
Bottom-up Shape Analysis using LISF

Bhargav S. Gulavani and Supratik Chakraborty

IIT Bombay

and

G. Ramalingam and Aditya V. Nori

Microsoft Research India

In this paper we present a new shape analysis algorithm. The key distinguishing aspect of our
algorithm is that it is completely compositional, bottom-up and non-iterative. We present our
algorithm as an inference system for computing Hoare triples summarizing heap manipulating
programs. Our inference rules are compositional: Hoare triples for a compound statement are
computed from the Hoare triples of its component statements. These inference rules are used as
the basis for bottom-up shape analysis of programs.

Specifically, we present a Logic of Iterated Separation Formulae (LISF), which uses the iterated
separating conjunct of Reynolds [Reynolds 2002] to represent program states. A key ingredient of
our inference rules is a strong bi-abduction operation between two logical formulas. We describe
sound strong bi-abduction and satisfiability procedures for LISF.

We have built a tool called SpInE that implements these inference rules and have evaluated it
on standard shape analysis benchmark programs. Our experiments show that SpInE can generate
expressive summaries, which are complete functional specifications in many cases.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; Programming by contract; D.2.1 [Software Engineering]: Require-
ments/Specifications

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Compositional Analysis, Hoare Logic, Separation Logic

1. INTRODUCTION

In this paper we present a new shape analysis algorithm: an algorithm for analyzing
programs that manipulate dynamic data structures such as lists. The key distin-
guishing aspect of our algorithm is that it is completely bottom-up and non-iterative.
It computes summaries describing the effect of a statement or procedure in a mod-
ular, compositional, non-iterative way: the summary for a compound statement is
computed from the summaries of simpler statements that make up the compound
statement.

Shape analysis is intrinsically challenging. Bottom-up shape analysis is particu-
larly challenging because it requires analyzing complex pointer manipulations when
nothing is known about the initial state. Hence, traditional shape analyses are based
on an iterative top-down (forward) analysis, where the statements are analyzed in
the context of a particular (abstract) state. Though challenging, bottom-up shape
analysis appears worth pursuing because the compositional nature of the analysis
promises much better scalability, as illustrated by the recent work of Calcagno et
al. [Calcagno et al. 2009]. The algorithm we present is based on ideas introduced
by Calcagno et al. [Calcagno et al. 2009].

Motivating Example. Consider the procedure shown in Figure 1. Given a list

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Bhargav S. Gulavani et al.

delete(struct node *h, *a, *b)
1. y=h;

2. while (y!=a && y!=0) {
3. y=y->next;

}

4. x=y;
5. if (y!=0) {y=y->next;}

6. while (y!=b && y!=0) {
7. t=y;

8. y=y->next;
9. delete(t);

}

10. if (x !=0) {
11. x->next=y;

12. if (y!=0) y->prev=x;
}

Fig. 1. Motivating example – deletion of list segment

pointed to by parameter h, this procedure deletes the fragment of the list demar-
cated by parameters a and b. Our goal is to devise an analysis that, given a
procedure S such as this, computes a set of Hoare triples [ϕ] S [ϕ̂] that summarize
the procedure. We use the above notation to indicate that the Hoare triples inferred
are total : the triple [ϕ] S [ϕ̂] indicates that, given an initial state satisfying ϕ, the
execution of S terminates safely (with no memory errors) in a state satisfying ϕ̂.
Inferring Preconditions. There are several challenges in meeting our goal. First,

note that there are a number of interesting cases to consider: the list pointed to by
h may be an acyclic list, or a complete cyclic list, or a lasso (an acyclic fragment
followed by a cycle). The behavior of the code also depends on whether the pointers
a and b point to an element in the list or not. Furthermore, the behavior of the
procedure also depends on the order in which the elements pointed to by a and b

occur in the list.
With traditional shape analyses, a user would have to supply a precondition

describing the input to enable the analysis of the procedure delete. Alternatively,
an analysis of the calling procedure would identify the abstract state σ in which
the procedure delete is called, and delete would be analyzed in an initial state σ.
In contrast, a bottom-up shape analysis automatically infers relevant preconditions
and computes a set of Hoare triples, each triple describing the procedure’s behavior
for a particular case (such as the cases described in the previous paragraph).
Inferring Postconditions. However, even for a given precondition ϕ, many differ-

