviour that provably solves all problem instances. In this work, we combine84

these approaches to design a two-phase synthesis algorithm. The first phase is85

provably efficient and suffices to solve a large fraction of our benchmarks. The sec-86

ond phase is invoked only if the first phase fails to synthesize Skolem functions for87

all outputs. The second phase of our algorithm adopts a counterexample-guided88

expansion-based approach, first proposed in [28] in the context of Boolean functional89

synthesis.90

Our primary contributions can be summarized as follows.91

1. We show that unless some long-standing complexity theoretic conjectures are92

falsified, Boolean functional synthesis must require super-polynomial time and93

space. Specifically, we show that unless P = NP, there exist problem instances94

where Boolean functional synthesis must take super-polynomial time. We also95

show that unless the Polynomial Hierarchy collapses to the second level, there96

exist problem instances that must generate super-polynomial sized Skolem97

functions. Finally, we prove that if the non-uniform exponential time hypoth-98

esis [15] holds, there exist problem instances that must generate exponential99

sized Skolem functions, thereby also requiring at least exponential time.100

2. We present a new two-phase algorithm for Boolean functional synthesis.101

(a) Phase 1 of our algorithm generates candidate Skolem functions of size102

polynomial in the input specification. This phase makes polynomially many103

calls to an NP oracle (SAT solver in practice). Hence it directly benefits104

from the progess made by the SAT solving community, and is efficient in105

practice. Our experiments indicate that phase 1 suffices to solve a large106

majority of publicly available benchmarks.107

(b) However, there are indeed cases where the first phase is not enough. In such108

cases, the first phase provides good candidate Skolem functions as start-109

ing points for the second phase. In the second phase, our algorithm starts110

from these candidate Skolem functions, and uses an iterative approach to111

rectify erroneous Skolem functions. We define a class of algorithms called112

expansion-based algorithms for doing this, and present a hybrid algorithm113

that combines three different expansion-based algorithms. The sizes of the114

correct Skolem functions generated by this phase may be exponential in the115

4 S. Akshay et al.

worst-case. This blow-up is unlikely to be avoidable, thanks to our hardness116

results.117

3. We analyze the surprisingly good performance of the first phase (especially118

in light of the theoretical hardness results) and show a sufficient condition on119

the structure of the input representation that guarantees correctness of the120

first phase. Interestingly, popular representations like ROBDDs [12] give rise121

to input structures that satisfy this condition.122

4. We conduct an extensive set of experiments over a variety of benchmarks, and123

show that our algorithm performs favourably vis-a-vis state-of-the-art algo-124

rithms for Boolean functional synthesis.125

Related work The literature contains several early theoretical studies on variants126

of Boolean functional synthesis [8, 32, 18, 9, 34, 6]. More recently, researchers127

have tried to build practically efficient synthesis tools that scale to medium or large128

problem instances. In [23], Skolem functions for Z are extracted from a specific type129

of proof of validity of ∀Y∃ZF (Z,Y). While this works exceptionally well with short130

proofs of validity, it doesn’t work when ∀Y∃ZF (Z,Y) is not valid. Specifications131

of the latter type are also called unrealizable. Despite the nomenclature, as our non-132

trivial factorization example shows, it is often important and useful to synthesize133

Skolem functions even for unrealizable specifications.134

Inspired by the spectacular effectiveness of conflict-driven clause learning (CDCL)135

SAT solvers [41], an incremental determinization technique for Skolem function136

synthesis was proposed in [38], and subsequently developed further in [40, 37].137

In [25, 46], a synthesis approach based on iterated compositions was proposed.138

Unfortunately, as has been noted in [28, 19], composition based synthesis ap-139

proaches do not scale well to large benchmarks. A recent work [19] adapts the140

composition-based approach to work with ROBDDs, which can be represented141

compactly if we know the optimum variable ordering. For factored specifications,142

i.e, specifications that are conjunctions of sub-specifications, ideas from symbolic143

model checking using implicitly conjoined ROBDDs have been used to enhance144

the scalability of ROBDD-based synthesis further in [45].145

In the genre of counterexample guided abstraction refinement (CEGAR) tech-146

niques, [28] showed how CEGAR can be used to synthesize Skolem functions from147

factored specifications. The key idea here is to start with initial easy-to-compute148

abstractions of Skolem functions and refine them iteratively using counterexamples149

generated by invoking a state-of-the-art SAT solver. Subsequently, a compositional150

and parallel technique for Skolem function synthesis from arbitrary specifications151

represented using and-inverter graphs (AIGs) was presented in [1]. The second152

phase of the synthesis algorithm proposed in this paper builds on some of this153

work.154

An approach based on identifying and separating input and output compo-155

nents of a specification was proposed in [14]. While this approach doesn’t perform156

as well as some other state-of-the-art approaches, it is able to solve some hard157

synthesis benchmarks, for which other state-of-the-art tools fail within reason-158

able resource constraints. Recently, a Boolean functional synthesis technique that159

leverages constrained sampling and machine learning to arrive at initial approx-160

imations of Skolem functions, and then iteratively repairs these approximations161

using counterexamples, was presented in [21]. This technique has been reported to162

outperform most existing Boolean functional synthesis techniques. However, since163

Boolean Functional Synthesis: Hardness and Practical Algorithms 5

this work was published after the current paper was submitted and reviewed, we164

simply mention it here without using it for our experimental studies.165

In addition to the above techniques, template-based [44] and sketch-based [43]166

approaches have been found to be effective for synthesis when we have information167

about the set of candidate solutions. In the absence of such information, however,168

these techniques are known not to perform well. On a related note, a framework for169

functional synthesis that reasons about some unbounded domains such as integer170

arithmetic, was proposed in [31].171

2 Notations and Problem Statement172

A Boolean formula F (v1, . . . vp) is a syntactic object constructed according to the173

rules of propositional logic, that represents a mapping from {0, 1}p to {0, 1} under174

the standard semantics of propositional logic. For notational convenience, we use F175

to also refer to the semantic mapping represented by F when there is no confusion.176

The set of variables {v1, . . . vp} in F is called the support of F , and denoted sup(F).177

A literal is either a variable or its complement. We use F |vi=0 (resp. F |vi=1) to178

denote the positive (resp. negative) cofactor of F with respect to vi, i.e. F with the179

variable vi set to 0 (resp. 1). A satisfying assignment of F is a mapping of variables180

in sup(F) to {0, 1} such that the semantic mapping represented by F evaluates to 1181

under this assignment. If F has a satisfying assignment, we say that F is satisfiable;182

otherwise, F is said to be unsatisfiable. If every mapping of sup(F) to {0, 1} is a183

satisfying assignment of F , we say that F is valid. If π is a satisfying assignment184

of F , we write π |= F and use π[vi] to denote the value assigned to vi ∈ sup(F) by185

π. Let V = (vi1 , vi2 , . . . vij) be a sequence of variables in sup(F). We use π↓V to186

denote the projection of π on V, i.e. the sequence (π[vi1], π[vi2], . . . π[vij]).187

A Boolean function ψ(u1, . . . uq) is a mapping from {0, 1}q to {0, 1}, and may188

be represented in various ways. For purposes of this paper, we assume that every189

Boolean formula and Boolean function is represented as a rooted directed acyclic190

graph (DAG), with internal nodes labeled by Boolean operators and leaves labeled191

by input/output literals and Boolean constants. If the operator labeling an internal192

node N has arity k, we assume that N has k ordered children. Each node N in193

such a DAG represents a Boolean formula (resp. function) Φ(N) that is inductively194

defined as follows. If N is a leaf, Φ(N) is the literal labeling N . If N is an internal195

node labeled by op with arity k, and if the ordered children of N are c1, . . . ck, then196

Φ(N) is op(Φ(c1), . . . Φ(ck)). A DAG with root R is said to represent the formula197

(resp. function) Φ(R). Note that popular DAG representations of Boolean formulas198

and functions, such as and-inverter graphs (AIGs [22, 30]), reduced ordered binary199

decision diagrams (ROBDDs [12]) and Boolean circuits, are either already in this200

representation or can be easily converted to this representation.201

A Boolean formula is said to be represented in negation normal form (NNF) if202

(i) the only operators used in the representation are conjunction (∧), disjunction203

(∨) and negation (¬), and (ii) negation is applied only to variables. Every Boolean204

formula can be converted to a semantically equivalent formula in NNF, in which205

the internal nodes are labeled with ∧ and ∨, and leaves are labeled with literals. We206

use |F | to denote the number of nodes in a DAG represention of F . In this paper,207

we use and-inverter graphs, or AIGs, as the initial representation of specifications.208

Given an AIG with t nodes, an equivalent NNF representation of size O(t) can be209

6 S. Akshay et al.

constructed in O(t) time. Henceforth, we will assume that every Boolean formula210

is in NNF, unless specified otherwise.211

Let N be a node in a DAG representation of a Boolean formula F in NNF. We212

use lits(N) to denote the set of literals labeling leaves that have a path from N213

in the DAG representation. We also use atoms(N) to denote the underlying set of214

variables in sup(F) that appear in lits(N). For each ∧-labeled internal nodeN in the215

DAG of F with children c1, . . . ck, if atoms(cr)∩atoms(cs) = ∅ for all distinct r, s ∈216

{1, . . . k}, then F is said to be in decomposable negation normal form or DNNF [17].217

While DNNF formulas enjoy many nice properties [17], a weaker form turns out to218

be useful for purposes of synthesis. Specifically, for each ∧-labeled internal node219

N , suppose c1, . . . ck are its children, and lits(cr) ∩ {¬` | ` ∈ lits(cs)} = ∅ for every220

distinct r, s ∈ {1, . . . k}. Then F is said to be in weak decomposable NNF, or wDNNF.221

Note that every DNNF formula is also a wDNNF formula.222

We say a literal l is pure in F iff the NNF representation of F has a leaf labeled223

l, but no leaf labeled ¬l. F is said to be positive unate in vi ∈ sup(F) iff F |vi=0 ⇒224

F |vi=1. Similarly, F is said to be negative unate in vi iff F |vi=1 ⇒ F |vi=0. Finally,225

F is unate in vi if it is either positive unate or negative unate in vi. A formula that226

is not unate in vi ∈ sup(F) is said to be binate in vi.227

Throughout this paper, we use Z = (z1, . . . zn) to denote a sequence of Boolean228

outputs, and Y = (y1, . . . ym) to denote a sequence of Boolean inputs. The Boolean229

functional synthesis problem, henceforth denoted BFnS, asks: given a Boolean for-230

mula F (Z,Y) specifying a relation between inputs Y and outputs Z, determine Boolean231

functions Ψ = (ψ1(Y), . . . ψn(Y)) such that F (Ψ,Y) evaluates to true for every232

value of Y for which ∃ZF (Z,Y) holds. Thus, ∀Y (∃ZF (Z,Y)⇔ F (Ψ,Y)) must233

be rendered valid. The function ψi is called a Skolem function for zi in F , and234

Ψ = (ψ1, . . . ψn) is called a Skolem function vector for Z in F . As with all Boolean235

functions in this paper, Skolem functions are assumed to be represented as DAGs236

with non-leaf nodes labeled by ∧, ∨ and ¬.237

For 1 ≤ i ≤ j ≤ n, let Zj
i denote the sub-sequence (zi, zi+1, . . . zj) and let238

F (i−1)(Zn
i ,Y) denote ∃Zi−1

1 F (Zi−1
1 ,Zn

i ,Y). It has been argued in [25, 26, 28, 19, 1]239

that given a relational specification F (Z,Y), the BFnS problem can be solved240

by first imposing a linear order on the outputs, say z1 ≺ z2 · · · ≺ zn, and then241

synthesizing a function ψi(Z
n
i+1,Y) for each zi such that F (i−1)(ψi,Z

n
i+1,Y) ⇔242

∃ziF (i−1)(zi,Z
n
i+1,Y). Once all such functions ψi are obtained, one can substitute243

ψi+1 through ψn for zi+1 through zn respectively, in ψi to obtain a Skolem function244

for zi as a function of only Y. We adopt this approach, and therefore focus on245

synthesizing ψi in terms of Zn
i+1 and Y.246

The following definitions, adapted from [28, 25], play a key role in this paper.247

Definition 1 Given F (Z,Y) and an ordering z1 ≺ z2 · · · ≺ zn, let ∆i
F (Zn

i+1,Y) de-248

note ¬∃Zi−1
1 F (Zi−1

1 , 0,Zn
i+1,Y), and Γi

F (Zn
i+1,Y) denote ¬∃Zi−1

1 F (Zi−1
1 , 1,Zn

i+1,Y).249

When F is clear from the context, we often omit mentioning it and write ∆i and250

Γi instead of ∆i
F and Γi

F respectively.251

Note that if ∆i (resp. Γi) evaluates to 1 for a certain assignment to Zn
i+1 and Y,252

then F cannot be satisfied if the Skolem function for zi evaluates to 0 (resp. 1)253

for the same assignment. From [28, 25], we know that a function ψi is a Skolem254

function for zi iff it satisfies ∆i
F ⇒ ψi ⇒ ¬ΓiF . It is also easy to see that both ∆i255

and ¬Γi serve as Skolem functions for zi in F .256

Boolean Functional Synthesis: Hardness and Practical Algorithms 7

3 Complexity-theoretical limits257

It is easy to see that BFnS can be solved in EXPTIME. Indeed a naive solution258

would be to enumerate all possible values of Y and invoke a SAT solver to find259

values of Z corresponding to each valuation of Y that makes F (Z,Y) true. This260

requires worst-case time exponential in the number of inputs and outputs, and261

may produce Skolem functions of size exponential in the number of inputs. We262

now ask if it is possible to do better.263

Theorem 1 1. Unless P = NP, there exist problem instances where any algorithm264

for BFnS must take super-polynomial time.265

2. Unless ΣP
2 = ΠP

2 , there exist problem instances where any algorithm for BFnS must266

generate super-polynomial sized Skolem functions267

3. Unless the non-uniform exponential-time hypothesis (or ETHnu) fails, there exist268

problem instances where any algorithm for BFnS must generate exponential sized269

Skolem functions.270

Before presenting the proof, a few points are worth noting. Violation of the assump-271

tion in the first statement implies a complete collapse of the Polynomial Hierarchy272

(PH), while violation of that in the second statement implies a collapse of PH to273

the second level. Whether either of these are possible remain long-standing open274

questions, although it is widely believed that the PH doesn’t collapse. Furthermore,275

since a lower bound of the size of Skolem functions translates to a lower bound of276

the time taken to compute these functions, the second and third statements also277

imply conditional super-polynomial and exponential, respectively, lower bounds of278

time complexity.279

The exponential-time hypothesis ETH [24] and its strengthened version – the280

non-uniform exponential-time hypothesis ETHnu [15]– are unproven computational281

hardness assumptions that have been used to show that several classical deci-282

sion, functional and parametrized NP-complete problems are unlikely to have sub-283

exponential algorithms. As remarked in [15], the non-uniform variant is also widely284

believed to be true, with many results carrying over from the uniform setting. For-285

mally, ETHnu states2 that there is no family of algorithms (one for each input-size286

n) that can solve the n-variable instance of 3-SAT in sub-exponential time (i.e., in287

time 2o(n)).288

Proof Part 1. follows from the easy observation that propositional satisfiability289

can be reduced to BFnS where there are no inputs. Formally, consider an instance290

of 3-SAT where we ask if ∃ZF (Z) is true. This can be seen as an instance of291

BFnS where Y is empty. That is, given F (Z), we wish to synthesize the Skolem292

function vector Ψ, such that ∃ZF (Z)⇔ F (Ψ). In other words, F (Ψ) = 1 iff F (Z)293

is satisfiable. Now if Ψ can be synthesized in polynomial time, then it can at most294

be poly-sized and hence F (Ψ) can be evaluated in polynomial time. Thus, as a295

consequence we obtain P = NP.296

Consider an n-variable instance of the 3-CNF SAT problem ϕ(Z), where |Z| =297

n. As 3-SAT ∈ NP, by definition of class NP, it has a polynomial time verifier. This298

implies that there is a polynomial size circuit C, which takes as inputs an encoding299

2 We use the standard definition for ETHnu see e.g., [15, 20]. We note however that in [16]
the authors consider an alternate definition of this notion.

