
Quantifier Elimination for Linear Modular

Constraints

Ajith K John1 and Supratik Chakraborty2

1 Homi Bhabha National Institute, BARC, Mumbai, India
2 Dept. of Computer Sc. & Engg., IIT Bombay, India

Abstract. Linear equalities, disequalities and inequalities on fixed-width
bit-vectors, collectively called linear modular constraints, form an im-
portant fragment of the theory of fixed-width bit-vectors. We present an
efficient and bit-precise algorithm for quantifier elimination from con-
junctions of linear modular constraints. Our algorithm uses a layered
approach, whereby sound but incomplete and cheaper layers are invoked
first, and expensive but complete layers are called only when required.
We have extended the above algorithm to work with boolean combina-
tions of linear modular constraints as well. Experiments on an extensive
set of benchmarks demonstrate that our techniques significantly outper-
form alternative quantifier elimination techniques based on bit-blasting
and Presburger Arithmetic.

Keywords: Quantifier Elimination, Linear Modular Arithmetic

1 Introduction

A first-order theory T is said to admit quantifier elimination (henceforth called
QE) if every quantified formula ϕ in the theory is T -equivalent to a quantifier-
free formula ψ. The theory admits effective QE if there exists an algorithm
that computes ψ on input ϕ. An example of a theory admitting effective QE is
the theory of fixed-width bit-vectors. This theory is extremely important in the
context of word-level verification and analysis of hardware and software systems.
QE is a key operation in such verification and analysis tasks.

For ease of analysis, words in hardware and software systems are often ab-
stracted as unbounded integers, and QE techniques for integers [5, 6] are used by
verification and analysis tools. However the results of verification and analysis
using QE for unbounded integers may not be sound [3, 9] if the underlying im-
plementation uses fixed-width bit-vectors. Therefore, bit-precise QE techniques
from fixed-width bit-vector constraints is an important problem.

Boolean combinations of linear equalities, disequalities and inequalities on
fixed-width bit-vectors, collectively called linear modular constraints, form an
important fragment of the theory of fixed-width bit-vectors. Let p be a pos-
itive integer constant, x1, . . . , xn be p-bit non-negative integer variables, and
a0, . . . , an be integer constants in {0, . . . , 2p − 1}. A linear term over x1, . . . , xn

is a term of the form a1 · x1 + · · · an · xn + a0. A linear modular equality (LME)

2 John-Chakraborty

is a formula of the form t1 = t2 (mod 2p), where t1 and t2 are linear terms
over x1, . . . , xn. Similarly, a linear modular disequality (LMD) is a formula of
the form t1 6= t2 (mod 2p), and a linear modular inequality (LMI) is a formula
of the form t1 ⊲⊳ t2 (mod 2p), where ⊲⊳∈ {<,≤}. We will use linear modular
constraint (LMC) when the distinction between LME, LMD and LMI is not
important. Conventionally 2p is called the modulus of the LMC. Since every
variable in an LMC with modulus 2p represents a p-bit integer, we will assume
without loss of generality that whenever we consider a conjunction of LMCs
sharing a variable, all the LMCs have the same modulus.

The most dominant technique used in practice for eliminating quantifiers
from LMCs is conversion to bit-level constraints (also called bit-blasting [4]),
followed by bit-level QE. However this technique scales poorly as the width
of bit-vectors increases. In addition, the quantifier-eliminated formula appears
more like a propositional logic formula on blasted bits instead of being a bit-
vector formula. This reduces the scope for word-level reasoning on the quantifier-
eliminated formula if it is used in further reasoning. Since LMCs can be expressed
as formulae in Presburger Arithmetic (PA), QE techniques for PA such as Omega
Test [6] can also be used to eliminate quantifiers from LMCs. However using PA-
based techniques for QE from LMCs scales poorly in practice [4]. Moreover, these
techniques destroy the word-level structure of the problem.

We present efficient and bit-precise techniques for QE from LMCs that over-
come the above drawbacks in practice. In contrast to bit-blasting and PA-based
techniques, our techniques keep the quantifier-eliminated formula in linear mod-
ular arithmetic, so that it is amenable to further bit-vector level reasoning.