ent correct Hoare triples can be produced, differing in the information captured by
the postcondition ϕ̂. As an example consider the case where h points to an acyclic
list, and a and b point to elements in the list, with a pointing to an element that
occurs before the element that b points to. In this case, the following are all valid
properties that can be expressed as suitable Hoare triples: (a) The procedure is
memory-safe: it causes no pointer error such as dereferencing a null pointer. (b)
Finally, h points to an acyclic list. (c) Finally, h points to an acyclic list, which is
the same as the list h pointed to at procedure entry, with the fragment from a to
b deleted. Clearly, these triples provide increasingly more information.
A distinguishing feature of our inference algorithm is that it seeks to infer triples

describing properties similar to (c) above, which yield a functional specification for
the analyzed procedure. One of the key challenges in shape analysis is relating the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 3

value of the final data-structure to the value of the initial data-structure. We utilize
an extension of separation logic, described later, to achieve this.

Composition via Strong Bi-Abduction. We now informally describe how sum-
maries [ϕ1] S1 [ϕ̂1] and [ϕ2] S2 [ϕ̂2] in separation logic can be composed to obtain
summaries for S1;S2. The intuition behind the composition rule, which is similar to
the composition rule in [Calcagno et al. 2009], is as follows. Suppose we can identify
ϕpre and ϕpost such that ϕ̂1∗ϕpre and ϕpost∗ϕ2 are semantically equivalent. We can
then infer summaries [ϕ1 ∗ϕpre] S1 [ϕ̂1 ∗ϕpre] and [ϕpost ∗ϕ2] S2 [ϕpost ∗ ϕ̂2] by ap-
plication of frame rule [O’Hearn et al. 2001], where ∗ is the separating conjunction
of separation logic [Reynolds 2002] (subject to the usual frame rule conditions: ϕpre
and ϕpost should not involve variables modified by S1 and S2 respectively). We can
then compose these summaries trivially and get [ϕ1∗ϕpre] S1; S2 [ϕpost∗ϕ̂2]. Given
ϕ̂1 and ϕ2, we refer to the identification of ϕpre, ϕpost such that ϕ̂1∗ϕpre ⇔ ϕpost∗ϕ2

as strong bi-abduction. Strong bi-abduction also allows for existentially quantifying
some auxiliary variables from the right hand side of the equivalence, as discussed
later in Section 3.

Iterative Composition. A primary contribution of this paper is to extend the
above intuition to obtain loop summaries. Suppose we have a summary [ϕ] S [ϕ̂],
where S is the body of a loop (including the loop condition). We can apply strong bi-
abduction to compose this summary with itself: for simplicity, suppose we identify
ϕpost and ϕpre such that ϕ̂ ∗ ϕpre ⇔ ϕpost ∗ ϕ. If we now inductively apply the
composition rule, we can then infer a summary of the form [ϕ ∗ϕkpre] S

k [ϕkpost ∗ ϕ̂]
that summarizes k executions of the loop. Here, we have abused notation to convey
the intuition behind the idea. If our logic permits a representation of the repetition
of a structure ϕpre an unspecified number of times (k), we can then directly compute
a Hoare triple summarizing the loop from a Hoare triple summarizing the loop body.

Logic Of Iterated Separation Formulae. In order to achieve the above goal, we
introduce LISF , an extension of separation logic, and present sound procedures
for strong bi-abduction and satisfiability in LISF . The logic LISF has two key
aspects: (i) It contains a variant of Reynolds’ iterated separating conjunct construct
that allows the computation of a loop summary from a loop body summary. (ii) It
uses an indexed symbolic notation that allows us to give names to values occurring
in a recursive (or iterative) data-structure. This is key to meeting the goal described
earlier, i.e., computing functional specifications that can relate the value of the
final data-structure to that of the initial data-structure. LISF gives us a generic
ability to define recursive predicates useful for describing certain classes of recursive
data-structures. The use of LISF , instead of specific recursive predicates, such
as those describing singly-linked lists or doubly-linked lists, allows us to compute
more precise descriptions of recursive data-structures in preconditions. Though
we use LISF for bottom-up analysis in this paper, its use in not restricted to
this. Specifically, it can also be used to represent program states in top down
interprocedural analysis.