8 S. Akshay et al.

of the formula ϕ, say enc(ϕ) and witness assignment π ∈ {0, 1}n and evaluates to300

1 iff π is a satisfying assignment for ϕ. Since ϕ is a 3-CNF formula, enc(ϕ) has size301

O(p(n)) where p(.) is a polynomial. This implies that for every n > 0, there is a302

polynomial size verifier circuit Cn and a corresponding Boolean formula Fn(Z,Y)303

with |Z| = n, |Y| = p(n). Thus, we obtain an instance of BFnS, Fn(Z,Y).304

– Now, for Part 2., if the Skolem functions synthesized Ψ(Y) are of size polyno-305

mial in n, Fn(Ψ(Y),Y) would also be of size polynomial in n. Therefore for306

every 3-CNF formula ϕ(Z) on n variables, satisfiability of ϕ can be decided by307

setting Y = enc(ϕ) in Fn(Ψ(Y),Y). Thus, we obtain a solution for n-variable308

instance of 3-SAT using polynomial-sized circuits. Recall that problems that309

can be solved using polynomial-sized circuits are said to be in the class PSIZE310

(equivalently called P/poly). Now since 3-SAT is NP-complete, it follows that311

NP ⊆ P/poly. By the Karp-Lipton Theorem [29], this implies that ΣP
2 = ΠP

2 ,312

which implies that the PH collapses to the second level.313

– Similarly, for Part 3., if Ψ(Y) is of size 2o(n), then F (Ψ(Y),Y) will also be314

of size 2o(n). In other words, we can evaluate this function in sub-exponential315

time 2o(n) and thus solve the n-variable 3-SAT instance in time 2o(n), thus316

violating ETHnu. Note that since the circuits for the Skolem functions can vary317

with input lengths, we may have different algorithms for different input sizes.318

Hence we have to appeal to the non-uniform variant of ETH. ut319

Theorem 1 implies that efficient algorithms for BFnS are unlikely. We therefore320

propose a two-phase algorithm to solve BFnS in practice. The first phase runs in321

polynomial time relative to an NP-oracle and generates polynomial-sized “approxi-322

mate” Skolem functions. We show that under certain structural restrictions on the323

NNF representation of F , the first phase always returns correct Skolem functions.324

However, these structural restrictions may not always be met. An NP-oracle can325

be used to check if the functions computed by the first phase are indeed correct326

Skolem functions. In case they aren’t, we proceed to the second phase of our algo-327

rithm that may take exponential time in the worst-case, but has been empirically328

found to work well in practice.329

4 Opportunistic polynomial-sized synthesis330

The first phase of our algorithm assumes access to an NP oracle (a SAT-solver331

in practice) and makes polynomially many calls to it. Given the spectacular im-332

provements in SAT solving performance over the past few decades, our goal in this333

phase is to design an algorithm that achieves efficiency in practice while synthe-334

sizing Skolem functions that are polynomial-sized, whenever possible. To do so,335

we start by first processing the unate output variables in the input specification.336

Proposition 1 If F (Z,Y) is positive (resp. negative) unate in zi, then ψi = 1 (resp.337

ψi = 0) is a correct Skolem function for zi.338

Proof Recall that F is positive unate in zi means F |zi=0 ⇒ F |zi=1. It follows that339

∃ziF ⇔ (F |zi=0 ∨ F |zi=1)⇔ F |zi=1. Hence, 1 is indeed a correct Skolem function340

for zi in F . The proof for negative unateness follows along similar lines. ut341

Boolean Functional Synthesis: Hardness and Practical Algorithms 9

The above result gives us a way to identify outputs zi for which a Skolem function
can be easily computed. Note that if zi (resp. ¬zi) is a pure literal in F , then F is
positive (resp. negative) unate in zi. However, the converse is not necessarily true.
In general, a semantic check is necessary to test for unateness. In fact, it follows
from the definition of unateness that F is positive (resp. negative) unate in zi iff
the formula η+i (resp. η−i) defined below is unsatisfiable.

η+i = F (Zi−1
1 , 0,Zn

i+1,Y) ∧ ¬F (Zi−1
1 , 1,Zn

i+1,Y). (1)

η−i = F (Zi−1
1 , 1,Zn

i+1,Y) ∧ ¬F (Zi−1
1 , 0,Zn

i+1,Y). (2)

Note that each such check involves a single invocation of an NP-oracle, and a342

variant of this unateness check has been used in [5].343

If F is binate in an output zi, Proposition 1 doesn’t help in synthesizing ψi.344

Towards synthesizing Skolem functions for such outputs, recall the definitions of345

∆i and Γi from Section 2. Clearly, if we can compute these functions, we can solve346

BFnS. While computing ∆i and Γi exactly for all zi is unlikely to be efficient in347

general (in light of Theorem 1), we show that polynomial-sized “good” approxima-348

tions of ∆i and Γi can indeed be computed efficiently. As our experiments show,349

these approximations are good enough to solve BFnS for several benchmarks.350

Definition 2 Given a relational specification F (Z,Y), we use F̂ (Z,Z,Y) to denote351

the Boolean formula obtained by first representing F in NNF, and then replacing352

every occurrence of ¬zi (zi ∈ Z) in the NNF representation with a fresh variable353

zi. The formula F̂ (Z,Z,Y) is called the positive form of the specification F (Z,Y).354

Example 1 Consider the specification F (Z,Y) = (z1 ∨ y1) ∧ (¬z1 ∨ ¬z2) ∧ (z2 ∨355

¬y2)∧ (¬z2 ∨¬z3 ∨¬y1)∧ (z3 ∨ y1)∧ (¬z3 ∨ y2). The positive form is F̂ (Z,Z,Y) =356

(z1 ∨ y1) ∧ (z1 ∨ z2) ∧ (z2 ∨ ¬y2) ∧ (z2 ∨ z3 ∨ ¬y1) ∧ (z3 ∨ y1) ∧ (z3 ∨ y2). ut357

The following are easy consequences of Definition 2.358

Proposition 2 (a) F̂ (Z,Z,Y) is positive unate in both Z and Z.359

(b) Let ¬Z denote (¬z1, . . .¬zn). Then F (Z,Y)⇔ F̂ (Z,¬Z,Y).360

For every i ∈ {1, . . . n}, we can split Z in two parts, Zi
1 and Zn

i+1 (assume Zn
i+1 to be361

the empty sequence if i = n), and represent F̂ (Z,Z,Y) as F̂ (Zi
1,Z

n
i+1,Z

i
1,Z

n
i+1,Y).362

We use these representations of F̂ interchangeably, depending on the context. For363

b, c ∈ {0, 1}, let bi (resp. ci) denote a vector of i b’s (resp. c’s). For notational conve-364

nience, we use F̂ (bi,Zn
i+1, c

i,Z
n
i+1,Y) to denote F̂ (Zi

1,Z
n
i+1,Z

i
1,Z

n
i+1,Y)|

Zi
1=bi,Z

i
1=ci365

in the subsequent discussion. The following is an easy consequence of Proposition 2.366

Proposition 3 For every i ∈ {1, . . . n}, the following holds:367

F̂ (0i,Zn
i+1,0

i,¬Zn
i+1,Y) ⇒ ∃Zi

1F (Z,Y) ⇒ F̂ (1i,Zn
i+1,1

i,¬Zn
i+1,Y)368

Example 2 Consider the specification F (Z,Y) in Example 1. It is an easy exercise369

to show that370

371

∃Z1
1F (Z,Y) = (y1 ∨ ¬z2) ∧ (z2 ∨ ¬y2) ∧ (¬z2 ∨ ¬z3 ∨ ¬y1) ∧ (z3 ∨ y1) ∧ (¬z3 ∨ y2)

∃Z2
1F (Z,Y) =

(
(y1 ∧ ¬z3) ∨ ¬y2

)
∧ (z3 ∨ y1) ∧ (¬z3 ∨ y2)

∃Z3
1F (Z,Y) = y1

372

10 S. Akshay et al.

In addition, we have373

374

F̂ (01,Z3
2,0

1,¬Z3
2,Y) = y1 ∧ ¬z2 ∧ ¬y2 ∧ ¬z3

F̂ (02,Z3
3,0

2,¬Z3
3,Y) = 0

F̂ (03,03,Y) = 0

F̂ (11,Z3
2,1

1,¬Z3
2,Y) = (z2 ∨ ¬y2) ∧ (¬z2 ∨ ¬z3 ∨ ¬y1) ∧ (z3 ∨ y1) ∧ (¬z3 ∨ y2)

F̂ (12,Z3
3,1

2,¬Z3
3,Y) = (z3 ∨ y1) ∧ (¬z3 ∨ y2)

F̂ (13,13,Y) = 1

375

Notice that F̂ (0i,Zn
i+1,0

i,¬Zn
i+1,Y) ⇒ ∃Zi

1F (Z,Y) ⇒ F̂ (1i,Zn
i+1,1

i,¬Zn
i+1,Y)376

holds for each i ∈ {1, 2, 3}. ut377

Lemma 1 For every zi ∈ Z, we have:378

(a) ¬F̂ (1i−10,Zn
i+1,1

i,¬Zn
i+1,Y)⇒ ∆i ⇒ ¬F̂ (0i,Zn

i+1,0
i−11,¬Zn

i+1,Y)379

(b) ¬F̂ (1i,Zn
i+1,1

i−10,¬Zn
i+1,Y)⇒ Γi ⇒ ¬F̂ (0i−11,Zn

i+1,0
i,¬Zn

i+1,Y)380

Proof Follows immediately from proposition 3 and the definitions of ∆i and Γi.381

ut382

Example 3 Consider the specification in Example 1 again. The following are easily383

obtained from the definitions of ∆i and Γi, and from the formulas derived in384

Example 2.385

– ¬F̂ (0,Z3
2, 1,¬Z3

2,Y) ⇔ ∆1 ⇔ ¬y1 ∨ (¬z2 ∧ y2) ∨ (z2 ∧ z3) ∨ (z3 ∨ ¬y2)386

– ¬F̂ (1,Z3
2, 0,¬Z3

2,Y) ⇔ Γ1 ⇔ z2 ∨ y2 ∨ ¬y1 ∨ z3387

– ¬F̂ (11, 0,Z3
3,1

1, 1,¬Z3
3,Y) ⇔ ∆2 ⇔ ¬F̂ (01, 0,Z3

3,0
1, 1,¬Z3

3,Y) ⇔ ¬y1 ∨ y2 ∨ z3388

– ¬F̂ (11, 1,Z3
3,1

1, 0,¬Z3
3,Y) ⇔ (z3 ∧ y1)∨ (¬z3 ∧¬y1)∨ (z3 ∧¬y2) ⇒ ¬y1 ∨ z3 ⇔389

Γ2 ⇒ ¬F̂ (01, 1,Z3
3,0

1, 0,¬Z3
3,Y) ⇔ 1390

– ¬F̂ (12, 0,12, 1,Y) ⇔ ∆3 ⇔ ¬y1 ⇒ 1 ⇔ ¬F̂ (02, 0,02, 1,Y)391

– ¬F̂ (12, 1,12, 0,Y) ⇔ ¬y2 ⇒ 1 ⇔ Γ3 ⇔ ¬F̂ (02, 1,02, 0,Y)392

As can be seen, in the context of this example, some of the implications in Lemma 1393

are strict (i.e. one-way implications), while others are equivalences (i.e. two-way394

implications). ut395

Since∆i and Γi are hard to compute exactly, we mostly use their under-approximations396

in the development of our synthesis algorithms. Recall from Section 2 that both ∆i397

and ¬Γi suffice as Skolem functions for xi. Therefore, we propose to use either an398

under-approximation of ∆i or an over-approximation of ¬Γi (depending on which399

has a smaller AIG) as our approximation of ψi. Specifically, we use400

δi = ¬F̂ (1i−10,Zn
i+1,1

i,¬Zn
i+1,Y), γi = ¬F̂ (1i,Zn

i+1,1
i−10,¬Zn

i+1,Y) (3)

ψi = δi or ¬γi, depending on which has a smaller AIG (4)

Note that if ψi is chosen as δi, it under-approximates a correct Skolem function,401

while if ψi is chosen as ¬γi, it over-approximates a correct Skolem function.402

Example 4 Consider the specification Z = Y, expressed in NNF as F (Z,Y) ≡403 ∧n
i=1 ((zi ∧ yi) ∨ (¬zi ∧ ¬yi)). As noted in [38], this is a difficult example for CEGAR-404

based QBF solvers, when n is large.405

Boolean Functional Synthesis: Hardness and Practical Algorithms 11

From Eqn 3, δi = ¬(¬yi ∧
∧n

j=i+1(zj ⇔ yj)) = yi ∨
∨n

j=i+1(zj ⇔ ¬yj), and406

γi = ¬(yi ∧
∧n

j=i+1(zj ⇔ yj)) = ¬yi ∨
∨n

j=i+1(zj ⇔ ¬yj). With δi as the choice407

of ψi, we obtain ψi = yi ∨
∨n

j=i+1(zj ⇔ ¬yj). Clearly, ψn = yn. On reverse-408

substituting, we get ψn−1 = yn−1 ∨ (ψn ⇔ ¬yn) = yn−1 ∨ 0 = yn−1. Continuing409

in this way, we get ψi = yi for all i ∈ {1, . . . n}. The same result is obtained410

regardless of whether we choose δi or ¬γi for each ψi. Thus, our approximation411

is good enough to solve this problem. In fact, it can be shown that δi = ∆i and412

γi = Γi for all i ∈ {1, . . . n} in this example. ut413

Note that the approximations of Skolem functions, as given in Equations (3)414

and (4), are efficiently computable for all i ∈ {1, . . . n}, as they involve evaluating415

F̂ with a subset of inputs set to constants. This takes no more than O(|F |) time416

and space. As illustrated by Example 4, these approximations also often suffice to417

solve BFnS. The following theorem partially explains this.418

Theorem 2 (a) Suppose 1 ≤ i ≤ n and the following holds:

∀j ∈ {1, . . . i} F̂ (1j ,Zn
j+1,1

j ,Z
n
j+1,Y)⇒ F̂ (1j−11,Zn

j+1,1
j−10,Z

n
j+1,Y)

∨ F̂ (1j−10,Zn
j+1,1

j−11,Z
n
j+1,Y)

Then ∃Zi
1F (Z,Y)⇔ F̂ (1i,Zn

i+1,1
i,¬Zn

i+1,Y).419

(b) If F̂ (Z,¬Z,Y) is in wDNNF, then δi = ∆i and γi = Γi for every i in {1, . . . n}.420

Proof To prove part (a), we use induction on i. The base case corresponds to i = 1.421