Our techniques have applications in model checking, program analysis and
counterexample guided abstraction refinement (CEGAR) of word-level RTL de-
signs and embedded programs. Symbolic transition relations of word-level RTL
designs and embedded programs involve boolean combinations of LMCs. LMEs
arise from the assignment statements, whereas LMDs and LMIs arise primar-
ily from branch and loop conditions that compare words/registers. QE from
formulae involving symbolic transition relation is the key operation during im-
age computation, computation of strongest post-conditions and computation of
predicate abstractions in the verification of such word-level RTL designs and
embedded programs. In a CEGAR framework, our techniques can be used to
compute abstraction of symbolic transition relation by existentially quantifying
out a selected set of variables from the transition relation, and to compute Craig
interpolants from spurious counterexamples.

There are two fundamental technical contributions of this work. First, we
present a practically efficient and bit-precise algorithm for QE from conjunctions
of LMCs called Project. Secondly, we extend Project for eliminating quantifiers
from boolean combinations of LMCs. The work presented here is a collation of
our earlier works in [1] and [2]. We have skipped the details of the algorithms
and proofs due to lack of space. For interested reader, these details can be found
in [1, 2].

Quantifier Elimination for Linear Modular Constraints 3

2 Project : Algorithm for QE from Conjunctions of LMCs

Project uses a layered approach to eliminate quantifiers from a conjunction of
LMCs. Sound but incomplete, cheaper layers are invoked first, and expensive
but complete layers are called only when required.

2.1 Layer1: Simplifications using LMEs

Layer1 is an extension of the work by Ganesh and Dill [8]. It involves simplifica-
tion of the given conjunction of LMCs using LMEs present in the conjunction.

For example, consider the problem of computing ∃x. ((6x+y = 4) ∧(2x+z 6=
0) ∧ (4x + y ≤ 3)), where all LMCs have modulus 8. Note that (6x + y = 4)
can be equivalently expressed as (2 · 3x = 7y + 4). Multiplying both the sides
of (2 · 3x = 7y + 4) by the multiplicative inverse of 3 modulo 8, i.e. 3, we get
(2x = 5y+4). Replacing the occurrences of 2x by 5y+4, the original problem can
be equivalently expressed as ∃x. ((2x = 5y+4) ∧(5y+4+z 6= 0)∧(2·(5y+4)+y ≤
3)). Simplifying modulo 8, we get (5y + z +4 6= 0)∧ (3y ≤ 3)∧∃x. (2x = 5y +4).
Note that ∃x. (2x = 5y + 4) is equivalent to (4y = 0). Hence the result of QE is
(5y + z + 4 6= 0) ∧ (3y ≤ 3) ∧ (4y = 0).

Simplifications as above using LMEs present in the conjunction forms the
crux of Layer1. It can be observed that Layer1 may not always eliminate the
quantifier. For example, consider the problem of computing ∃x. ((2x + 3y =
4) ∧(x + y ≤ 3)) with modulus 8. Note that simplifications in Layer1 cannot
eliminate the quantifier in this case. Such cases are handled by the following
layers which are more expensive.

2.2 Layer2: Dropping Unconstraining LMIs and LMDs

Consider the problem of computing ∃x.A obtained after Layer1, where A is a
conjunction of LMCs. Let A ≡ C∧D∧I, where (i) D is a conjunction of (zero or
more) LMDs in A, (ii) I is a conjunction of (zero or more) LMIs in A, (iii) C is
the conjunction of the remaining LMCs in A, and (iv) ∃x. (C) ⇒ ∃x. (C∧D∧I).
Since ∃x. (C∧D∧I) ⇒ ∃x. (C) always holds, this would mean that ∃x. (C∧D∧I)
is equivalent to ∃x.C. We say that D and I are “unconstraining” in such cases.