Empirical Evaluation. We have implemented our inference rules in a bottom-
up analyzer SpInE and evaluated it on several shape analysis benchmarks. We
say that a set S of summaries for a program P is a complete specification for P if
every input configuration starting from which P terminates without causing errors

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

4 · Bhargav S. Gulavani et al.

satisfies the precondition of some summary in the set S. On most of the examples,
we could generate ‘complete’ functional specifications. On the example program
in Figure 1, we could generate several summaries with cyclic and lasso structures,
although a complete specification was not obtained. As will be explained later, this
is due to the incompleteness of our strong bi-abduction algorithm.
Our Contributions. (i) We present a logic of iterated separation formulae LISF

(Section 4), which is a restriction of separation logic with iterated separating
conjunction, and give sound algorithms for satisfiability checking and strong bi-
abduction in this logic (Sections 6, 7, and 8). (ii) We present inference rules to
compute Hoare triples in a compositional bottom-up manner (Section 5). (iii) We
have a prototype implementation of our technique. We discuss its performance on
several challenging programs (Section 9).

2. RELATED WORK

Our work is most closely related to the recent compositional shape analysis algo-
rithm presented by Calcagno et al. [Calcagno et al. 2009], which derives from the
earlier work in [Calcagno et al. 2007]. The algorithm described by Calcagno et
al. [Calcagno et al. 2009] is a hybrid algorithm that combines compositional anal-
ysis with an iterative forward analysis. The first phase of this algorithm computes
candidate preconditions for a procedure, and the second phase utilizes a forward
analysis to either discard the candidate precondition, if it is found to potentially
lead to a memory error, or find a corresponding sound postcondition. The key
idea in this approach, which we borrow and extend, is the use of bi-abduction to
handle procedure calls compositionally. Given ϕ̂1, the state at a callsite, and ϕ2,
a precondition of a Hoare triple for the called procedure, Calcagno et al. compute
ϕpre and ϕpost such that ϕ̂1 ∗ ϕpre ⇒ ϕpost ∗ ϕ2. Our approach differs from this in
several ways. We present a completely bottom-up analysis which does not use any
iterative analysis whatsoever. Instead, it relies on a “stronger” form of bi-abduction
(where we seek equivalence, instead of implication, but allow some auxiliary vari-
ables to be quantified) to compute the post-condition simultaneously. Furthermore,
our approach extends the composition rule to treat loops in a similar fashion. Our
approach also computes preconditions that guarantee termination. We use LISF
as the basis for our algorithm, while Calcagno et al.’s work uses a set of abstract
recursive predicates. We also focus on computing more informative triples that can
relate the final value of a data-structure to its initial value.
Several recent papers [Podelski et al. 2008; Abdulla et al. 2008; Lev-Ami et al.

2007] describe techniques to obtain preconditions by going backwards starting from
some bad states. Unlike our approach, these techniques are neither compositional
nor bottom-up.
Extrapolation techniques proposed in [Touili 2001; Boigelot et al. 2003] compute

sound overapproximations of postconditions by identifying the growth in successive
applications of transducers and by iterating that growth. Similarly, [Guo et al. 2007]
proposes a technique to guess the recursive predicates characterizing a data struc-
ture by identifying the growth in successive iterations of the loop and by repeating
that growth. In contrast, we identify the growth in both the pre and postconditions
by strong bi-abduction and iterate it to compute Hoare triples that are guaranteed

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 5

to be sound. Furthermore, our analysis is bottom-up and compositional in contrast
to these top-down (forward) analyses.

TVLA [Sagiv et al. 1999] is a 3-valued predicate logic analyzer with transitive
closure. It generates an abstraction of the shape of the program heap at runtime
in the form of 3-valued structure descriptors. It performs a top-down analysis
within a procedure starting from the given shape of input heap. Several works
[Rinetzky and Sagiv 2001; Rinetzky et al. 2005; Rinetzky et al. 2005] have proposed
an interprocedural extension of the basic intraprocedural analysis of TVLA. All
these algorithms are top-down and forward. In [Rinetzky et al. 2005], Rinetzky
et al.compute partially functional summaries. They define a cut-point as a node
in the heap graph that is simultaneously reachable from some input parameter of
the procedure and some other program variable that is not a parameter to the
procedure. The summaries computed in [Rinetzky et al. 2005] track precise input-
output relations only between finitely many cut-points. In [Rinetzky et al. 2005], the
authors design a global analysis to determine if the program is cut-point free. The
summarization algorithm generates summaries only for cut-point free programs.
These summaries do not relate the input and output heap cells, except those heap
cells that are directly pointed to by a procedure parameter. In contrast, summaries
expressed using LISF can capture precise input output relationships between an
unbounded number of cut-points.

In [Jeannet et al. 2004], Jeannet et al.propose an algorithm to generate relational
summaries in TVLA. They use instrumentation predicates that relate the input
value of a predicate with its output value. Additionally, they also use lemmas
specific to the novel instrumentation predicates to avoid loss of information during
the abstract computation. Their algorithm is top-down and forward, i.e., they
start abstract computation from the main procedure and analyze each procedure
(or reuse its already computed summary, if possible) when it is called.