Recall that ∃Z1
1F (Z,Y) ⇔ F̂ (1,Zn

2 , 0,¬Zn
2 ,Y) ∨ F (0,Zn

2 , 1,¬Zn
2 ,Y) by definition.422

Proposition 3 already asserts that ∃Z1
1F (Z,Y) ⇒ F̂ (1,Zn

2 , 1,¬Zn
2 ,Y). Therefore,423

if the condition in Theorem 2(a) holds for i = 1, we have F̂ (1,Zn
2 , 1,¬Zn

2 ,Y) ⇔424

F̂ (1,Zn
2 , 0,¬Zn

2 ,Y)∨F (0,Zn
2 , 1,¬Zn

2 ,Y), which in turn is equivalent to ∃Z1
1F (Z,Y).425

This proves the base case.426

Let us now assume (inductive hypothesis) that the statement of Theorem 2(a)427

holds for 1 ≤ i < n. We prove below that the same statement holds for i+1 as well.428

Clearly, ∃Zi+1
1 F (Z,Y)⇔ ∃zi+1

(
∃Zi

1F (Z,Y)
)
. By the inductive hypothesis, this is429

equivalent to ∃zi+1F̂ (1i,Zn
i+1,1

i,¬Zn
i+1,Y). By definition of existential quantifica-430

tion, this is equivalent to F̂ (1i+1,Zn
i+2,1

i0,¬Zn
i+2,Y)∨F̂ (1i0,Zn

i+2,1
i+1,¬Zn

i+2,Y).431

From the condition in Theorem 2(a), we also have F̂ (1i+1,Zn
i+2,1

i+1,Z
n
i+2,Y)432

⇒ F̂ (1i+1,Zn
i+2,1

i0,Z
n
i+2,Y) ∨ F̂ (1i0,Zn

i+2,1
i+1,Z

n
i+2,Y). The implication in the433

reverse direction follows from Proposition 2(a). Thus we have a bi-implication434

above, which we have already seen is equivalent to ∃Zi+1
1 F (Z,Y). This proves the435

inductive case.436

To prove part (b), we first show that if F̂ (Z,¬Z,Y) is in wDNNF, then the437

condition in Theorem 2(a) must hold for all j ∈ {1, . . . n}. Theorem 2(b) then438

follows from the definitions of ∆i and Γi (see Section 2), from the statement of439

Theorem 2(a) and from the definitions of δi and γi (see Eqn 3).440

For 1 ≤ j ≤ n, let ζ(Zn
j+1,Z

n
j+1,Y) denote the negation of the implication in441

the condition of Theorem 2(a), i.e. ζ(Zn
j+1,Z

n
j+1,Y) ≡ F̂ (1j ,Zn

j+1,1
j ,Z

n
j+1,Y) ∧442

¬
(
F̂ (1j−11,Zn

j+1,1
j−10,Z

n
j+1,Y) ∨ F̂ (1j−10,Zn

j+1,1
j−11,Z

n
j+1,Y)

)
. To prove by443

contradiction, suppose F̂ (Z,¬Z,Y) is in wDNNF but there exists j (1 ≤ j ≤ n)444

such that ζ(Zn
j+1,Z

n
j+1,Y) is satisfiable. Let Zn

j+1 = σ, Z
n
j+1 = κ and Y = θ be a445

12 S. Akshay et al.

satisfying assignment of ζ. We now consider the simplified DAG (circuit) obtained446

by substituting 1j−1 for Zj−1
1 as well as for Z

j−1
1 , σ for Zn

j+1, κ for Z
n
j+1 and θ447

for Y in the DAG representation of F̂ . This simplification replaces the output of448

every internal node with a constant (0 or 1), if the node evaluates to a constant449

under the above assignment. Note that the resulting DAG (circuit) can have only450

zj and zj as its leaves (inputs). Furthermore, since the assignment satisfies ζ, it451

follows that the simplified circuit evaluates to 1 if both zj and zj are set to 1, and452

it evaluates to 0 if any one of zj or zj is set to 0. This can only happen if there is453

a node labeled ∧ in the DAG representing F̂ (Z,¬Z,Y) with a path leading to the454

leaf labeled zj , and another path leading to the leaf labeled zj . This contradicts455

the assumption that F̂ (Z,¬Z,Y) is in wDNNF. Therefore, there is no j ∈ {1, . . . n}456

such that the condition of Theorem 2(a) is violated. ut457

In general, the candidate Skolem functions generated from the approximations458

discussed above may not always be correct. Indeed, the conditions discussed above459

are only sufficient, but not necessary, for the approximations to be exact. Hence, we460

need a separate check to see if our candidate Skolem function vector Ψ is correct.461

To do this, we construct an error formula εΨ(Z′,Z,Y) ≡ F (Z′,Y) ∧
∧n

i=1(zi ⇔462

ψi) ∧ ¬F (Z,Y), as described in [28], and check its satisfiability. The first term in463

the error formula checks if there exists some valuation of Z that makes F (Z,Y)464

true. The second term assigns variables in Z to the values given by the candidate465

Skolem functions, and the third term checks if this assignment falsifies the formula466

F . As shown in [28], checking the unsatisfiability of εΨ suffices to determine if Ψ467

is a correct Skolem function vector. We reproduce below the relevant theorem and468

proof from [28] for the sake of completeness.469

Theorem 3 εΨ is unsatisfiable iff Ψ is a Skolem function vector.470

Proof Suppose εΨ is unsatisfiable. By definition of εΨ, we have

∀Z′∀Z∀Y

(
F (Z′,Y)⇒

(
n∧

i=1

(zi ⇔ ψi) ⇒ F (Z,Y)

))
.

By standard logic transformations, this implies ∀Y
(
∃Z′F (Z′,Y) ⇒ F ′(Y)

)
, where471

F ′(Y) denotes F (Z,Y) with zi substituted by ψi for all i in {1, . . . n}. Therefore,472

Ψ is a Skolem function vector for Z in F .473

Suppose π is a satisfying assignment of εΨ. By definition of εΨ, π is a satisfying474

assignment of F (Z′,Y) and of
∧n

i=1 (zi ⇔ ψi) ∧ ¬F (Z,Y), considered separately.475

Thus, the values of z1, . . . , zn given by ψ1, . . . , ψn respectively, cause F to evaluate476

to 0 for the valuation of Y in π. However, there exists a valuation of Z, viz. π↓Z′ ,477

that causes F to evaluate to 1 for the same valuation of Y in π. Hence, Ψ is not478

a Skolem function vector for Z in F , as witnessed by the valuation of Y in π. ut479

We now combine all the above ingredients to come up with algorithm bfss (for480

Blazingly Fast Skolem Synthesis), as shown in Algorithm 1. The algorithm can be481

divided into three parts. In the first part (lines 2-10), unateness is checked. This482

is done in two ways: (i) we identify pure literals in F by simply examining the483

labels of leaves in the DAG representation of F in NNF, and (ii) we check the484

satisfiability of the formulas η+i and η−i , as defined in Equations (1) and (2). This485

requires invoking a SAT solver in the worst-case, and the solver may need to be486

Boolean Functional Synthesis: Hardness and Practical Algorithms 13

Algorithm 1: bfss

Input: F (Z,Y) in NNF with inputs Y and outputs Z. Let |Y| = m and |Z| = n
Output: Skolem function vector Ψ = (ψ1, . . . , ψn) for Z in F

1 Initialize: U0 := ∅; U1 := ∅; // Sets of negative and positive unate variables
2 repeat
3 for each zi ∈ Z \ (U0 ∪ U1) do

4 if F is positive unate in zi // zi pure or η+i (Eqn 1) satisfiable ;
5 then
6 F := F [zi = 1]; U1 := U1 ∪ {zi};
7 else if F is negative unate in zi // ¬zi pure or η− (Eqn 2) satisfiable ;
8 then
9 F := F [zi = 0]; U0 := U0 ∪ {zi};

10 until no more unate variables found ;
11 Choose an ordering � of Z; // Section 6 discusses actual ordering used;
12 for each zi ∈ Z in � order do
13 if zi ∈ Uj for j ∈ {0, 1} // Assume z1 � z2 � . . . zn;
14 then
15 ψi := j;

16 else
17 Compute δi, γi and ψi according to Equations (3) and (4);

18 εΨ := F (Z′,Y) ∧
∧n

i=1(zi ⇔ ψi) ∧ ¬F (Z,Y);
19 if εΨ is unsatisfiable then
20 Terminate and output Ψ;

21 else
22 Call Phase2;

invoked at most O(n2) times until no more unate variables are detected. Once we487

have done this, by Proposition 1, the constants 1 and 0 are correct Skolem functions488

for the positive and negative unate variables respectively, thus identified.489

In the second part, we fix an ordering of the remaining output variables accord-490

ing to an experimentally sound heuristic, as described in Section 6, and compute491

candidate Skolem functions for these variables according to Equations (3) and492

(4). We then check the satisfiability of the error formula εΨ to determine if the493

candidate Skolem functions are indeed correct. If the error formula is found to494

be unsatisfiable, we know from Theorem 3 that we have correct Skolem functions,495

which can therefore be output. This concludes phase 1 of algorithm bfss. However,496

if the error formula is found to be satisfiable, we move to phase 2 of algorithm bfss.497

It is not difficult to see that the running time of phase 1 is polynomial in the size of498

the input, relative to an NP-oracle (SAT solver in practice). This also implies that499

the Skolem functions generated can be of at most polynomial size. Finally, if F500

satisfies the conditions of Theorem 2, the Skolem functions generated in phase 1501

are correct. From the above reasoning, we obtain the following properties of phase502

1 of bfss:503

Theorem 4 1. For all output variables in which F is unate, phase 1 of bfss computes504

correct Skolem functions.505

2. If F̂ is in wDNNF, phase 1 of bfss computes correct Skolem functions.506

3. The running time of phase 1 of bfss is polynomial in input size, relative to an507

NP-oracle. Specifically, the algorithm makes O(n2) calls to an NP-oracle.508

14 S. Akshay et al.

4. The candidate Skolem functions output by phase 1 of bfss have size at most poly-509

nomial in the size of the input.510

By our hardness results in Section 3, we know that the above algorithm cannot511

solve BFnS for all inputs, unless some well-regarded complexity-theoretic conjec-512

tures fail. As a result, we must go to phase 2, in the worst case. Our experiments513

however show that this is not necessary in the majority of the benchmarks and514

phase 1 itself suffices. Interestingly, this is despite the fact that not all of the bench-515

marks are in wDNNF. Indeed, there is a deeper connection between the represen-516

tation of the specification F and the complexity of synthesis of Skolem functions,517

as has been explored recently in [2].518

5 Synthesis by expansion519

We now describe phase 2 of bfss, which is invoked only if phase 1 fails to generate520

a correct Skolem function vector. Unlike phase 1, phase 2 may need exponentially521

many invocations of an NP-oracle in the worst case. However, phase 2 always522

terminates with a correct Skolem function vector.523

Recall that the candidate Skolem functions computed in Step 17 of Algorithm 1524

were derived from under-approximations δi and γi of ∆i and Γi respectively. As525

discussed in Section 2, if we could use ∆i and Γi instead, we would obtain the526

correct Skolem functions directly. This suggests a generic method for “improving”527

the candidate Skolem functions obtained from phase 1. Specifically, we propose528

to expand the under-approximations δi and/or γi, while maintaining the invariant529

(δi ⇒ ∆i) ∧ (γi ⇒ Γi) for all i ∈ {1, . . . n}. Formally, we say δ′i is an expansion of530

δi if (δi ⇒ δ′i ⇒ ∆i) ∧ (δ′i 6⇒ δi) holds. Similarly, we say γ′i is an expansion of531

γi if (γi ⇒ γ′i ⇒ Γi) ∧ (γ′i 6⇒ γi) holds. Note that the candidate Skolem function532

δ′i (resp. ¬γ′i) is “better” than δi (resp. ¬γi) in the sense that it differs from the533

correct Skolem function ∆i (resp. ¬Γi) on strictly fewer assignments.. In the limit,534

if δi (resp. γi) is expanded all the way to be semantically equivalent to ∆i (resp.535

Γi), the candidate Skolem function ψi is indeed a correct Skolem function.536

In general, different algorithms may be used for expanding δi and/or γi, i.e.537

obtaining δ′i and/or γ′i satisfying the expansion conditions given above. We use the538

term expansion-based algorithm to denote any algorithm for Boolean functional syn-539

thesis that works by starting with underapproximations of ∆i and/or Γi for every540

output zi, and that (progressively or in a single step) expands these underapprox-541

imations until correct Skolem functions are obained either as δi or ¬γi, as the case542

may be. The counterexample-guided abstraction refinement (CEGAR) algorithm543

of [28] is a special case of an expansion-based algorithm that works for factored544

specifications. In phase 2 of bfss, we use a mix of three different expansion-based545

algorithms that work for arbitrary specifications.546

5.1 Zooming down on a Skolem function to rectify547

Suppose Ψ is a candidate Skolem function vector, where each ψi is either δi or ¬γi,548

with δi ⇒ ∆i and γi ⇒ Γi. Suppose further that π is a satisfying assignment of549

the error formula εΨ. By Theorem 3, at least one candidate Skolem function ψi is550

Boolean Functional Synthesis: Hardness and Practical Algorithms 15

incorrect and must be rectified. We call π↓Y a counterexample for Ψ, since Ψ fails551

to serve as a correct Skolem function vector when Y = π↓Y. Furthermore, since552

F (π↓Z, π↓Y) = 0, we say that π↓Z is the evidence for π↓Y being a counterexample.553

Our goal now is to expand δi and γi, as needed, to ensure that π↓Y eventually554

ceases to be a counterexample. We call this process eliminating a counterexample.555

Since some Skolem functions in Ψ may indeed be correct, we must first identify556

candidate Skolem functions ψi that are necessarily incorrect. Recall from Section 2557

that for every i ∈ {1, . . . n}, ψi is expressed as a function of zi+1, . . . zn and Y.558

Hence, given a candidate Skolem function vector Ψ and an assignment τ : Y →559

{0, 1}, the value of zn (given by ψn) depends only on τ , the value zn−1 (given by560

ψn−1) depends on the value of zn (given by ψn) and on τ , and so on until z1.561

Therefore, if a candidate Skolem function ψi is incorrect, it can induce another562

candidate Skolem function ψj to compute an incorrect value for zj , where j < i. In563

view of this, when finding erroneous candidate Skolem functions, it is desirable that564

we first examine ψn, and only if ψn is correct, should we examine ψn−1, and so on.565

Hence, finding the largest k ∈ {1, . . . n} such that ψk is incorrect is important when566

rectifying erroneous candidate Skolem functions. In general, this requires taking567

into account all counterexamples for Ψ. Since the count of such counterexamples568

can be exponential in |Y|, we focus for now on the specific counterexample π↓Y,569

and find the largest k such that ψk is incorrect when Y is set to π ↓Y. As we570

show later, rectifying the corresponding ψk is not wasted effort, since it must571

be rectified by every expansion-based algorithm before a correct Skolem function572

vector is obtained.573

To reduce notational clutter in the following discussion, for every assignment574

τ ∈ {0, 1}n of Y, we use Ψ(τ) to denote the sequence (ξ1, . . . ξn), where ξn = ψn(τ)575

and ξi = ψi(ξi+1, . . . ξn, τ) for i ∈ {1, . . . n−1}. With abuse of notation, we also use576

ψi(τ) to denote ψi(ξi+1, . . . ξn, τ) for i ∈ {1, . . . n− 1}, when there is no confusion.577

Definition 3 Let Ψ be a candidate Skolem function vector for a specification
F (Z,Y). Let τ ∈ {0, 1}n be an assignment of Y such that ∃ZF (Z, τ) = 1. We
define the critical index of Ψ with respect to τ , denoted κΨ(τ), as follows:

κΨ(τ) = 0 if F (Ψ(τ), τ) = 1, and

κΨ(τ) = min
k

(
∃z1, . . . zk F

(
z1, . . . zk, ψk+1(τ), . . . ψn(τ), τ

)
= 1

)
otherwise.