Given ∃x. (C ∧ D ∧ I) satisfying conditions (i), (ii) and (iii) above, Layer2
uses efficiently computable conditions sufficient for condition (iv) to hold. Let
x[i] denote the ith bit of the bit-vector x, where x[0] denotes the least significant
bit of x. For i ≤ j, let x[i : j] denote the slice of bit-vector x consisting of bits
x[i] through x[j]. Let each LMI in I be of the form si ⊲⊳ ti, where ⊲⊳∈ {≤,≥},
si is a linear term with x in its support, and ti is a linear term free of x. Let
s1, . . . , sr be the distinct linear terms in I with x in their support. We assume
without loss of generality that I contains the trivial LMIs si ≥ 0 and si ≤ 2p −1
for each linear term si. Suppose the LMIs in I are grouped into inequalities of
the form Zi : ui ≤ si ≤ vi, where ui denotes the maximum among the lower
bounds of si in I and vi denotes the minimum among the upper bounds of si in
I. Let k1, . . . , kr be the highest powers of 2 in the coefficients of x in s1, . . . , sr.

4 John-Chakraborty

Similarly, let k0 and kD be the highest powers of 2 in the coefficients of x in C

and D respectively. Suppose further that k1 > . . . > kr and k0 > max(kD, k1).

Fig. 1. Slicing of bits of x by k0, . . . , kr

We can partition the bits of x into r+2 slices as shown in Fig. 1, where slice0

represents x[0 : p− k0 − 1], slicei represents x[p− ki−1 : p− ki − 1] for 1 ≤ i ≤ r,
and slicer+1 represents x[p− kr : p− 1]. Note that the value of slice0 potentially
affects the satisfaction of C as well as that of Z1 through Zr, the value of slicei

potentially affects the satisfaction of Zi through Zr for 1 ≤ i ≤ r, and the value
of slicer+1 does not affect the satisfaction of any Zi or C.

Suppose, given a solution θ1 of C, there exists a solution θ2 of C ∧ Z1 that
matches θ1 except possibly in the bits of slice1. In such cases, we say that the
solution θ1 of C can be “engineered” w.r.t. slice1 to satisfy C ∧ Z1. Suppose an
arbitrary solution of C can be engineered w.r.t. slice1 to satisfy C ∧ Z1. This
would mean that ∃x. (C ∧Z1) is equivalent to ∃x.C. Following this argument, if
an arbitrary solution of C can be engineered w.r.t. slice1 through slicer to satisfy
C∧Z1∧. . .∧Zr, then ∃x. (C∧I) is equivalent to ∃x.C, and I is unconstraining. A
similar argument as above can be used to identify unconstraining LMDs. Layer2
computes an efficiently computable under-approximation η of the number of
ways in which an arbitrary solution of C can be engineered w.r.t. slice1 through
slicer+1 to satisfy C ∧ D ∧ I. If η ≥ 1, then D and I are unconstraining.

For example, consider the problem of computing ∃x. ((z = 4x+y) ∧(6x+y ≤
4) ∧(x 6= z)) with modulus 8. Suppose C ≡ (z = 4x + y), D ≡ (x 6= z), and
I ≡ (6x + y ≤ 4). Note that the bits of x can be partitioned into slice0, slice1

and slice2, where slice0 represents x[0 : 0], slice1 represents x[1 : 1] and slice2

represents x[2 : 2]. Slice1 and slice2 do not affect the satisfaction of C. Moreover,
it can be observed that an arbitrary solution of C can be engineered w.r.t. slice1

through slice2 to satisfy C ∧ D ∧ I. Layer2 computes η as 1 in this case, and
thus identifies that ∃x. (C ∧ D ∧ I) is equivalent to ∃x. (z = 4x + y). Note that
∃x. (z = 4x + y) is equivalent to (4y + 4z = 0). Hence the result of QE is
(4y + 4z = 0).

2.3 Layer3: Fourier-Motzkin Elimination for LMIs

There are two fundamental problems when trying to apply FM elimination for
reals [4] to a conjunction of LMIs. The first step in FM elimination is “normal-
ization” of each inequality l w.r.t. the variable x being quantified. This involves

Quantifier Elimination for Linear Modular Constraints 5

expressing l in an equivalent form x ⊲⊳ t, where ⊲⊳∈ {≤,≥} and t is a term free
of x. However, normalizing an LMI w.r.t. a variable is much more difficult than
normalizing in the case for reals, since standard equivalences used for normaliz-
ing inequalities over reals do not hold in modular arithmetic [3]. Moreover, even
if we could normalize LMIs w.r.t. the variable being quantified, due to the lack
of density of integers, FM elimination cannot be directly lifted to integers.