In [Yorsh et al. 2006], Yorsh et al., present a decidable logic of reachable patterns
(LRP) in linked data-structures. This logic uses regular patterns to characterize the
reachable heap structure. As such, using symbolic variables to represent the initial
and final values of the procedure parameters, it is possible to relate the reachable
heap cells in the input and output of the procedure. But in this work, the focus
is on having a decidable logic for verifying programs annotated with preconditions,
postconditions, and loop invariants. They do not provide an algorithm to compute
procedure summaries in LRP.

The work on regular model-checking [Abdulla et al. 2004; Bouajjani et al. 2005;
Bouajjani et al. 2006; Bouajjani et al. 2004] represents input-output relations by
a transducer, which can be looked upon as a functional specification. Given the
transducer for the loop body and intial configuration encoded as an automaton,
the goal is to compute the final configuration after the loop exits (i.e., the post-
condition). This problem is undecidable in general, since the iterated loop body
transducer could encode a Turing machine. The authors therefore use abstraction-
refinement to compute over-approximations of the postcondition. In [Abdulla et al.
2008], Abdulla et al. propose algebraic structures richer than finite state automata
for representing shape of the program heap. Their method allows heap graphs to
be directly represented as graphs, and the operational semantics to be represented

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

6 · Bhargav S. Gulavani et al.

Program Syntax

e ::= v | null
B ::= v = e | v != e

S ::= v.f := e | v := u.f | v := new | dispose v | S; S
| assert(B) | v := e | if(B, S, S) | while(B) S

Separation Logic Syntax (∼ ∈ {=, 6=})
e ::= null | v | . . .
P ::= e ∼ e | false | true | P ∧ P | . . .
S ::= emp | e 7→ (f : e) | true | S ∗ S | . . .
ϕ ::= P ∧ S | ∃v. SH

Fig. 2. Program syntax and separation logic syntax

(s, h) |= P ∧ S iff (s, h) |= P ∧ (s, h) |= S

(s, h) |= e1 ∼ e2 iff s(e1) ∼ s(e2)

(s, h) |= true

(s, h) 6|= false

(s, h) |= P1 ∧ P2 iff (s, h) |= P1 ∧ (s, h) |= P2

(s, h) |= emp iff dom(h) = {}

(s, h) |= e1 7→ (f : e2) iff h(s(e1)) = (f : s(e2)) ∧ dom(h) = {s(e1)}

(s, h) |= S1 ∗ S2 iff ∃h1h2.h1#h2 ∧ h1 ⊔ h2 = h ∧ (s, h1) |= S1 ∧ (s, h2) |= S2

Fig. 3. Separation logic semantics.

as relations on graphs. All the analyses proposed above proceed top-down, and the
authors do not leverage compositional techniques to compute the transducer for
loops.

3. COMPOSITION VIA STRONG BI-ABDUCTION

In this section we introduce the idea of composing Hoare triples using strong bi-
abduction.

3.1 Preliminaries

Programming language. We address a simple language whose syntax appears in
Figure 2. The primitives assert(v = e) and assert(v != e) are used primarily
to present inference rules for conditionals and loops (as will be seen later). Here v,
u are program variables, and e is an expression which could either be a variable or
the constant null. This language supports heap manipulating operations without
address arithmetic.
Semantically, we use a value domain Locs (which represents an unbounded set

of locations). Each location in the heap represents a cell with n fields, where n
is statically fixed. A computational state contains two components: a stack s,
mapping program variables to their values (Locs∪ {null}), and a heap h, mapping
a finite set of non-null locations to their values, which are n-tuples of (primitive)
values.
Assertion Logic. We illustrate some of the key ideas using standard separation

logic, using the syntax shown in Figure 2. The ‘. . . ’ in Figure 2 refer to constructs
and extensions we will introduce in Section 4. discussion. We assume the reader
is familiar with basic ideas in separation logic. Every expression e in separation
logic evaluates to a location. Given a stack s, a variable v evaluates to a location
s(v). We define s(null) to be null. A symbolic heap representation consists of
a pure part P and a spatial part S. The pure part P consists of equalities and
disequalities of expressions. The spatial part S describes the shape of the graph in
the heap. Let dom(h) denote the domain of heap h. emp denotes that the heap