Let k = κΨ(τ). Intuitively, if we assign (ψk+1(τ), . . . ψn(τ)) to Zn
k+1 and τ to Y, it578

is possible to satisfy F (Z,Y) by choosing some values in {0, 1} for each of z1, . . . zk.579

However, if we additionally assign ψk(τ) to zk, there is no way to satisfy F (Z,Y).580

Therefore, k is the largest index in {1, . . . n} such that ψk is an incorrect candidate581

Skolem function, when considering the counterexample τ .582

Example 5 Let us re-visit the specification from Example 1, reproduced here for583

convenience: F (Z,Y) = (z1 ∨ y1) ∧ (¬z1 ∨ ¬z2) ∧ (z2 ∨ ¬y2) ∧ (¬z2 ∨ ¬z3 ∨ ¬y1) ∧584

(z3 ∨ y1)∧ (¬z3 ∨ y2). Following Equations (3) and (4) and using ¬γi as the initial585

candidate Skolem function for zi, we get ψ1 = ¬z2 ∧ ¬y2 ∧ y1 ∧ ¬z3, ψ2 = (¬z3 ∨586

¬y1) ∧ (z3 ∨ y1) ∧ (¬z3 ∨ y2) and ψ3 = y2. The corresponding error formula εΨ587

has a satisfying assignment (z′1, z
′
2, z
′
3, z1, z2, z3, y1, y2) = (0, 1, 0, 0, 0, 1, 1, 1). Hence,588

(y1, y2) = (1, 1) is a counterexample and (z1, z2, z3) = (0, 0, 1) is the evidence for589

the counterexample. In this case, F (z1, z2, 1, 1, 1) = (¬z1∨¬z2)∧z2∧¬z2 = 0 for all590

values of z1, z2. Hence, ψ3 is in error, and must be rectified if we are to eliminate591

16 S. Akshay et al.

the counterexample (y1, y2) = (1, 1). Note that by Definition 3, κΨ((1, 1)) equals592

3 in this case. ut593

Recall from Section 4 that the error formula εΨ has free variables Z′, Z and Y.594

Therefore, if π is a satisfying assignment of εΨ, we have F (π↓Z′ , π↓Y) = 1 and595

F (π↓Z, π↓Y) = 0. The following proposition now follows from Definition 3.596

Proposition 4 If π↓Y is a counterexample for Ψ, then κΨ(π↓Y) > 0.597

In the case of Example 5 above, Y = (1, 1) is a counterexample for Ψ, and indeed598

κΨ((1, 1)) = 3 (> 0). We now show that regardless of which expansion-based599

algorithm is used (including those that consider all counterexamples for Ψ), if600

k denotes κΨ(π↓Y), the kth candidate Skolem function must be rectified before601

the counterexample π ↓Y is eliminated. Towards a formalization of this result,602

let A denote an arbitrary expansion-based algorithm that takes F (Z,Y) and Ψ as603

inputs, and returns an updated Skolem function vector Ψ′ as output. The following604

lemma shows that Ψ′ cannot differ from Ψ in components with index greater than605

κΨ(π↓Y), if we evaluate them on the counterexample π↓Y for Ψ.606

Lemma 2 For all i ∈ {κΨ(π↓Y) + 1, . . . n}, ψi(π↓Y) = ψ′i(π↓Y).607

Proof We prove the lemma by contradiction. For notational convenience, let τ608

denote π↓Y in the proof. If possible, let there be an index i ∈ {κΨ(τ) + 1, . . . n}609

such that ψi(τ) 6= ψ′i(τ). Without loss of generality, we choose i to be the largest610

such index. This implies that for all j ∈ {i+ 1, . . . n}, ψj(τ) = ψ′j(τ).611

There are two sub-cases to consider, depending on whether ψi was chosen to be612

δi or ¬γi, where δi ⇒ ∆i and γi ⇒ Γi. We consider the case where ψi was chosen613

to be δi first. Since ψi(τ) 6= ψ′i(τ), algorithm A must have changed δi. Since A is614

an expansion-based algorithm, it can only change δi by expanding it. Therefore,615

we must have δi(ψi+1(τ), . . . ψn(τ), τ) = 0 and δ′i(ψi+1(τ), . . . ψn(τ), τ) = 1. This616

also means that ψi(τ) = 0.617

Since κΨ(τ)+1 ≤ i ≤ n, by Definition 3, we have ∃Zi−1
1 F (Zi−1

1 , ψi(τ), . . . ψn(τ), τ)618

= 1. Furthermore, since δ′i(ψi+1(τ), . . . ψn(τ), τ) = 1 and since δ′i underapproxi-619

mates∆i (recallA is an expansion-based algorithm), we have∆i(ψi+1(τ), . . . ψn(τ), τ) =620

1. Therefore, by definition of∆i (see Section 2), ∃Zi−1
1 F (Zi−1

1 , 0, ψi+1(τ), . . . ψn(τ), τ)621

= 0. Since ψ(τ) = 0, this also means ∃Zi−1
1 F (Zi−1

1 , ψi(τ), . . . ψn(τ), τ) = 0 This622

contradicts what we inferred above. A similar analysis for the sub-case where ψi623

is ¬γi also leads to a contradiction. This proves the lemma. ut624

Corollary 1 Let τ be a counterexample for Ψ, and let Ψ′ be the updated candidate625

Skolem function vector generated by an expansion-based algorithm A. If ψk(τ) = ψ′k(τ),626

where k = κΨ(τ), then τ is a counterexample for Ψ′ as well.627

Proof From Lemma 2, ψi(τ) = ψ′i(τ) for all i ∈ {k + 1, . . . n}. Suppose further628

that ψk(τ) = ψ′k(τ). From the definition of κΨ(τ) (see Definition 3), we know that629

∃Zk−1
1 F (Zk−1

1 , ψk(τ), . . . ψn(τ), τ) = 0. It follows that ∃Zk−1
1 F (Zk−1

1 , ψ′k(τ), . . . ψ′n(τ), τ)630

is also 0. Hence, ¬F (Z, τ) ∧
∧n

i=1(zi ⇔ ψ′i(τ)) is satisfiable. Furthermore, since τ631

is a counterexample for Ψ, we know from the definition of εΨ that F (Z′, τ) is632

satisfiable. It follows that F (Z′, τ) ∧ ¬F (Z, τ) ∧
∧n

i=1(zi ⇔ ψ′i(τ)) is satisfiable. In633

other words, τ is a counterexample for Ψ′. ut634

Boolean Functional Synthesis: Hardness and Practical Algorithms 17

Corollary 2 Once a counterexample is eliminated, it can never be re-introduced by an635

expansion-based algorithm.636

Proof Let τ be an assignment of Y that represents an eliminated counterex-637

ample. Hence, if Ψ denotes the current candidate Skolem function vector, we638

have F (Ψ(τ), τ) = 1. By Definition 3, we also have κΨ(τ) = 0. Therefore, by639

Lemma 2, if Ψ′ is the updated candidate Skolem function vector generated by an640

expansion-based algorithm, we must have ψ′i(τ) = ψi(τ) for all i ∈ {1, . . . n}. Hence641

F (Ψ′(τ), τ) = F (Ψ(τ), τ) = 1. Recalling the definition of εΨ′ , it follows that τ642

cannot be a a counterexample for Ψ′. ut643

Lemma 3 Let τ be a counterexample for Ψ with k = κΨ(τ). The following statements644

are true.645

1. Any expansion-based algorithm that eliminates the counterexample τ must neces-646

sarily update ψk.647

2. If ψk = δk, then δk 6⇔ ∆k. Specifically, δk
(
ψk+1(τ), . . . ψn(τ), τ

)
= 0 while648

∆k

(
ψk+1(τ), . . . ψn(τ), τ

)
= 1.649

3. If ψk = ¬γk, then γk 6⇔ Γk. Specifically, γk
(
ψk+1(τ), . . . ψn(τ), τ

)
= 0 while650

Γk
(
ψk+1(τ), . . . ψn(τ), τ

)
= 1.651

Proof Part (a) is an easy consequence of Corollary 1. We prove part (b) by contra-652

diction. Suppose, if possible, δk
(
ψk+1(τ), . . . ψn(τ), τ

)
= 1. Since δk ⇒ ∆k, we must653

have ∆k

(
ψk+1(τ), . . . ψn(τ), τ

)
= 1 as well. Thus, both δk and ∆k evaluate to the654

same value, i.e. 1, for Zn
k+1 =

(
ψk+1(τ), . . . ψn(τ)

)
and Y = τ . We also know that655

∆k is always a correct Skolem function for zk. Since ψk is chosen as δk, it follows656

that ψk evaluates to the value of the correct Skolem function for zk when Zn
k+1 =657 (

ψk+1(τ), . . . ψn(τ)
)

and Y = τ . Therefore, by the definition of a Skolem function,658

if ∃Zk
1F
(
Zk
1 , ψk+1(τ), . . . ψn(τ), τ

)
= 1, then ∃Zk−1

1 F
(
Zk−1
1 , ψk(τ), . . . ψn(τ), τ

)
= 1659

as well. However, this contradicts the fact that k = κΨ(τ) (see Definition 3).660

Therefore, δk
(
ψk+1(τ), . . . ψn(τ), τ

)
= 0.661

To see why∆k

(
ψk+1(τ), . . . ψn(τ), τ

)
= 1, notice that ∃Zk

1F
(
Zk
1 , ψk+1(τ), . . . ψn(τ), τ

)
=662

1, although ∃Zk−1
1 F

(
Zk−1
1 , ψk(τ), . . . ψn(τ), τ

)
= 0. Therefore, a correct Skolem663

function for zk, viz. ∆k, must evaluate to ¬ψk(τ) when Zn
k+1 =

(
ψk(τ), . . . ψ1(τ)

)
664

and Y = τ . We have already seen above that the value of ψk (= δk) for this assign-665

ment of Zn
k+1 and Y, is 0. In other words, ψk(τ) = 0. Therefore,∆k

(
ψk+1(τ), . . . ψn(τ), τ

)
666

must evaluate to 1. This also clearly shows that δk 6⇔ ∆k.667

The proof for part (c) is exactly the same as that for part (b) with γk and Γk668

replacing δk and ∆k, respectively. Since ψk = ¬γk in this case, ψk must evaluate669

to 1, while a correct Skolem function (such as ¬Γk) must evaluate to 0, when670

Zn
k+1 =

(
ψk+1(τ), . . . ψn(τ)

)
and Y = τ . ut671

It is clear from the discussion above that the critical index of Ψ w.r.t a672

counterexample π↓Y plays an important role in identifying a candidate Skolem673

function that must be rectified. How do we find this critical index in practice?674

If π denotes a satisfying assignment of εΨ, it is an easy exercise to show that675

∃Zi
1F (Zi

1, π ↓Zn
i+1
, π ↓Y) = 1 logically implies ∃Zj

1F (Zj
1, π ↓Zn

j+1
, π ↓Y) = 1 for all676

j ∈ {i, . . . n}. Therefore, κΨ(π↓Y) can be found by a binary search that identifies677

the minimum i such that F (Zi
1, π↓Zn

i+1
, π↓Y) is satisfiable. This requires O(log2 n)678

calls to a SAT solver. In the following discussion, we assume access to a procedure679

ComputeK that finds κΨ(π↓Y), given Ψ and π, in this manner.680

18 S. Akshay et al.

5.2 Counterexample-guided expansion of δi and γi681

We now describe three expansion-based algorithms used in phase 2 of bfss. While682

we experimented with several expansion-based algorithms, the combination of the683

three presented below gave us the best results in practice. In the following discus-684

sion, we assume that Ψ is a candidate Skolem function vector, where ψi is either δi685

or ¬γi, for each i ∈ {1, . . . n}. Furthermore, we assume that π is a satisfying assign-686

ment of εΨ, and k = κΨ(π↓Y). Since εΨ = F (Z′,Y) ∧ ¬F (Z,Y) ∧
∧n

i=1(zi ⇔ ψi),687

it is easy to see that π↓Z= Ψ
(
π↓Y

)
. Therefore, for 1 ≤ i ≤ j ≤ n, we often use688

π↓
Zj

i
to refer to

(
ψi(π↓Y), . . . ψj(π↓Y)

)
in the following discussion.689

5.2.1 Maximally expanding δi and γi690

In this approach, we make use of the observation that if δi and γi are maximally691

expanded to become semantically equivalent to ∆i and Γi respectively, then there692

is no further need to update the candidate Skolem function ψi (chosen to be either693

δi or ¬γi). We know from Definition 3 that there is a satisfying assignment of694

F (Z,Y) in which Zn
k+1 has the value π↓Zn

k+1
. Hence, there is no need to update695

ψk+1, . . . ψn in order to eliminate the counterexample π↓Y. Instead, if we simply696

ensure that all δi and γi for i ∈ {1, . . . k} are expanded to ∆i and Γi respectively,697

the counterexample π↓Y is guaranteed to be eliminated. Algorithm MaxExpand698

(see Algorithm 2) achieves this when the input parameter c is set to k. Note699

that this algorithm requires (δ1 ⇔ ∆1) ∧ (γ1 ⇔ Γ1) to hold when it is invoked.700

Fortunately, this pre-condition is trivially satisfied. Specifically, ∆1 = ¬F (0,Zn
2 ,Y)701

by definition, and δ1 = ¬F̂ (0,Zn
2 , 1,¬Zn

2+1,Y) = ¬F (0,Zn
2 ,Y) from Equation (3).702

It follows that δ1 = ∆1. By a similar argument, we get γ1 = Γ1 as well.703

Algorithm 2: MaxExpand

Input: c ∈ {1, . . . , n}, δ1, γ1
Output: Updated (δi, γi, ψi) for 1 ≤ i ≤ c
// Requires: (δ1 ⇔ ∆1) ∧ (γ1 ⇔ Γ1)

1 for i = 2 to c do
2 δi ← (δi−1 ∧ γi−1)|zi=0;
3 γi ← (δi−1 ∧ γi−1)|zi=1;

4 for i = 1 to c do
5 ψi ← δi (or ¬γi); // Either choice is fine

6 return (δi, γi, ψi) for 1 ≤ i ≤ c;

Lemma 4 The following statements hold after Algorithm MaxExpand terminates,704

where primed functions denote their updated versions after executing the algorithm.705

1. δ′i ⇔ ∆i and γ′i ⇔ Γi for all i ∈ {1, . . . c}.706

2. Let Ψ′ be the updated Skolem function vector that results from setting ψ′i to either707

δ′i or ¬γ′i for all i ∈ {1, . . . n}. If π′ |= εΨ′ , then κΨ(π′↓Y) > c.708

Proof We prove part (1) by induction on c. By virtue of the pre-condition, the709

base case is satisfied when c = 1. Suppose the claim holds for all i in {1, . . .m},710