Layer3 makes use of a weak normal form for LMIs. We say that an LMI l with
x in its support is normalized w.r.t. x if it is of the form a · x ⊲⊳ t (first normal

form), or of the form a · x ⊲⊳ b · x (second normal form), where ⊲⊳∈ {≤,≥},
and t is a linear term free of x. A boolean combination of LMCs ϕ is said to be
normalized w.r.t. x if every LMI in ϕ with x in its support is normalized w.r.t.
x.

Given ∃x. I, where I is a conjunction of LMIs, Layer3 converts I to an equiv-
alent boolean combination of LMCs normalized w.r.t. x. For example, suppose
we wish to normalize x + 2 ≤ y modulo 8 w.r.t. x. Consider adding the additive
inverse of 2 modulo 8, i.e. 6 to both sides of x + 2 ≤ y. Let ω1 be the condi-
tion under which the addition of x+2 with 6 overflows the 3-bit representation.
Similarly, let ω2 be the condition under which the addition of y with 6 overflows
3-bit representation. Note that if ω1 ≡ ω2, then (x+2 ≤ y) ≡ (x ≤ y +6) holds;
otherwise (x+2 ≤ y) ≡ (x > y+6) holds. ω1 ≡ ω2 can be equivalently expressed
as (x ≤ 5) ≡ (y ≥ 2). Hence, (x + 2 ≤ y) can be equivalently expressed in the
normalized form ite(ϕ, (x ≤ y + 6), (x > y + 6)), where ϕ denotes (x ≤ 5) ≡
(y ≥ 2), and ite(α, β, γ) denotes (α ∧ β) ∨ (¬α ∧ γ).

Layer3 applies a variant of FM elimination to achieve QE from the normalized
LMIs. We illustrate the idea with help of an example. Consider the problem of
computing ∃x.C, where C ≡ (y ≤ 4x) ∧ (4x ≤ z) with modulus 16. Observe
that ∃x.C is “the condition under which there exists a multiple of 4 between y

and z, where y ≤ z”. It can be shown that ∃x.C is equivalent to the disjunction
of the following three conditions: (i) (y ≤ z), and y is a multiple of 4, i.e.,
(y ≤ z)∧ (4y = 0), (ii) (y ≤ z)∧ (y ≤ 12)∧ (z ≥ y +3), (iii) (y ≤ z), (z < y +3),
and (y > z (mod 4)), i.e., (y ≤ z)∧ (z < y +3)∧ (4y > 4z). In general, suppose
we wish to compute ∃x. (l1 ∧ l2), where l1 : (t1 ≤ a · x) and l2 : (a · x ≤ t2) are
LMIs in the first normal form w.r.t. x. Let k be the highest power of 2 in the
coefficient a of x. Then, ∃x. (l1 ∧ l2) is equivalent to (t1 ≤ t2)∧ϕ, where ϕ is the
disjunction of the formulas: (i) (2p−k ·t1 = 0), (ii) (t2 ≥ t1+2k−1)∧(t1 ≤ 2p−2k),
and (iii) (t2 < t1 + 2k − 1)∧(2p−k · t1 > 2p−k · t2).

The conjunction of LMIs such as (l1∧l2) above, where all LMIs are in the first

normal form w.r.t. x, and have the same coefficient of x are said to be “unified”
w.r.t. x. Unfortunately, unifying a conjunction of LMIs I w.r.t. x is inefficient in
general. Hence we unify I w.r.t. x and apply FM elimination only in the cases
where the unification can be done efficiently (the details of unification can be
found in [2]). In the other cases, we compute ∃x. I using model enumeration, i.e.,
by expressing ∃x. I in the equivalent form I|x←0 ∨ . . . ∨ I|x←2p

−1 where I|x←i

denotes I with x replaced by the constant i.