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 7

has no allocated cells, i.e., dom(h) = {}. The predicate x 7→ (f : l) denotes a heap
consisting of a single allocated cell pointed to by x, and the f field of this cell has
value l. In general, for objects having n fields f1, . . . , fn, the general version of the
7→ predicate is e 7→ (f1 : e1, . . . , f

n : en). The ∗ operator is called the separating
conjunction; s1 ∗ s2 denotes that s1 and s2 refer to disjoint portions of the heap
and the current heap is the disjoint union of these sub-heaps. We use the notation
h1#h2 to denote that h1 and h2 have disjoint domains, and use h1 ⊔ h2 to denote
the disjoint union of such heaps. The meaning of pure assertions depends only on
the stack, and the meaning of spatial assertions depends on both the stack and the
heap.
Hoare triples. The specification [ϕ] S [ϕ̂] means that when S is run in a state

satisfying ϕ it terminates without any memory error (such as null dereference) in
a state satisfying ϕ̂. Thus, we use total correctness specifications. Additionally, we
call the specification [ϕ] S [ϕ̂] strong if ϕ̂ is the strongest postcondition of ϕ with
respect to S. We use the logical variable v to refer to the value of program variable
v in the pre and postcondition of a statement S. The specification may refer to
auxiliary logical variables from a set Aux, that do not correspond to the value of
any program variable. For the present discussion, we prefix all auxiliary variable
names with ‘ ’. A Hoare triple with auxiliary variables is said to be valid iff it is
valid for any value binding for the auxiliary variables occurring in both the pre
and postcondition. The local Hoare triples for reasoning about primitive program
statements are given in Table I. These are similar to the small axioms of [O’Hearn
et al. 2001].
Notation. We use the following short-hand notations for the remainder of the

paper. Formulae true ∧ S and P ∧ emp in pre or post conditions are represented
simply as S and P respectively. The notation θ : 〈v → x〉 refers to a renaming θ
that replaces variable v with x, and eθ refers to the expression obtained by applying
renaming θ to e. For sets A and B of variables, we write θ : 〈A →֒ B〉 to denote
renaming of a subset of variables in A by variables in B, and we write θ : 〈A→ B〉
to denote renaming of all variables in A by variables in B. Given a formula ϕ, we
use free(ϕ) to refer to the set of free variables in ϕ. We denote sets of variables
by upper-case letters like V,W,X, Y, Z, For every such set V , Vi denotes the
set of i subscripted versions of variables in V . We say that ϕ is independent of
the set of variables A, if A ∩ free(ϕ) = ∅. We use ϕp and ϕs to refer to the pure
and spatial parts, respectively, of ϕ. The notation ∃Xϕ ∗ ∃Y ψ is used to denote
∃X,Y ϕp ∧ ψp ∧ ϕs ∗ ψs, when ϕ and ψ are quantifier free and do not have free Y
and X variables, respectively.
We denote the set of logical variables corresponding to the program variables

modified by S as mod(S). For primitive statements, the definition of mod is given
in Table I. For composite statements, mod is defined as follows. mod(S1; S2) and
mod(if(C, S1, S2)) are both defined as mod(S1) ∪mod(S2). On the other hand,
mod(while(C) S1) is defined as mod(S1).

3.2 Composing Hoare Triples

Given two summaries [ϕ1] S1 [ϕ̂1] and [ϕ2] S2 [ϕ̂2], we wish to compute a sum-
mary for the composite statement S1;S2. If we can compute formulas ϕpre and
ϕpost that are independent of mod(S1) and mod(S2), respectively, such that ϕ̂1 ∗

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

8 · Bhargav S. Gulavani et al.

Mutation [v 7→ (f : w; . . .)] v.f := e [v 7→ (f : e; . . .)]

Deallocation [v 7→ (f1 : w1, . . . , fn : wn)] dispose v [v 6= null ∧ emp]

Allocation (modifies v) [v = x] v := new [∃ w1 . . . wn. v 7→ (f1 : w1, . . . , fn : wn)]

Lookup (modifies v) [v = x ∧ u 7→ (f : w; . . .)] v := u.f [v = w ∧ u 7→ (f : w; . . .)]