Boolean Functional Synthesis: Hardness and Practical Algorithms 19

where 1 ≤ m < c. Thus, δ′m = ∆m and γ′m = Γm. We now show that the711

claim holds for m+ 1 as well. By definition, ∆m+1 = ¬∃Zm
1 F (Zm

1 , 0,Z
n
m+2,Y) =712

¬
(
∃Zm−1

1 F (Zm−1
1 , 0,Zn

m+1,Y)|zm+1=0 ∨ ∃Zm−1
1 F (Zm−1

1 , 1,Zn
m+1,Y)|zm+1=0

)
. This,713

in turn, is equivalent to (∆m ∧ Γm) |zm+1=0. Therefore, using the induction hypoth-714

esis, we get ∆m+1 =
(
δ′m ∧ γ′m

)
|zm+1=0. A similar argument shows that Γm+1 =715 (

δ′m ∧ γ′m
)
|zm+1=1. By mathematical induction, and by virtue of the updates in716

steps 2 and 3 of MaxExpand, we finally get δ′i = ∆i and γ′i = Γi for 1 ≤ i ≤ c.717

To prove part (2), suppose π′ |= εΨ′ and l = κΨ(π′↓Y) ≤ c. By Lemmas 3(2)718

and 3(3), either (δ′l 6⇔ ∆l) or (γ′l 6⇔ Γl) must hold. This contradicts the first part719

of the lemma proved above. Hence κΨ(π′↓Y) must be greater than c. ut720

The worst-case size of the updated δi and γi functions computed by Algorithm721

MaxExpand grows exponentially in c and linearly in |F |. This blow-up is similar to722

that seen in the algorithm of Jiang et al. for quantifier elimination via functional723

composition [25, 7]. Therefore, although Algorithm MaxExpand can solve BFnS724

in principle (if the parameter c is set to n), it is useful in practice only when c is725

restricted to small values (say, ≤ 4).726

5.2.2 Expanding to reduce the critical index727

In this approach, we expand γi and/or δi in a manner that ensures that the critical728

index of Ψ w.r.t. the counterexample π↓Y reduces. By Proposition 4, we know that729

the critical index of Ψ w.r.t. a counterexample must always be positive. Hence,730

it can reduce at most n (= |Z|) times, after which the counterexample must be731

eliminated.732

Since k is the critical index of Ψ w.r.t. π↓Y, we know from Definition 3 that733

∃Zk−1
1 F (Zk−1

1 , π↓Zn
k
, π↓Y) = 0 and ∃Zk

1F (Zk
1 , π↓Zn

k+1
, π↓Y) = 1. It follows from734

elementary logic that ∃Zk−1
1 F (Zk−1

1 ,¬π[zk], π↓Zn
k+1

, π↓Y) = 1. This fact, together735

with Lemma 2, suggests that we update the candidate Skolem function ψk so736

that that it evaluates to ¬π[zk] (instead of π[zk], as it currently does) when Zn
k+1737

and Y are set to π↓Zn
k+1

and π↓Y respectively. Let the updated Skolem function738

vector be Ψ′. Clearly, the critical index of Ψ′ w.r.t. π↓Y cannot be k or more,739

since ∃Zk−1
1 F (Zk−1

1 ,¬π[zk], π↓Zn
k+1

, π↓Y) = 1. Therefore, either π↓Y ceases to be a740

counterexample, or the critical index of Ψ′ w.r.t. π↓Y reduces to a value strictly741

less than k.742

Lemmas 3(2) and 3(3) suggest that if δk (resp. γk) is updated to evaluate to743

1 when Zn
k+1 and Y are set to π↓Zn

k+1
and π↓Y respectively, then the updated744

ψk evaluates to ¬π[zk] for the same assignment. An easy way to achieve this is to745

simply add the minterm corresponding to (Zn
k+1,Y) = π↓(Zn

k+1,Y) to δk (resp. γk).746

However, we can do better! Lemma 2 tells us that the value of Zn
k+1, as obtained747

from the updated candidate Skolem function vector, equals π↓Zn
k+1

when Y is set748

to π↓Y, regardless of what expansion-based algorithm we use. Therefore, it suffices749

to simply add the minterm corresponding to (Y = π↓Y) to δk (respectively γk)750

in order to expand it. This motivates Algorithm ExpandAtK shown below. This751

algorithm takes as input k = κΨ(π↓Y) and expands either δk or γk, depending752

on whether ψk is chosen to be δk or ¬γk. The notation δk ∨ (Y = π↓Y) is used753

to denote a function that evaluates to 1 when either δk evaluates to 1 or when754

Y = π↓Y. A similar interpretation applies to γk ∨ (Y = π↓Y). The expansion of δk755

20 S. Akshay et al.

or γk is accompanied by a corresponding update of ψk in lines 3 and 6. Algorithm756

ExpandAtK also updates the evidence for the counterexample π↓Y that results due757

to the above expansion. Note that π↓Y may no longer be a counterexample after758

the expansion. In this case, the updated value of π↓Z simply gives the values of759

the correct Skolem functions when Y = π↓Y. If, however, π↓Y continues to be a760

counterexample with a reduced value of the critical index, the updated value of761

π↓Z gives the updated evidence for the counterexample.762

Algorithm 3: ExpandAtK

Input: π, k, (δi, γi, ψi) for 1 ≤ i ≤ n
Output: Updated δk, γk, ψk and updated π
// Requires: π |= εΨ; k = κΨ(π↓Y); ψi is either δi or ¬γi for 1 ≤ i ≤ n

1 if ψk is δk then
2 δk ← δk ∨ (Y = π↓Y); // Expand δk so it evaluates to 1 for Y = π↓Y;
3 ψk ← δk;

4 else
5 γk ← γk ∨ (Y = π↓Y); // Expand γk so it evaluates to 1 for Y = π↓Y;
6 ψk ← ¬γk;

// Now update evidence for π↓Y
7 π[zk]← ¬π[zk];
8 for j = k − 1 downto 1 do
9 π[zj] = ψj(π↓Zn

j+1
, π↓Y);

10 return (δk, γk, ψk) and π;

Lemma 5 The following statements hold after algorithm ExpandAtK terminates,763

where primed versions refer to updated values, assignments and functions at the end of764

execution of the algorithm.765

1. π′[zi] = ψ′i(π
′↓Zn

i+1
, π′↓Y) for 1 ≤ i ≤ n.766

2. κΨ′(π′↓Y) < k.767

Proof To prove part (1), note that Algorithm ExpandAtK updates exactly one can-768

didate Skolem function, i.e. ψk. Therefore, by Lemma 2, π′[zi] = π[zi] = ψi(π↓Zn
i+1

769

, π↓Y) = ψ′i(π
′↓Zn

i+1
, π′↓Y) for k < i ≤ n. The expansion in lines 1-6 of ExpandAtK,770

in conjunction with Lemma 3, ensures that the value of ψ′k(π′↓Zn
k+1

, π′↓Y) is the771

negation of that of ψk(π↓Zn
k+1

, π↓Y). This, along with the assignment in line 7,772

ensures that after Algorithm ExpandAtK terminates, π′[zk] = ψ′k(π′↓Zn
k+1

, π′↓Y).773

The assignment in line 9 ensures that π′[zi] matches ψ′i(π
′↓Zn

i+1
, π′↓Y) for 1 ≤ i < k.774

To prove part (2), note that after the flipping of π[zk] in line 7, we have775

∃Zk−1
1 F (Zk−1

1 , π′↓Zn
k
, π′↓Y) = 1, as discussed above. Therefore, κΨ′(π′↓Y) cannot776

be k or more. If π′↓Y ceases to be a counterexample, κΨ′(π′↓Y) = 0. Otherwise,777

0 < κΨ′(π′↓Y) < k. In either case, the lemma is proved. ut778

5.2.3 Expansion based on counterexample generalization779

The final expansion-based algorithm is inspired by and adapted from the work of780

John et al. [28]. In their work, the relational specification is assumed to be given781

Boolean Functional Synthesis: Hardness and Practical Algorithms 21

in a factored form, i.e. as a conjunction of sub-specifications. They then compute782

initial under-approximations δi and γi of ∆i and Γi respectively. Candidate Skolem783

functions are always chosen to be ¬γi, and satisfying assignments (if any) of the784

error formula are used to iteratively expand δi and γi in a CEGAR-like loop. A785

key component of the algorithm is a sub-routine called UpdateAbsRef [28] that786

generalizes a counterexample π and uses the generalization to expand δi and γi for787

a set of indices i. The termination and correctness proofs of the algorithm in [28]788

are contingent on the assumption that the specification is given in a factored form,789

and that candidate Skolem functions ψi are always ¬γi. In this paper, we relax790

these assumptions and show that the basic idea of the algorithm of John et al. [28]791

can be used in a much more general setting.792

Algorithm GeneralizeAndExpand, shown as Algorithm 4, presents our adap-793

tation of Algorithm UpdateAbsRef from [28]. Despite similarities between the two794

algorithms, there are important differences. For example, the input specification is795

no longer required to be in factored form and the candidate Skolem function ψi is796

no longer required to be ¬γi. In fact, Algorithm GeneralizeAndExpand requires797

no additional pre-condition beyond the usual ones.798

Algorithm 4: GeneralizeAndExpand

Input: π, k, (δi, γi, ψi) for 1 ≤ i ≤ n
Output: Updated (δi, γi, ψi) for i ∈ {1, . . . κΨ(π↓Y)}
// Requires: π |= εΨ; k = κΨ(π↓Y); each ψi is either δi or ¬γi

1 `← max{m | π↓(Zn
m+1,Y)|= δm ∧ γm};

2 µ0 ← Generalize(π↓(Zn
`+1

,Y), δ`);

3 µ1 ← Generalize(π↓(Zn
`+1

,Y), γ`);

4 µ← µ0 ∧ µ1;
5 `← `+ 1;

// Loop Invariant: π↓(Zn
`
,Y)|= µ; sup(µ) ⊆ Zn

` ∪Y; µ⇒ δ`−1 ∧ γ`−1

6 while ` ≤ κΨ(π↓Y) do
7 if z` ∈ sup(µ) then
8 if π[z`] = 1 then
9 µ1 ← µ|z`=1;

10 γ` ← γ` ∨ µ1;
11 if π↓(Zn

`+1
,Y)|= δ` then

12 µ0 ← Generalize(π↓(Zn
`+1

,Y), δ`);

13 µ← µ0 ∧ µ1;

14 else
15 break;

16 else
17 µ0 ← µ|z`=0;
18 δ` ← δ` ∨ µ0;
19 if π↓(Zn

`+1
,Y)|= γ` then

20 µ1 ← Generalize(π↓(Zn
`+1

,Y), γ`);

21 µ← µ0 ∧ µ1;

22 else
23 break;

24 `← `+ 1;

25 return (δi, γi, ψi) for i ∈ {1, . . . κΨ(π↓Y)}

22 S. Akshay et al.

The basic intuition behind Algorithm GeneralizeAndExpand is as follows.799

Suppose π |= εΨ. This yields a single counterexample, viz. π↓Y, and its corre-800

sponding evidence, viz. π↓Z. We wish to generalize π to a set of assignments, such801

that each assignment yields a counterexample and the corresponding evidence.802

Following standard convention, we represent a set of assignments by its character-803

istic function, i.e. a Boolean function that evaluates to 1 only for assignments in804

the set. Therefore, we generalize π by a suitably constructed Boolean function µ.805

In general, it is not necessary for the support of µ to include the whole of Z∪Y. In-806

stead, we require that sup(µ) ⊆ Zn
i+1∪Y for some i ∈ {1, . . . n}, and π↓(Zn

i+1,Y)|= µ807

(hence, µ generalizes π). In order to ensure that every satisfying assignment (not808

just π↓(Zn
i+1,Y)) of µ yields a counterexample and evidence, we also require that809

µ ⇒ (δi ∧ γi). Since δi ⇒ ∆i and γi ⇒ Γi, this implies that µ |= ∆i ∧ Γi. By810

definition, ∆i ∧ Γi ⇔ ¬∃Zi
1F (Zi

1,Z
n
i+1,Y). Recalling that sup(µ) ⊆ Zn

i+1 ∪Y, we811

conclude that no satisfying assignment of µ can render F true, regardless of what812

we assign to Zi
1. Therefore, for every satisfying assignment τ of µ, it is desirable813

to modify ψi+1 so that it evaluates to ¬τ [zi+1] whenever Zn
i+2 and Y are set to814

τ↓Zn
i+2

and τ↓Y respectively.815

The co-factor µ|zi+1=1 is the characteristic function of the set of assignments816

of Zn
i+2 ∪Y that, along with zi+1 = 1, satisfy µ, thereby preventing F from being817

satisfied. For all such assignments of Zn
i+2∪Y, we need to ensure that ψi+1 (yielding818

the value of zi+1) doesn’t evaluate to 1. This implies that we must expand γi+1 so819

that it evaluates to 1 whenever µ|zi+1=1 is satisfied. One way of achieving this is820

to disjoin µ|zi+1=1 with the current γi+1 to obtain the expanded γi+1. In a similar821

manner, µ|zi+1=0 can be disjoined with the current δi+1 to obtain an expanded822

δi+1. While both δi+1 and γi+1 can indeed be expanded using a generalization of π823

in this manner, our experiments indicate that this can lead to significant blow-up824

of memory and time requirements in many cases. Therefore, we choose to expand825

only one of δi+1 and γi+1, depending on whether π[zi+1] is 0 or 1 respectively.826

Note that if π[zi+1] = 0 (resp. π[zi+1 = 1), we know that µ|zi+1=0 (resp. µ|zi+1=1)827

indeed has a satisfying assignment, viz. π↓(Zn
i+2,Y). Therefore, it is reasonable to828

choose to expand δi+1 (resp. γi+1) in this case.829

The above strategy of expanding δi+1 and/or γi+1 results in updation of the830

candidate Skolem function ψi+1. However, even after this expansion, it may turn831

out that π↓(Zn
i+2,Y) satisfies δi+1 ∧ γi+1. If this happens, we can repeat the above832

argument with i + 1 substituted for i. This suggests an iterative procedure for833

expanding δj and/or γj for increasing values of j in {i+ 1, . . . n}. The iteration is834

stopped when π↓(Zn
j+1,Y) no longer satisfies δj ∧γj . Since k = κΨ(π↓Y), we already835

know that ∃Zk
1F (Zk

1 , π↓Zn
k+1

, π↓Y) = 1. Therefore, π↓(Zn
k+1,Y) 6|= δk ∧ γk, and the836

above iterative procedure can be terminated early at k, instead of iterating up to837

n.838

The pseudocode in Algorithm 4 formalizes the intuition described above. The839

algorithm starts off by identifying the largest index ` ∈ {1, . . . n} such that π |=840

δ` ∧ γ`. It then generalizes π to a formula µ with support in Zn
`+1 ∪Y such that841

π ↓(Zn
`+1,Y)|= µ and µ ⇒ δ` ∧ γ`. This is done using a sub-routine Generalize842

(discussed later) in lines 2-4 of Algorithm GeneralizeAndExpand. After ` is in-843

cremented in line 5, the loop in lines 16-24 maintains the following three invariants844

at the loop head: (a) π↓(Zn
` ,Y)|= µ, (b) sup(µ) ⊆ Zn

` ∪Y, and (c) µ⇒ δ`−1 ∧ γ`−1.845

There are two ways in which the loop eventually terminates: (a) either `, which is846

Boolean Functional Synthesis: Hardness and Practical Algorithms 23

incremented in every iteration (line 24), exceeds κΨ(π↓Y), or (b) we detect that847

π↓(Zn
`+1,Y) no longer satisfies δ` ∧ γ` in the body of the loop (lines 15 and 23).848

Within the body of the loop, if the condition in line 8 holds, we know that849

π[z`] = 1. Additionally, from the loop invariant, we know that π↓(Zn
` ,Y)|= µ. It850

follows that π↓(Zn
`+1,Y)|= µ1 at line 10, where µ1 = µ|z`=1. Therefore, µ1 serves as851

a generalization of π↓(Zn
`+1,Y). Note also that µ⇒ δ`−1 ∧ γ`−1 (loop invariant) and852