6 John-Chakraborty

3 QE from Boolean Combinations of LMCs

We extend Project to work with boolean combinations of LMCs using three
approaches - a decision diagram (DD) based approach, an SMT-solving based
approach and a hybrid approach that combines the strengths of the DD based
and the SMT-solving based approaches.

The DD based approach makes use of a data structure called Linear Modular
Decision Diagram (LMDD). LMDDs are BDDs [10] with nodes labeled with
LMEs or LMIs. They represent boolean combinations of LMCs. Suppose we
wish to compute ∃X.f , where f is an LMDD over a set of variables V and
X ⊆ V . A naive algorithm to compute ∃X.f is to apply Project to each path
in f . However, this algorithm, similar to the Black-box QE algorithm [5] for
Linear Decision Diagrams, has running time linear in the number of paths in f.
We use an alternate algorithm QE LMDD to compute ∃X.f , which is motivated
by the White-box QE approach suggested in [5]. QE LMDD makes use of a
procedure QE1 LMDD that eliminates a single variable x from f . QE1 LMDD

performs a recursive traversal of the LMDD f . In each recursive call, QE1 LMDD

computes the LMDD for ∃x. (g∧Cx), where g is the LMDD encountered during
the traversal and Cx is the conjunction of LMCs containing x encountered in
the path from the root node of f to the root node of g. If g is a 1-terminal,
then QE1 LMDD computes ∃x. (g∧Cx) by calling Project on ∃x.Cx. If the root
node of g is a non-terminal, then QE1 LMDD first simplifies g using the LMEs
in Cx and then traverses g recursively. The single variable elimination strategy
gives opportunities for reuse of results through dynamic programming, and in
practice significantly outperforms the Black-box QE algorithm.

The SMT-solving based approach is a straightforward extension of the work
in [7] for QE from boolean combinations of linear inequalities on reals. Suppose
we wish to compute ∃X. f , where f is a boolean combination of LMCs over a
set of variables V and X ⊆ V . A naive way of computing this is by converting f

to DNF by enumerating all satisfying assignments, and by invoking Project on
each conjunction of LMCs in the DNF. We use an algorithm QE SMT which
generalizes a satisfying assignment to obtain a conjunction of LMCs, and projects
the conjunction of LMCs on the variables in V \ X. The complement of the
projected conjunction of LMCs is conjoined with f before further satisfying
assignments are obtained. The interleaving of projection and model enumeration
in QE SMT helps in significant pruning of the solution space.

The hybrid approach tries to combine the strengths of the DD based and the
SMT-solving based approaches. Suppose we wish to compute ∃X.f , where f is an
LMDD over a set of variables V and X ⊆ V . The hybrid algorithm QE Combined

splits ∃X.f into an equivalent disjunction of sub-problems
∨n

i=1
(∃X. (fi ∧ Ci)),

where fi denotes an internal LMDD node in f and Ci denotes the conjunc-
tion of LMCs in the path from the root node of f to fi. QE Combined now
computes g ≡

∨n

i=1
(∃X. (fi ∧ Ci)) in the following manner: if fi∧Ci∧¬g is sat-

isfiable, then h ≡ ∃X. (fi ∧ Ci) is computed using the DD-based approach, and
then h is disjoined with g. Computing the sub-problems using the DD-based ap-
proach helps in achieving reuse of results through dynamic programming. Unlike

Quantifier Elimination for Linear Modular Constraints 7

QE SMT, QE Combined does not explicitly interleave projections inside model
enumeration. However disjoining the result of ∃X. (fi ∧Ci) with g, and comput-
ing ∃X. (fi ∧ Ci) only if fi ∧ Ci ∧ ¬g is satisfiable helps in pruning the solution
space of the problem, as achieved in QE SMT.