[v = x ∧ v 7→ (f : w; . . .)] v := v.f [v = w ∧ x 7→ (f : w; . . .)]
Copy (modifies v) [v = x] v := e [v = e〈v → x〉]

Guard [v = e] assert(v = e) [v = e]
[v 6= e] assert(v!= e) [v 6= e]

Table I. Local reasoning rules for primitive statements

ϕpre ⇔ ϕpost ∗ ϕ2, then by application of frame rule we can infer the summary
[ϕ1 ∗ ϕpre] S1; S2 [ϕpost ∗ ϕ̂2]. We can compose the two given summaries even un-
der the slightly modified condition ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2), if Z ⊆ Aux. The
summary inferred in this case is [ϕ1 ∗ ϕpre] S1; S2 [∃Z. (ϕpost ∗ ϕ̂2)].
Given ϕ̂1 and ϕ2, we refer to the determination of ϕpre, ϕpost and a set Z of

variables such that ϕ̂1 ∗ϕpre ⇔ ∃Z. (ϕpost ∗ϕ2) as strong bi-abduction. The concept
of strong bi-abduction is similar to that of bi-abduction presented in [Calcagno
et al. 2009] (in the context of using a Hoare triple computed for a procedure at a
particular callsite to the procedure). Key differences are that bi-abduction requires
the condition ϕ̂1 ∗ϕpre ⇒ ϕpost ∗ϕ2, whereas we seek equivalence (instead of impli-
cation) while allowing some auxiliary variables to be existentially quantified in the
right hand side of the equivalence. While the above composition rule is sound even
if we use bi-abduction, bi-abduction may not yield good post-conditions. Specifi-
cally, if we disallow the deallocation operation, it can be shown that the composition
of strong Hoare triples using strong bi-abudction yields strong Hoare triples (re-
fer to the Appendix for a proof). The ‘strong’ property is not preserved under
composition using bi-abduction, although the composition is sound. A drawback
of using strong bi-abduction, however, is that there exist Hoare triples that cannot
be composed using strong bi-abduction but can be composed using bi-abduction.
For example, [true] v := null [v = null] and [true] v := null [v = null] cannot
be composed using strong bi-abduction but can be composed using bi-abduction.
However, even with this drawback our tool could generate complete functional
specifications for most of the benchmark programs using strong bi-abduction in a
bottom-up analysis.

Example 1. In this and subsequent examples, we will use v 7→ w as a short-hand
for v 7→ (next : w). Let us compose two summaries, [v = a] v := new [∃ b. v 7→ b]
and [v = c∧ c 7→ d] v := v.next [v = d∧ c 7→ d]. Note that all variables other
than v are distinct in the two summaries, as they represent implicitly existentially
quantified auxiliary variables in each of the two summaries. Since (∃ b. v 7→ b) ∗
emp ⇔ ∃ c, d. emp ∗ (v = c ∧ c 7→ d) we can compose the two summaries and
deduce [v = a] v := new; v := v.next [∃ c, d. v = d∧ c 7→ d]. As an aside, note
that the program fragment v:=new; v:=v.next introduces a memory leak.

We now present a set of Hoare inference rules in separation logic for our program-
ming language. The rules are formally presented in Figure 4. The Compose rule
captures the above idea of using strong bi-abduction for the sequential composition
of statements. The rules While, Then and Else use the Compose rule to derive
the fact in their antecedent.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 9

Compose

[ϕ1] S1 [ϕ̂1]
[ϕ2] S2 [ϕ̂2]

ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2)

[ϕ1 ∗ ϕpre] S1; S2 [∃Z. (ϕpost ∗ ϕ̂2)]

free(ϕpre) ∩mod(S1) = ∅
free(ϕpost) ∩mod(S2) = ∅
Z ⊆ Aux

Branch

[ϕ ∧ B] S1 [ϕ̂]
[ϕ∧!B] S2 [ϕ̂]

[ϕ] if(B, S1, S2) [ϕ̂]

Exit While

[ϕ] assert(!B) [ϕ̂]
[ϕ] while(B) S [ϕ̂]

[ϕ] (assert(B); S)+ [ψ′], [ψ′] assert(!B) [ϕ̂]
[ϕ] while(B) S [ϕ̂]

Then Else
[ϕ] assert(B); S1 [ϕ̂]
[ϕ] if(B, S1, S2) [ϕ̂]

[ϕ] assert(!B); S2 [ϕ̂]
[ϕ] if(B, S1, S2) [ϕ̂]

Fig. 4. Inference rules for sequential composition, loops, and branch statements

The rules Exit and While are straightforward rules that decompose analysis
of loops into two cases. Rule Exit handles the case where the loop executes zero
times, while rule While applies when the loop executes one or more times. Rule
While leaves the bulk of the work to the computation of [ϕ] S+ [ϕ̂]. The notation
[ϕ] S+ [ϕ̂] does not represent a Hoare triple in the standard sense, since S+ is not a
statement in our programming language. However, [ϕ] S+ [ϕ̂] is the key idiom we
will use in the remainder of this paper. Hence, we overload the notation of Hoare
triples, and also call [ϕ] S+ [ϕ̂] a Hoare triple. The notation [ϕ] S+ [ϕ̂] means
that for every initial state satisfying ϕ, there exists a k ≥ 1 such that the state
resulting after k executions of S satisfies ϕ̂. Note that this Hoare triple is used
only in the While rule. In this rule, the second premise ensures that the state
obtained after k iterations does not satisfy the loop condition, and hence the loop
terminates. In next two sections we present a technique for computing triples of
the form [ϕ] S+ [ϕ̂].