δ`−1 ∧ γ`−1 ⇒ ∆`−1 ∧ Γ`−1 by definition. Therefore, µ1 ⇒ (∆`−1 ∧ Γ`−1)|z`=1.853

However, (∆`−1 ∧Γ`−1)|z`=1 ⇔ Γ` by the definitions of ∆`−1, Γ`−1 and Γ`. Hence,854

µ1 ⇒ Γ` and we can safely expand γ` by disjoining it with µ1. This is exactly855

what Algorithm GeneralizeAndExpand does in line 10. Clearly, µ1 ⇒ γ` after856

the statement in line 10 is executed.857

In line 11, we check if π↓(Zn
`+1,Y)|= δ` holds. If so, we have π↓(Zn

`+1,Y)|= γ` ∧ δ`,858

since we already knew that π ↓(Zn
`+1,Y)|= γ` after the statement in line 10 was859

executed. In this case, we use the Generalize sub-routine to obtain a formula860

µ0 with support in Zn
`+1 ∪ Y such that π↓(Zn

`+1,Y)|= µ0 and µ0 ⇒ δ`. It is now861

straightforward to see that the formula µ0 ∧ µ1, with support in Zn
`+1 ∪Y, gen-862

eralizes π↓(Zn
`+1,Y), while under-approximating δ` ∧ γ`. Thus, the loop invariant is863

satisfied with ` being replaced by `+1, and we can proceed to the next iteration of864

the loop. If, on the other hand, the check in line 11 fails, then π↓(Zn
`+1,Y) 6|= γ` ∧ δ`,865

and the loop invariant would be violated if we continued with the next iteration866

after incrementing `. Therefore, we exit the loop in line 15.867

The above discussion considered the case when π[z`] = 1. If π[z`] = 0, the check868

in line 8 fails and the statements in lines 17-23 are executed. These statements869

achieve a similar effect as discussed above, except that δ` is updated instead of γ`.870

Of course, the above discussion is meaningful only if z` ∈ sup(µ). The check in line871

7 ensures that this condition holds before we proceed to update δ` and/or γ`.872

For the function Generalize, there are several options for implementing it.873

In general, given π↓(Zn
j+1,Y)|= g, where sup(g) ⊆ Zn

j+1 ∪Y, we require General-874

ize(π↓(Zn
j+1,Y), g) to return a Boolean function g′ with support in Zn

j+1 ∪Y such875

that π↓(Zn
j+1,Y)|= g′ and g′ ⇒ g holds. At one extreme, we can return the minterm876

corresponding to π↓(Zn
j+1,Y) as g′. While this gives a correct implementation of877

Generalize, it doesn’t really generalize the counterexample, and the benefits of878

generalization are lost. At the other extreme, we can return g itself as the result.879

While this achieves the purpose of generalizing a counterexample, our experiments880

indicated that the memory and time overheads of this option are too high in our881

context. So we adopt a middle path as follows. As in [28], we use a set of implicitly882

disjoined formulas to represent each δi and γi. If g is δj or γj , we let General-883

ize(π↓(Zn
j+1,Y), g) return one of the formulas, say gi, in the above set – specifically,884

the one with the smallest support such that π↓(Zn
j+1,Y)|= gi. For reasons of practi-885

cal performance, we restrict the sizes of individual formulas in the set of implicitly886

disjoined formulas to be in O(|F |). Note that this can always be done since the887

minterm corresponding to π↓(Zn
j+1,Y) is of size |Y |, and hence is in O(|F |).888

Lemma 6 The following statements hold for Algorithm GeneralizeAndExpand.889

1. The index ` computed in line 1 lies in {1, . . . κΨ(π↓Y)− 1}.890

2. There are three loop invariants at line 6: (i) π↓(Zn
` ,Y)|= µ, (ii) sup(µ) ⊆ Zn

` ∪Y891

and (iii) µ⇒ δ`−1 ∧ γ`−1.892

24 S. Akshay et al.

3. There is at least one ` ∈ {2, . . . κΨ(π↓Y)} such that either δ` or γ` is expanded.893

Proof To prove part (1), we first show that π↓(Zn
2 ,Y)|= δ1 ∧ γ1. Since π |= εΨ, we894

know that F (π ↓Z, π ↓Y) = 0 and π[z1] = ψ1(π ↓Zn
2
, π ↓Y). Now recall from Sec-895

tion 5.2.1 that δ1 ⇔ ∆1 and γ1 ⇔ Γ1. Therefore, regardless of whether ψ1 = δ1 or896

ψ1 = ¬γ1, the Skolem function ψ1 is correct for z1. In other words, if ∃z1F (z1, π↓Zn
2

897

, π↓Y) = 1, then F
(
ψ1(π↓Zn

2
, π↓Y), π↓Zn

2
, π↓Y

)
= F (π↓Z, π↓Y) = 1 as well. How-898

ever, this contradicts our earlier observation that F (π↓Z, π↓Y) = 0. Therefore, we899

must have ∃z1F (z1, π↓Zn
2
, π↓Y) = 0. From the definitions of δ1 and γ1, this implies900

that π↓(Zn
2 ,Y)|= δ1 ∧ γ1. Therefore, if ` = max{m | π↓(Zn

m+1,Y)|= δm ∧ γm}, then901

` ≥ 1.902

Let k = κΨ(π↓Y). Suppose, if possible, π↓(Zn
i+1,Y)|= δi∧γi for some i ∈ {k, . . . n}.903

Since δi ⇒ ∆i and γi ⇒ Γi, we have π↓(Zn
i+1,Y)|= ∆i∧Γi. By definition of ∆i and Γi,904

this means ∃Zi
1F (Zi

1, π↓Zn
i+1
, π↓Y) = 0. However, from Definition 3, we know that905

for all i ∈ {k . . . n}, ∃Zi
1F (Zi

1, π↓Zn
i+1
, π↓Y) = 1. This gives a contradiction. Hence,906

π↓(Zn
i+1,Y) 6|= δi ∧ γi for all i ∈ {k, . . . n}. Therefore, if ` = max{m | π↓(Zn

m+1,Y)|=907

δm ∧ γm}, then ` < k = κΨ(π↓Y). Combining the lower and upper bounds of `908

obtained above, we get ` ∈ {1, . . . κΨ(π↓Y)− 1}.909

In order to prove part (2), we need to show that the invariants hold in the910

following three cases, where line numbers refer to those in the pseudocode for Al-911

gorithm GeneralizeAndExpand: (a) after ` is incremented in line 5, (b) after `912

is incremented in line 24 following the updation of µ in line 13, and (c) after ` is913

incremented in line 24 following the updation of µ in line 21. All of these cases914

have been discussed in detail while describing the steps in Algorithm General-915

izeAndExpand, where it has been argued why the three invariants hold in each of916

these cases.917

To prove part (3), let `0 be the value of ` identified in line 1, and let k =918

κΨ(π↓Y). As proved in part (1), 1 ≤ `0 ≤ k − 1. Therefore, when control reaches919

line 6 after incrementing ` in line 5, we have 2 ≤ ` ≤ k and the loop in lines920

6-24 is executed at least once. We now ask if it is possible for z` 6∈ sup(µ) for all921

` ∈ {`0 + 1, . . . k}, where µ is as computed in line 4. Suppose, if possible, this is922

true. Then, by virtue of of the way in which µ0, µ1 and µ are calculated in lines923

2, 3 and 4, we have sup(µ) ⊆ Zn
k+1 ∪Y. We know from the loop invariant at line924

6 that µ ⇒ (δ`0 ∧ γ`0) ⇒ ∆`0 ∧ Γ`0 . Using the definitions of ∆`0 and Γ`0 , we get925

µ ⇒ ¬∃Z`0
1 F (Z`0

1 ,Z
n
`0+1,Y). Since sup(µ) ⊆ Zn

k+1 ∪ Y by assumption and since926

`0 + 1 ≤ k < k + 1, the above implication simplifies to µ ⇒ ¬∃Zk
1F (Zk

1 ,Z
n
k+1,Y).927

Additionally, π↓(Zn
`0+1,Y)|= µ from the loop invariant at line 6. Once again, since928

sup(µ) ⊆ Zn
k+1∪Y, this simplifies to π↓(Zn

k+1,Y)|= µ. Therefore, we get π↓(Zn
k+1,Y)|=929

¬∃Zk
1F (Zk

1 ,Z
n
k+1,Y). In other words ∃Zk

1F (Zk
1 , π↓Zn

k+1
, π↓Y) = 0. This contradicts930

the definition of κΨ(π↓Y) (= k).931

The above argument shows that when control reaches the loophead at line 6932

for the first time, there is at least one ` ∈ {2, . . . k} such that z` ∈ sup(µ). Hence,933

either line 10 or line 18 is executed, resulting in updation of either δ` or γ`, for934

some ` ∈ {2, . . . κΨ(π↓Y)}. This proves part (3) of the lemma. ut935

Boolean Functional Synthesis: Hardness and Practical Algorithms 25

Algorithm 5: Phase2

Input: F , c, (δi, γi, ψi) for all i ∈ {1, . . . n}
Output: Correct (updated) Skolem functions ψi for all i ∈ {1, . . . n}
// Requires: For all i ∈ {1, . . . n}, δi, γi are as obtained from Phase 1
// Requires: For all i ∈ {1, . . . n}, ψi is either δi or ¬γi

1 Initialize Skolem functions as in Eqn (4);
2 while εΨ is satisfiable do
3 Let π be an assignment s.t. π |= εΨ; // Use a SAT solver;
4 k ← ComputeK(π,Ψ);
5 while k 6= 0 do

// π↓Y is still a counterexample for Ψ;
6 if 0 ≤ k ≤ c then
7 MaxExpand(c, δ1, γ1);
8 break; // Guaranteed to happen at most once;

9 GeneralizeAndExpand(π, k, {δi, γi, ψi | 1 ≤ i ≤ n});
10 ExpandAtK(π, k, {δi, γi, ψi | 1 ≤ i ≤ n}); // Also updates evidence in π;
11 k ← ComputeK(π,Ψ);

12 return ψi for all i ∈ {1, . . . n};

5.2.4 Combining three expansion-based algorithms936

While each of the three expansion-based algorithms presented above can be used,937

either repeatedly and/or with specific choices of parameters, to eliminate all coun-938

terexamples and obtain a correct Skolem function vector, our experiments indicate939

that a hybrid of the three algorithms outperforms any one of them individually.940

This hybrid algorithm, shown as Algorithm 5, constitutes phase 2 of bfss.941

The algorithm is parametrized with c ∈ {1, . . . n}, which is used for MaxEx-942

pand. In practice, we use a small value of c, viz. 4, and maximally expand δi and943

γi for all i ∈ {1, . . . c} if κΨ(π↓Y) is small and happens to lie in {1, . . . c}. Note944

that an invocation of MaxExpand is guaranteed to happen at most once. This is945

because once it is invoked, the Skolem functions ψ1, . . . ψc are guaranteed to be946

correct, and hence κΨ(π↓Y) necessarily exceeds c if π↓Y is a counterexample. We947

use GeneralizeAndExpand to first expand a set of δi and/or γi using a gener-948

alization of π↓Y. Then we use ExpandAtK to ensure that the critical index of949

the candidate Skolem function vector w.r.t. the current counterexample strictly950

reduces regardless of the expansion(s) effected by GeneralizeAndExpand. Recall951

that an invocation of ExpandAtK also updates π, especially the evidence π↓Z.952

Sub-routine ComputeK is then invoked to determine the critical index of the up-953

dated Ψ with respect to the current counterexample π↓Y. Once κΨ(π↓Y) becomes954

0, we know that π↓Y is no longer a counterexample, and can never surface again955

as a counterexample. The error formula εΨ is then re-computed with the updated956

candidate Skolem function vector Ψ, and the next iteration of the outer loop in957

lines 2-11 started. If εΨ is unsatisfiable, we know by Theorem 3 that we have a958

correct Skolem function vector. Otherwise, a satisfying assignment π of εΨ is ob-959

tained (line 3), the critical index updated (line 4) and the inner loop in lines 5-11960

executed again.961

Theorem 5 The following statements hold for Algorithm Phase2.962

1. It terminates when invoked with δi, γi and ψi as generated by phase 1 of bfss.963

26 S. Akshay et al.

2. On termination, it produces a correct Skolem function vector.964

3. The worst-case size of a Skolem function ψi is in O
(
|F | · 2|Y|

)
.965

Proof To prove part (1), note that the only sub-routines in Algorithm Phase2966

that modify δi and/or γi and, hence ψi, are MaxExpand, ExpandAtK and Gen-967

eralizeAndExpand. All of these are expansion-based algorithms. Therefore, by968

Corollary 2, once a counterexample is eliminated by Algorithm Phase2, it cannot969

be re-introduced.970

Every iteration of the inner loop in lines 5-11 of Algorithm 5 either results in971

an invocation of ExpandAtK or an invocation of MaxExpand. Since MaxExpand972

is invoked only when 1 ≤ κΨ(π↓Y) ≤ c, it follows from Lemma 4 that the coun-973

terexample π↓Y is eliminated by the invocation in one go. If, on the other hand,974

ExpandAtK is invoked, then by virtue of Lemma 5(2), there is a strict reduction975

of κΨ(π↓Y). Hence, after at most n iterations of the inner loop, κΨ(π↓Y) must976

become 0. By Proposition 4, the counterexample π↓Y is eliminated in at most n977

iterations of the inner loop. The total number of iterations of the outer loop (lines978

2-11) of Algorithm 5 is at most M , where M is the count of counterexamples (i.e.979

π ↓Y) for the candidate Skolem function vector obtained from phase 1 of bfss.980

Overall, Algorithm 5 terminates after O(M ·n) steps, where each step may involve981

O(log2 n) invocations of an NP-oracle in sub-routine ComputeK.982

To prove part (2), note that the outer loop in lines 3-11 terminates only when983

εΨ becomes unsatisfiable. By virtue of Theorem 3, the Skolem function vector984

returned by Algorithm Phase2 on termination is indeed correct.985

To prove part (3), note that M alluded to above refers to the count of coun-986

terexamples for the candidate Skolem function vector obtained from phase 1 of987

bfss. Since this can be as large as 2|Y|, the number of times each δi and/or γi can988

undergo expansion is at most 2|Y|.989

If the expansion happens in MaxExpand, it can result in a blow-up of candidate990

Skolem function sizes by a factor of 2c. In general, c can be as large as |Y|.991

However, since MaxExpand can be invoked at most once in any run of Algorithm992

Phase2, it contributes at most a 2O(|Y|) factor blow-up in sizes of candidate Skolem993

functions. In practice, we cap c at a small value, viz. 4. Hence, the blow-up in sizes994

of candidate Skolem functions due to expansion in MaxExpand is limited to a995

constant factor in practice. Every expansion in ExpandAtK effectively adds a996

minterm corresponding to the counterexample π↓Y to either δi or γi. Hence, the997

increase in size of a candidate Skolem function due to an expansion effected by998