4 Experiments and Comparison with Existing Software

In order to evaluate the performance of our algorithms and compare them with
alternate QE techniques, we used a benchmark suite consisting of a set of lindd

benchmarks from [5] and a set of vhdl benchmarks. Each benchmark is a boolean
combination of LMCs with a subset of the variables in their support existentially
quantified. The lindd benchmarks are boolean combinations of octagonal con-
straints over integers. These benchmarks are converted to boolean combinations
of LMCs by assuming the size of integer as 16 bits. The vhdl benchmarks are ob-
tained from transition relation abstraction. We derived the symbolic transition
relations of a set of VHDL designs. All the internal variables in these symbolic
transition relations are quantified out, which gives abstract transition relations
of the vhdl designs.

We measured the time taken by QE LMDD, QE SMT, and QE Combined for
QE from each benchmark. We observed that (i) each approach performs better
than the others for some benchmarks, (ii) DD and SMT based approaches are
incomparable, and (iii) hybrid approach inherits the strengths of both DD and
SMT based approaches. We also measured the contributions and costs of differ-
ent layers of Project in performing QE from the benchmarks. Layer1 and Layer2
together eliminated 95% of the quantifiers in lindd benchmarks and 99.5% of the
quantifiers in vhdl benchmarks. The remaining quantifiers were eliminated by
Layer3. However, none of the benchmarks required model enumeration. Layer1
and Layer2 were cheap (on average, took 1-6 milliseconds per quantifier elimi-
nated). Layer3 was comparatively expensive. On average, Layer3 took 13 seconds
per quantifier eliminated for lindd benchmarks and 161 milliseconds per quan-
tifier eliminated for vhdl benchmarks.

We compared the performance of Project with alternate QE techniques. This
included comparison of Project with PA based QE using Omega Test [6] and with
bit-level QE using BDDs [11]. Since Layer1 is a simple extension of the work
in [8], we applied Layer1 as a pre-processing step before applying the PA based/
bit-level QE. The procedure that first quantifies out the variables using Layer1,
and then uses conversion to PA and Omega Test for the remaining variables is
called Layer1 OT. Similarly, the procedure that first quantifies out the variables
using Layer1, and then uses bit-blasting and bit-level BDD based QE for the
remaining variables is called Layer1 Blast. The instances of QE problem for
conjunctions of LMCs arising from QE SMT when QE is performed on each
benchmark were collected. The procedures Project, Layer1 Blast and Layer1 OT

were applied on these instances of the QE problem for conjunctions of LMCs.
The results demonstrated that (see Fig.2) Project outperforms the alternative
QE techniques.

8 John-Chakraborty

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_B

la
st

 T
im

e

Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_O

T
 T

im
e

Project Time

Fig. 2. Plots comparing (a) Project and Layer1 Blast and (b) Project and Layer1 OT

(All times are in milliseconds)

5 Conclusion

We presented practically efficient and bit-precise techniques for QE from LMCs.
Our experiments demonstrate that modular arithmetic based techniques for QE
outperform PA and bit-blasting based QE techniques and keep the final result
in modular arithmetic.

References

1. A. John, S. Chakraborty. A quantifier elimination algorithm for linear modular

equations and disequations, In CAV 2011
2. A. John, S. Chakraborty. Extending quantifier elimination to linear inequalities on

bit-vectors, In TACAS 2013
3. N. Bjørner, A. Blass, Y. Gurevich, M. Musuvathi. Modular difference logic is hard,

In CoRR abs/0811.0987:(2008)
4. D. Kroening, O. Strichman. Decision procedures: an algorithmic point of view, Texts

In Theoretical Computer Science, Springer 2008
5. S. Chaki, A. Gurfinkel, O. Strichman. Decision diagrams for linear arithmetic, In

FMCAD 2009
6. W. Pugh. The Omega Test: A fast and practical integer programming algorithm for

dependence analysis. Communications of the ACM, Pages 102-114, 1992
7. D. Monniaux. A quantifier elimination algorithm for linear real arithmetic, In LPAR

2008
8. V. Ganesh, D. Dill. A decision procedure for bit-vectors and arrays, In CAV 2007
9. M. Muller-Olm, H. Seidl. Analysis of modular arithmetic, ACM Transactions on

Programming Languages and Systems, 29(5):29, 2007
10. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677-691, 1986
11. CUDD release 2.4.2 website, vlsi.colorado.edu/∼fabio/CUDD