4. LOGIC OF ITERATED SEPARATION FORMULAE (LISF)

Let SL denote the following loop in our programming language: while (v!=null) v

:= v.next. Let ⊙ki=0 ψ
i informally denote the iterated separating conjunction ψ0 ∗

· · · ∗ψk [Reynolds 2002]. We would like to infer the following summary for SL: [v =
x0 ∧ xk = null ∧ ⊙k−1i=0 xi 7→ xi+1] SL [v = xk ∧ xk = null ∧ ⊙k−1i=0 xi 7→ xi+1].
The objective of this section is to present a formal extension of separation logic that
lets us express such triples using a restricted form of iterated separating conjunction.
We begin by giving an overview of how we intend to infer loop summaries like the
one above.
Assume that we have a Hoare triple [ϕ] S [ϕ̂], where ϕ and ϕ̂ are quantifier-

free formulae. We can compute a Hoare triple for k executions of S by repeated
applications of the Compose rule as follows. Let ϕi (resp. ϕ̂i) denote ϕ (resp.
ϕ̂) with every variable x ∈ Aux replaced by a corresponding indexed variable xi.
Consider the Hoare triples [ϕi] S [ϕ̂i] and [ϕi+1] S [ϕ̂i+1], obtained from [ϕ] S [ϕ̂]
by replacing variables in Aux by indexed variables as described above. Let ϕipre and

ϕipost be such that both free(ϕipre) ∩mod(S) and free(ϕ
i
post) ∩mod(S) are empty,

and ϕ̂i ∗ ϕipre ⇔ ϕipost ∗ ϕ
i+1. Note that unlike ϕi or ϕ̂i, we allow ϕipre and ϕipost

to have free variables with indices i as well as i+ 1. We can now inductively apply

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

10 · Bhargav S. Gulavani et al.

S

(a) (c)

...

...

S S

(b)

S

y1

x1

v = x1

v = y1

y0

x0

x0

y0

v = x0

v = y0

y0

x0

y0

x0

Sk+1

y1

x1

yk

xk

yk

xk

ϕ0
post : y0 = x1 ∧ x0 7→ y0

ϕ0
pre : y0 = x1 ∧ x1 7→ y1

v = yk

x1

y1

x1

y1

v = x0

v = y0

y0

x0

y1

x1

y1

x1

y0

x0

y0

x0

y1

x1

y1

x1

y0

x0
ϕpost

m

v = x1

v = y1

y0 = x1∧

x0 7→ y0

v = x0

ϕpre
y0 = x1∧

x1 7→ y1

ϕkpre

ϕkpost

Fig. 5. (a) Given summaries, (b) application of Compose, and (c) application of acceleration.
Each box represents a heap cell, its contents represents the value of the next field. A circled
variable above a box denotes the name of the cell.

the Compose rule and conclude the following Hoare triple.

[ϕ0 ∗ (⊙k−1i=0 ϕipre)]S
k+1[(⊙k−1i=0 ϕipost) ∗ ϕ̂

k] (4.1)

We call the inference of the Hoare triple in equation (4.1) as acceleration of [ϕ] S [ϕ̂].
The following example illustrates acceleration of Hoare triples.

Example 2. Let S be the sequence of statements assert(v! = null); v := v.next.
Suppose we wish to compose the two summaries [v = x0 ∧ x0 7→ y0] S [v = y0 ∧
x0 7→ y0] and [v = x1 ∧ x1 7→ y1] S [v = y1 ∧ x1 7→ y1], which are identical,
except for renaming of auxiliary variables. Let ϕpre denote x1 = y0 ∧ x1 7→ y1
and ϕpost denote x1 = y0 ∧ x0 7→ y0. Applying the Compose rule results in the
following summary: [(v = x0 ∧ x0 7→ y0) ∗ (x1 = y0 ∧ x1 7→ y1)] S; S [(x1 =
y0∧ x0 7→ y0)∗(v = y1∧ x1 7→ y1)]. This is pictorially depicted in Figures 5 (a)
and (b). Iterative application of Compose, or acceleration, yields the summary:
[v = x0 ∧ x0 7→ y0 ∗ ⊙k−1i=0 (xi+1 = yi ∧ xi+1 7→ yi+1)] S

k+1 [⊙k−1i=0 (xi+1 =
yi∧ xi 7→ yi)∗ (v = yk ∧ xk 7→ yk)]. This is pictorially depicted in Figure 5(c).