ExpandAtK is in O(|Y|). If the expansion happens in GeneralizeAndExpand,999

note from the pseudocode in Algorithm 4 that either µ|z`=0 or µ|z`=1 is added1000

to δ` or γ` respectively (see lines 10 and 18 of Algorithm 4). Recall also that µ1001

is obtained as the conjunction of µ0 and µ1, where µ0 and µ1 are computed by1002

function Generalize. Our choice of Generalize, discussed earlier, ensures that1003

the sizes of µ0 and µ1 are in O(|F |). Therefore, the potential increase in size of a1004

candidate Skolem function due to a single invocation of GeneralizeAndExpand1005

is in O(|F |).1006

Since O(|Y|) is subsumed by O(|F |), it follows from the above discussion that1007

that the size of δi and/or γi, and hence of ψi, when Algorithm Phase2 terminates1008

is in O
(
|F | · 2|Y|

)
. ut1009

As part of additional explorations, we also experimented with a variant of Al-1010

gorithm Phase2 that sampled multiple counterexamples from the set of satisfying1011

Boolean Functional Synthesis: Hardness and Practical Algorithms 27

assignments of εΨ using a state-of-the-art almost uniform sampler [13]. The intent1012

of using this variant was to allow Phase2 to benefit from choosing a “good” coun-1013

terexample from a set of counterexamples, instead of using the only one returned1014

by a SAT solver in line 3. In this variant, we invoked MaxExpand with parameter c1015

if any of the sampled counterexamples had κΨ(π↓Y) ≤ c, and invoked Generalize-1016

AndExpand and RefineAtK with the counterexample that yielded the maximum1017

`, as computed in line 1 of GeneralizeAndExpand. Extensive experiments how-1018

ever failed to indicate any performance gains compared to Algorithm 5. Therefore,1019

we omit discussing this variant in this paper.1020

6 Experimental results1021

We have implemented Algorithm BFSS and done extensive experimentation to1022

compare its performance with that of several state-of-the-art Boolean functional1023

synthesis tools. In Subsection 6.1, we describe our experimental setup, the bench-1024

mark suites and the implementation architecure. Next, in Subsection 6.2, we1025

present our experimental results and analyze the performance of bfss. Finally,1026

in Section 6.3, we compare the performance of bfss with several state-of-the-art1027

tools.1028

6.1 Methodology1029

Our implementation consists of two parallel pipelines that accept the same input1030

specification but represent them in two different ways. The first pipeline takes the1031

input formula as an AIG and builds an NNF DAG (not necessarily in wDNNF) –1032

we call this the AIG-NNF pipeline. The second pipeline builds an ROBDD from the1033

input AIG using dynamic variable reordering (no restrictions on variable order),1034

and then obtains a DNNF (and hence wDNNF) representation from it using the1035

linear-time algorithm described in [17]. We call this the BDD pipeline. Once the1036

DAG representation of F is built, we use Algorithm 1 on both the representations1037

to generate Skolem functions. In the case of the AIG-NNF pipeline, if phase 1 does1038

not give the correct Skolem functions, we use phase 2. In the case of the BDD1039

pipeline, however, we know from Theorem 4(2) that there is no need to invoke1040

phase 2. For discussions in this section, we call the ensemble of AIG-NNF and BDD1041

pipelines bfss. Note that they only differ in the representation of the specification1042

F (X,Y).1043

Our implementation of bfss uses the ABC [10] library with MiniSAT to repre-1044

sent and manipulate Boolean functions. We compare bfss with the following tools1045

for Boolean functional synthesis: (i) parSyn [1], (ii) Cadet [38], (iii) BaFSyn [14]1046

and (iv) AbsSynSkolem (based on the BFnS step of AbsSynthe [11]).1047

We consider a total of 523 benchmarks, taken from four different domains:1048

(a) 48 Arithmetic benchmarks from [19], with varying bit-widths (viz. 32, 64, 128,1049

256, 512 and 1024) of arithmetic operators,1050

(b) 68 Disjunctive Decomposition benchmarks from [1], generated by considering1051

some of the larger HWMCC10 benchmarks,1052

(c) 5 Factorization benchmarks, also from [1], representing factorization of numbers1053

of different bit-widths (8, 10, 12, 14, 16), and1054

28 S. Akshay et al.

Benchmark Total Solved by Solved By Total Solved
Domain Benchmarks AIG-NNF Pipeline BDD Pipeline by BFSS

QBFEval 402 181 159 201
Arithmetic 48 36 36 45
Disjunctive

Decomposition 68 68 59 68
Factorization 5 4 5 5

Total 523 289 256 319

Table 1: bfss: Performance at a glance

(d) 402 QBFEval benchmarks, taken from the Prenex 2QBF track of QBFEval 20181055

[36].1056

Since different tools accept benchmarks in different formats, each benchmark was1057

converted to both qdimacs and Verilog/Aiger formats. All benchmarks and the1058

procedure by which we generated (and converted) them are detailed in [3]. We use1059

“balance; rewrite -l; refactor -l; balance; rewrite -l; rewrite -lz; balance; refactor1060

-lz; rewrite -lz; balance” as the ABC script for optimizing the AIG representation1061

of the input specification.1062

For each benchmark, the order � (ref. step 11 of Algorithm 1) in which Skolem1063

functions are generated is such that if zi occurs in the transitive fan-in of fewer1064

nodes in the AIG representation of F (Z,Y) than zj , then zi � zj . This order is1065

used for both bfss and parSyn. Note that this is unrelated to the dynamic variable1066

order used to construct an ROBDD of the input specification in the BDD pipeline.1067

All experiments were performed on a message-passing cluster, with 20 cores1068

and 64 GB memory per node, each core being a 2.2 GHz Intel Xeon processor.1069

The operating system was Cent OS 6.5. Twenty cores were assigned to each run of1070

parSyn, which benefits from using parallel execution. For each of BaFSyn, Cadet,1071

AbsSynSkolem and for each of the two pipelines of bfss, a single core was used,1072

since these tools don’t exploit parallelism. The maximum time given for execution1073

of any run was 3600 seconds. The total amount of main memory for any run was1074

restricted to 16GB. The metric used to compare the algorithms was time taken1075

to synthesize Boolean functions and the size of the synthesized functions. The time1076

reported for bfss is the better of the two times obtained from the two pipelines1077

described above, which only differ in the representation of the input.1078

6.2 bfss performance and a comparison of its two pipelines1079

We present the results of bfss in Table 1. Aggregating over the two pipelines men-1080

tioned above, bfss solved 319 benchmarks out of 523. Table 1 also gives the relative1081

performance of the two pipelines at a glance. We now discuss the performance of1082

each of the pipelines in detail.1083

The AIG-NNF pipeline Table 2 gives the performance summary of the AIG-NNF1084

pipeline. Of the 402 benchmarks in QBFEval, the AIG-NNF pipeline solved 1811085

benchmarks, of which 118 were solved in phase 1. On 14 benchmarks, phase 11086

did not terminate in the specified resource contraints. Hence, phase 2 was com-1087

menced on the remaining 270 benchmarks, of which 63 benchmarks were solved1088

Boolean Functional Synthesis: Hardness and Practical Algorithms 29

Benchmark Total # Benchmarks Solved by Phase 2 Solved By Avg % Of Unate
Domain Benchmarks Solved Phase 1 Started Phase 2 Output Vars

QBFEval 402 181 118 270 63 38.2
Arithmetic 48 36 36 12 0 0
Disjunctive

Decomposition 68 68 68 0 0 64.13
Factorization 5 4 0 5 4 0

Table 2: bfss: Performance Summary for AIG-NNF pipeline

within the specified resource constraints. Of the 118 solved in phase 1, 63 were1089

found to have all output variables unate. Of these, 11 benchmarks had only syn-1090

tactically detectable unate outputs (i.e. unateness detected by identifying pure1091

literals) and 12 had only semantically detectable unate outputs (i.e. required a1092

satisfiability check of η+i and/or η−i , given by Equations (1) and (2)). For the1093

DisjDecomposition benchmark suite, 20 benchmarks were found to contain only1094

unate outputs, of which 19 benchmarks contained semantically detectable unate1095

outputs. The Arithmetic and the Factorization benchmark suite did not have1096

any instance with unate output variables.1097

We found that benchmarks that contained only unate (syntactically and/or1098

semantically detected) output variables were restricted to certain families in the1099

QBFEval and DisjDecomposition suites. For the QBFEval suite, these included1100

AR-fixpoint, cache-coherence, ethernet-fixpoint, itc-b13-fixpoint, pi-bus-1101

fixpoint, small-seq-fixpoint, small-synabs-fixpoint and some of the stmt and1102

usb-phy-fixpoint families. Similarly, in DisjDecomposition, the bobsmhdlc, bob-1103

synthneg and neclaftp family of benchmarks contained only unate output vari-1104

ables.1105

We observed that the number of unate output variables detected semantically1106

was higher than those detected syntactically, justifying the need for the semantic1107

unate checks. On average, 38.2% of the output variables in the QBFEval bench-1108

mark suite were found to be unate. Of these, on average 15.5% were detected syn-1109

tactically and 22.7% were detected semantically. Similarly, for DisjDecomposition,1110

64.13% of the output variables were unate, of which 0.61% were detected syntac-1111

tically and 63.51% were detected semantically.1112

Finally, we examined the count of counterexamples required by the AIG-NNF1113

pipeline for the 63 benchmarks in QBFEval that were solved by phase 2 of bfss.1114

For most of these benchmarks, this count was less than 5. However, about 6 bench-1115

marks required expansion based on > 30 counterexamples, the maximum count1116

being 138.1117

The BDD pipeline The BDD pipeline solved a total of 256 benchmarks across all1118

four domains (see Table 1). Note that if this pipeline solves a benchmark, it does1119

so by constructing a wDNNF representation from the BDD representation. Hence1120

all the 256 benchmarks solved by the BDD pipeline are in wDNNF by construction.1121

In constrast, we found only 83 of the solved benchmarks in the AIG-NNF pipeline1122

to be in wDNNF. However, note that 222 benchmarks were solved in phase 11123

using the AIG-NNF pipeline. This is attributable to specifications satisfying the1124

condition of Theorem 2(a) (while not being in wDNNF). A more detailed study1125

of the representation related issues and analysis has been done recently in [2].1126

30 S. Akshay et al.

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO
T

im
e
 i
n
 B

F
S

S
-B

D
D

 (
s
e
c
)

Time in BFSS-AIG-NNF (sec)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO

T
im

e
 i
n
 B

F
S

S
-B

D
D

 (
s
e
c
)

Time in BFSS-AIG-NNF (sec)

A D F

Fig. 1: bfss: AIG-NNF vs BDD: Time Taken to synthesize Skolem Functions. Leg-
end: Q: QBFEval, A: Arithmetic, F: Factorization, D: DisjDecomposition. TO:
benchmarks for which the corresponding algorithm was unsuccessful.

Comparison of the pipelines We now compare the time taken and the size of the1127

Skolem functions generated by the two pipelines. For clarity, since the num-1128

ber of benchmarks in the QBFEval suite is considerably greater, we plot the1129

QBFEval benchmarks separately. Figure 1 shows the results for the time taken1130

by the two pipelines on the QBFEval, Arithmetic, DisjDecomposition and1131

Factorization suite of benchmarks. As can be seen from Figure 1, there are some1132

benchmarks which are solved by only one of the pipelines. But for most of the1133

QBFEval, Arithmetic and DisjDecomposition benchmarks which are solved by1134

both pipelines, the AIG-NNF pipeline takes less time than the BDD pipeline. For1135

the Factorization benchmark suite, the BDD pipeline takes less time.1136

We next compare the sizes of the Skolem functions generated by the two1137

pipelines. Figure 2 shows a comparison of the average sizes of Skolem functions1138

for QBFEval and Arithmetic, DisjDecomposition and Factorization bench-1139

marks. For every benchmark, the average is calculated over all components of the1140

entire Skolem function vector generated by the algorithm. We observe that for1141

most of the benchmarks that are solved by both the pipelines, the sizes of Skolem1142

Functions generated by the AIG-NNF pipeline are comparable or smaller.1143

In other words, the AIG-NNF pipeline, in most instances, not only takes less1144

time than the BDD pipeline, it also generates smaller Skolem functions. However,1145

there are instances that are solved exclusively by either the AIG-NNF pipeline or1146

the BDD pipeline; hence we retain both pipelines in our tool.1147

6.3 Comparison of bfss with other tools1148

In this section, we compare the performance of bfss with other state-of-the-art1149

tools. Table 3 gives the comparative performance at a glance, in terms of the1150

number of benchmarks solved by the various tools.1151

bfss vs Cadet : Of the 523 benchmarks, Cadet was successful on 254 bench-1152

marks, of which 9 belonged to DisjDecomposition, 28 to Arithmetic, 4 to Factorization1153

Boolean Functional Synthesis: Hardness and Practical Algorithms 31

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO
A

V
G

 S
iz

e
 i
n
 B

F
S

S
-B

D
D

 (
#
n
o
d
e
s
)

AVG Size in BFSS-AIG-NNF (#nodes)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO

A
V

G
 S

iz
e
 i
n
 B

F
S

S
-B

D
D

 (
#
n
o
d
e
s
)

AVG Size in BFSS-AIG-NNF (#nodes)

A D F

Fig. 2: bfss: AIG-NNF vs BDD: Avg Sizes of Skolem Functions. Legend: Q:
QBFEval, A: Arithmetic, F: Factorization, D: DisjDecomposition. TO: bench-
marks for which the corresponding algorithm was unsuccessful.

Benchmark Total Solved by Solved By Solved by Solved by Solved by
Domain Benchmarks bfss Cadet parSyn AbsSynSkolem BaFSyn

QBFEval 402 201 213 118 151 11
Arithmetic 48 45 28 15 32 0
Disjunctive

Decomposition 68 68 9 64 29 0
Factorization 5 5 4 3 5 0

Total 523 319 254 200 217 11

Table 3: Number of benchmarks solved by each tool

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO

T
im

e
 i
n
 C

A
D

E
T

 (
s
e
c
)

Time in BFSS (sec)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO

T
im

e
 i
n
 C

A
D

E
T

 (
s
e
c
)

Time in BFSS (sec)

A D F

Fig. 3: bfss vs Cadet: Time Taken to synthesize Skolem Functions. Legend: Please
see Figure 1.

and 213 to QBFEval. Figure 3(a) gives the performance of the two algorithms1154

with respect to time on the QBFEval suite. Here, Cadet solved 26 benchmarks1155

that bfss could not solve, whereas bfss solved 14 benchmarks that could not be1156

solved by Cadet. Figure 3(b) gives the performance of the two algorithms with re-1157

spect to time on the Arithmetic, Factorization and DisjDecomposition bench-1158

marks. From the figure, we can see that while Cadet solves more benchmarks in1159

32 S. Akshay et al.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO
S

iz
e
 i
n
 C

a
d
e
t
(#

n
o
d
e
s
)

Size in BFSS (#nodes)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO

S
iz

e
 i
n
 C

a
d
e
t
(#

n
o
d
e
s
)

Size in BFSS (#nodes)

A D F

Fig. 4: bfss vs Cadet: Maximum Sizes of Skolem Functions. Legend: Please see
Figure 1.

the QBFEval suite of benchmarks, bfss solves more benchmarks than Cadet in1160

Arithmetic, DisjDecomposition and Factorization. In fact, in these categories,1161

there were a total of 77 benchmarks that bfss solved that Cadet could not solve.1162

Futhermore there was no benchmark in these suites that Cadet could solve but1163

bfss could not. While Cadet takes less time on some Arithmetic and QBFEval1164

benchmarks, bfss takes less time on DisjDecomposition and most Factorization1165

benchmarks. Interestingly, most of the QBFEval benchmarks for which Cadet1166

takes less time, are solved in less than a minute by both Cadet and bfss.1167

We next compare the maximum sizes of the Skolem functions generated by1168

Cadet and bfss. Note that Cadet requires the input specification to be in QDI-1169

MACS format, whereas bfss works with a DAG representation of the input. We1170

compare the maximum sizes of the generated Skolem functions, since a specifica-1171

tion given in QDIMACS format typically contains many output variables intro-1172

duced due to Tseitin encoding of a non-CNF specification. Since the size of Skolem1173

functions of Tseitin variables are usually small, this skews the average size of the1174

Skolem functions generated, when comparing a tool that works with a QDIMACS1175

representation of the specification (viz. Cadet) with one that works with a DAG1176

representation of the specification (viz. bfss). Here, we find that for many of the1177

QBFEval and DisjDecomposition benchmarks, the maximum sizes of the Skolem1178

functions generated by bfss are indeed smaller than those generated by Cadet.1179

On many of the Arithmetic and Factorization benchmarks, however, the sizes1180

are comparable. There are, of course, cases where the sizes of Skolem functions1181

generated by Cadet are smaller than those generated by bfss.1182

bfss vs parSyn: Figure 5 shows the comparison of time taken by bfss and parSyn.1183

parSyn was successful on a total of 200 benchmarks, with 118 in QBFEval, 641184

in DisjDecomposition, 15 in Arithmetic and 3 in Factorization. Across all1185

domains, bfss solved 119 benchmarks that parSyn could not solve. From Figure1186

5, we can see that on every benchmark across all domains, bfss takes less time than1187

parSyn. We next compare the average sizes of the Skolem functions generated by1188

the two algorithms in Figure 6. Here too, we observe that for most benchmarks, the1189

Boolean Functional Synthesis: Hardness and Practical Algorithms 33

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO
T

im
e
 i
n
 P

a
rS

y
n
 (

s
e
c
)

Time in BFSS (sec)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO

T
im

e
 i
n
 P

a
rs

y
n
 (

s
e
c
)

Time in BFSS (sec)

A D F

Fig. 5: bfss vs parSyn: Time Taken to synthesize Skolem Functions. Legend: Please
see Figure 1.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO

A
V

G
 S

iz
e
 i
n
 P

a
rS

y
n
 (

#
n
o
d
e
s
)

AVG Size in BFSS (#nodes)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO

A
V

G
 S

iz
e
 i
n
 P

a
rS

y
n
 (

#
n
o
d
e
s
)

AVG Size in BFSS (#nodes)

A D F

Fig. 6: bfss vs parSyn: Average Sizes of Skolem Functions. Legend: Please see
Figure 1.

sizes of the Skolem functions generated by bfss are smaller than those generated1190

by parSyn.1191

bfss vs BaFSyn: We next compare the performance of bfss with BaFSyn. BaFSyn1192

was successful only on 11 benchmarks in QBFEval and could not solve any bench-1193

mark in the DisjDecomposition, Arithmetic and Factorization suites. However,1194

bfss was unable to solve the 11 benchmarks that BaFSyn solved. Similarly, none1195

of 319 benchmarks solved by bfss were solved by BaFSyn.1196

bfss vs AbsSynSkolem: AbsSynSkolem was successful on 217 benchmarks, with1197

151 in QBFEval, 29 in DisjDecomposition, 32 in Arithmetic and 5 in Factorization1198

suites. It could solve 19 benchmarks in QBFEval that bfss could not solve. In con-1199

trast, bfss solved 69 benchmarks in QBFEval, 39 in DisjDecomposition and 131200

in Arithmetic – a total of 121 benchmarks – that AbsSynSkolem could not solve.1201

Figure 7 shows a comparison of running times of bfss and AbsSynSkolem. From1202

the Figure we can see that bfss takes less time than AbsSynSkolem on most of1203

34 S. Akshay et al.

the QBFEval, DisjDecomposition and Arithmetic benchmarks. AbsSynSkolem,1204

however, takes less time on the Factorization benchmarks.1205

We next compare the average sizes of the Skolem functions generated by1206

AbsSynSkolem and bfss in Figure 8. For QBFEval and DisjDecomposition, we1207

found that the average size of Skolem Functions generated by AbsSynSkolem for1208

most benchmarks was very small, and often close to 1. For many Arithmetic and1209

Factorization benchmarks, the sizes generated by AbsSynSkolem were smaller1210

than those generated by bfss.1211

In summary, bfss (both pipelines considered together) outperforms all tools in the1212

number of benchmarks that it could solve across all domains. In many instances, it1213

takes less time and can solve instances that other tools have been unable to solve.1214

7 Conclusion1215

In this paper, we showed complexity-theoretic hardness results for the Boolean1216

functional synthesis problem. We then developed a two-phase approach to solve1217

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO

T
im

e
 i
n
 A

b
s
S

y
n
th

e
-S

K
O

L
E

M
 (

s
e
c
)

Time in BFSS (sec)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

TO

 TO

T
im

e
 i
n
 A

b
s
S

y
n
th

e
-S

K
O

L
E

M
 (

s
e
c
)

Time in BFSS (sec)

A D F

Fig. 7: bfss vs AbsSynSkolem: Time Taken to synthesize Skolem Functions. Leg-
end: Please see Figure 1

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO

A
V

G
 S

iz
e
 i
n
 A

B
S

S
Y

N
T

H
E

 (
#
n
o
d
e
s
)

AVG Size in BFSS (#nodes)

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

TO

 TO

A
V

G
 S

iz
e
 i
n
 A

B
S

S
Y

N
T

H
E

 (
#
n
o
d
e
s
)

AVG Size in BFSS (#nodes)

A D F

Fig. 8: bfss vs AbsSynSkolem: Average Sizes of Skolem Functions. Legend: Please
see Figure 1.

Boolean Functional Synthesis: Hardness and Practical Algorithms 35

this problem, where the first phase is an efficient algorithm that generates poly-1218

sized functions and succeeds in solving a large number of benchmarks. For the1219

remaining benchmarks, we employed the second phase of the algorithm that uses1220

a expansion-based approach and builds Skolem functions by exploiting recent ad-1221

vances in SAT solvers. Extensive experiments show that our algorithm performs1222

favourably over state-of-the-art tools when solving a large collection of bench-1223

marks.1224

Acknowledgments1225

We thank Ajith K. John for many technical discussions. We also thank the anony-1226

mous reviewers for several pertinent remarks and suggestions.1227

References1228

1. Akshay S, Chakraborty S, John AK, Shah S (2017) Towards parallel Boolean1229

functional synthesis. In: Proceedings of International Conference on Tools and1230

Algorithms for Construction and Analysis of Systems (TACAS), Part I, pp1231

337–3531232

2. Akshay S, Arora J, Chakraborty S, Krishna S, Raghunathan D, Shah S (2019)1233

Knowledge compilation for Boolean functional synthesis. In: Proceedings of In-1234

ternational Conference on Formal Methods in Computer-Aided Design (FM-1235

CAD), pp 161–1691236

3. Akshay S, Chakraborty S, Goel S, Kulal S, Shah S (2020) Code1237

and benchmark details for BFSS experiments. https://github.com/1238

BooleanFunctionalSynthesis/bfss1239

4. Alur R, Madhusudan P, Nam W (2005) Symbolic computational techniques1240

for solving games. International Journal on Software Tools for Technology1241

Transfer 7(2):118–1281242

5. Andersson G, Bjesse P, Cook B, Hanna Z (2002) A proof engine approach to1243

solving combinational design automation problems. In: Proceedings of Design1244

Automation Conference (DAC), pp 725–7301245

6. Baader F (1998) On the complexity of Boolean unification. Information Pro-1246

cessing Letters 67:215–2201247

7. Balabanov V, Jiang JHR (2012) Unified QBF certification and its applications.1248

Formal Methods in System Design 41(1):45–651249

8. Boole G (1847) The Mathematical Analysis of Logic. Philosophical Library1250

9. Boudet A, Jouannaud JP, Schmidt-Schauss M (1989) Unification in Boolean1251

rings and Abelian groups. Journal of Symbolic Computation 8(5):449–4771252

10. Brayton R, Mishchenko A (2010) ABC: An academic industrial-strength veri-1253

fication tool. In: Proceedings of International Conference on Computer-Aided1254

Verification (CAV), pp 24–401255

11. Brenguier R, Pérez GA, Raskin JF, Sankur O (2014) AbsSynthe: Abstract1256

synthesis from succinct safety specifications. In: Proceedings of Workshop on1257

Synthesis (SYNT), Open Publishing Association, Electronic Proceedings in1258

Theoretical Computer Science, vol 157, pp 100–1161259

36 S. Akshay et al.

12. Bryant RE (1986) Graph-based algorithms for Boolean function manipulation.1260

IEEE Transactions on Computers 35(8):677–6911261

13. Chakraborty S, Fremont DJ, Meel KS, Seshia SA, Vardi MY (2015) On paral-1262

lel scalable uniform SAT witness generation. In: Proceedings of International1263

Conference on Tools and Algorithms for the Construction and Analysis of1264

Systems (TACAS), pp 304–3191265

14. Chakraborty S, Fried D, Tabajara LM, Vardi MY (2018) Functional synthesis1266

via input-output separation. In: Proceedings of International Conference on1267

Formal Methods in Computer-Aided Design (FMCAD), pp 1–91268

15. Chandrasekaran V, Srebro N, Harsha P (2008) Complexity of inference in1269

graphical models. In: Proceedings of International Conference on Uncertainty1270

in Artificial Intelligence (UAI), pp 70–781271

16. Chen Y, Eickmeyer K, Flum J (2012) The Exponential Time Hypothesis and1272

the parameterized clique problem. In: Proceedings of International Conference1273

on Parameterized and Exact Computation (IPEC), pp 13–241274

17. Darwiche A (2001) Decomposable negation normal form. Journal of the ACM1275

48(4):608–6471276

18. Deschamps JP (1972) Parametric solutions of Boolean equations. Discrete1277

Mathematics 3(4):333–3421278

19. Fried D, Tabajara LM, Vardi MY (2016) BDD-based Boolean functional syn-1279

thesis. In: Proceedings (Part II) of International Conference on Computer-1280

Aided Verification (CAV), pp 402–4211281

20. Ganian R, Hlinený P, Langer A, Obdrzálek J, Rossmanith P, Sikdar S (2014)1282

Lower bounds on the complexity of MSO1 model-checking. Journal of Com-1283

puter and System Sciences 80(1):180–1941284

21. Golia P, Roy S, Meel KS (2020) Manthan: A data-driven approach for Boolean1285

function synthesis. In: Proceedings of International Conference on Computer-1286

Aided Verification (CAV), pp 611–6331287

22. Hellerman L (1963) A catalog of three-variable Or-Invert and And-Invert log-1288

ical circuits. IEEE Transactions on Electronic Computers EC-12(3):198–2231289

23. Heule M, Seidl M, Biere A (2014) Efficient Extraction of Skolem Functions1290

from QRAT Proofs. In: Proceedings of International Conference on Formal1291

Methods in Computer-Aided Design (FMCAD), pp 107–1141292

24. Impagliazzo R, Paturi R (2001) On the complexity of k-SAT. Journal of Com-1293

puter and System Sciences 62(2):367–3751294

25. Jiang JHR (2009) Quantifier elimination via functional composition. In: Pro-1295

ceedings of International Conference on Computer-Aided Verification (CAV),1296

Springer, pp 383–3971297

26. Jiang JHR, Lin HP, Hung WL (2009) Interpolating functions from large1298

Boolean relations. In: Proceedings of International Conference on Computer-1299

Aided Design (ICCAD), pp 779–7841300

27. Jo S, Matsumoto T, Fujita M (2012) SAT-based automatic rectification and1301

debugging of combinational circuits with LUT insertions. In: Proceedings of1302

Asian Test Symposium (ATS), pp 19–241303

28. John A, Shah S, Chakraborty S, Trivedi A, Akshay S (2015) Skolem functions1304

for factored formulas. In: Proceedings of International Conference on Formal1305

Methods in Computer-Aided Design (FMCAD), pp 73–801306

29. Karp R, Lipton R (1982) Turing machines that take advice. L’Enseignment1307

Mathématique 28(2):191–2091308

Boolean Functional Synthesis: Hardness and Practical Algorithms 37

30. Kuehlmann A, Krohm F (1997) Equivalence checking using cuts and heaps.1309

In: Proceedings of Design Automation Conference (DAC), pp 263–2681310

31. Kuncak V, Mayer M, Piskac R, Suter P (2010) Complete functional synthesis.1311

ACM SIGPLAN Notices 45(6):316–3291312

32. Löwenheim L (1910) Über die Auflösung von Gleichungen in Logischen Gebi-1313

etkalkul. Mathematische Annalen 68:169–2071314

33. Macii E, Odasso G, Poncino M (1998) Comparing different Boolean unification1315

algorithms. In: Conference Record of Asilomar Conference on Signals, Systems1316

and Computers (Cat. No. 98CH36284), vol 2, pp 1052–10561317

34. Martin U, Nipkow T (1989) Boolean unification - The story so far. Journal of1318

Symbolic Computation 7(3-4):275–2931319

35. Niemetz A, Preiner M, Lonsing F, Seidl M, Biere A (2012) Resolution-based1320

certificate extraction for QBF - (Tool presentation). In: Proceedings of In-1321

ternational Conference on Theory and Applications of Satisfiability Testing1322

(SAT), pp 430–4351323

36. QBFLib (2018) QBFEval 2018. http://www.qbflib.org/qbfeval18.php1324

37. Rabe MN (2019) Incremental determinization for quantifier elimination1325

and functional synthesis. In: Proceedings of International Conference on1326

Computer-Aided Verification (CAV), Part II, pp 84–941327

38. Rabe MN, Seshia SA (2016) Incremental determinization. In: Proceedings of1328

International Conference on Theory and Applications of Satisfiability Testing1329

(SAT), pp 375–3921330

39. Rabe MN, Tentrup L (2015) CAQE: A certifying QBF solver. In: Proceedings1331

of International Conference on Formal Methods in Computer-Aided Design1332

(FMCAD), pp 136–1431333

40. Rabe MN, Tentrup L, Rasmussen C, Seshia SA (2018) Understanding and1334

extending incremental determinization for 2QBF. In: Proceedings of Interna-1335

tional Conference on Computer-Aided Verification (CAV), Part II, pp 256–2741336

41. Silva JM, Lynce I, Malik S (2008) Conflict-driven clause learning SAT solvers.1337

In: Biere A, Heule M, van Maaren H, Walsch T (eds) Handbook of Satisfia-1338

bility, IOS Press, chap 14, pp 127–1491339

42. Solar-Lezama A (2013) Program sketching. International Journal on Software1340

Tools for Technology Transfer 15(5-6):475–4951341

43. Solar-Lezama A, Rabbah RM, Bod́ık R, Ebcioglu K (2005) Programming by1342

sketching for bit-streaming programs. In: Proceedings of International Con-1343

ference on Programming Language Design and Implementation (PLDI), pp1344

281–2941345

44. Srivastava S, Gulwani S, Foster JS (2013) Template-based program verification1346

and program synthesis. International Journal on Software Tools for Technol-1347

ogy Transfer 15(5-6):497–5181348

45. Tabajara LM, Vardi MY (2017) Factored Boolean functional synthesis. In:1349

Proceedings of International Confernce on Formal Methods in Computer-1350

Aided Design (FMCAD), pp 124–1311351

46. Trivedi A (2003) Techniques in symbolic model checking. Master’s thesis, In-1352

dian Institute of Technology Bombay, Mumbai, India1353

47. Zhu S, Tabajara LM, Li J, Pu G, Vardi MY (2017) Symbolic LTLf synthesis.1354

In: Proceedings of International Joint Conference on Artificial Intelligence1355

(IJCAI), pp 1362–13691356