4.1 LISF Syntax and Informal Semantics:

We now introduce an extension of separation logic, called Logic of Iterated Sepa-
ration Formulae (or LISF), that allows us to formally express the restricted form
of iterated separating conjunction alluded to above. The syntax of LISF is given
in Figure 6, where “. . .” represents standard constructs of separation logic from
Figure 2.
As we will soon see, we no longer need the informal notation (v = x0)∧ (xk = null)∧(

⊙k−1i=0 xi 7→ xi+1

)
to describe an acyclic singly linked list pointed to by v. Instead,

we can use the LISF formula ϕ ≡ (v = A[0]) ∧ (A[$0] = null) ∧ RS(A[·] 7→
A[·+ 1], 0, 0), where A is a new type of logical variable and RS is a new predicate,
as explained below.
Variables like A in the formula ϕ represent a new type of logical variables, called

array variables, that may be referenced in LISF formulae. Intuitively, an array
variable represents a sequence of locations corresponding to the “nodes” of a re-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 11

cursive data structure like a linked list. A LISF formula may specify properties
of the ith node in such a data structure, or specify a relation between the ith and
i + 1st nodes of the same (or even different) data structure(s), by referring to el-
ements of the corresponding arrays. In general, the syntax of LISF also allows
references to multi-dimensional array variables. This is particularly useful for de-
scribing nested recursive data structures, such as a linked list of linked lists. As
a matter of convention, we will henceforth denote array variables with bold-face
upper case letters.

ae ::= arr | ae[·] | ae[· + 1] | ae[c] | ae[$c]

e ::= . . . | ae[·] | ae[· + 1] | ae[c] | ae[$c]

P ::= . . . | RP(P, l, u)

S ::= . . . | RS(S, l, u)

SH ::= P ∧ S | ∃v SH | ∃arr SH

Fig. 6. LISF assertion syntax

The semantics of LISF uses a mapping
from each array variable to a sequence of
values (v0, · · · , vk). For uni-dimensional ar-
rays, the values vi represent locations in the
heap, whereas for multi-dimensional arrays,
the vi’s may themselves be sequences of lo-
cations or sequences of sequences of loca-
tions, and so on. Expressions are extended

to allow indexed array references, also called array expressions, which consist of
an array variable name followed by a sequence of one or more indices. An array
expression can take one of four forms: (i) arr[c], (ii) arr[$c], (iii) arr[·], or (iv)
arr[· + 1], where c is a non-negative integer constant, and arr is either an array
name or an array expression. Array expressions with fixed indices include array
references of the form arr[c] or arr[$c]. These refer to the element at an offset c
from the beginning or end, respectively, of the sequence represented by arr. For
example, if A is mapped to the sequence (v0, · · · , vk), then the array expressions
A[0] and A[$0] evaluate to v0 and vk respectively in LISF semantics. The seman-
tics of array expressions with iterated indices, which include references of the form
arr[·] and arr[·+ 1], will be explained later.

In addition to array variables, LISF extends pure and spatial formulae with
a pair of new predicates, called RP and RS. These predicates are intended to be
used for describing pure and spatial properties, respectively, that repeat across
nodes of recursive data structures. Loosely speaking, if S denotes a spatial formula
containing an array expression with iterated index, such as arr[·] or arr[·+1], then
RS(S, l, u) corresponds to our informal notation ⊙k−1−ui=l S. Note, however, that the
index variable i and bound k are not explicitly represented in RS(S, l, u). Instead,
the values of i and k are provided by the evaluation context. The “dot” in arr[·]
or arr[· + 1] intuitively refers to the implicit index variable i. Thus, arr[·] refers
to the element at offset i, while arr[· + 1] refers to the element at offset i + 1. To
see how the RS predicate is used, consider the formula RS(A[·] 7→ A[· + 1], 0, 0),
where A is mapped to a sequence of length k + 1. This formula asserts that for all
i ∈ [0, k− 1], the ith element of A is the location of a heap cell whose next field has
the same value as the i + 1st element of A. In addition, the predicate also asserts
that the heap cells represented by elements A[0] through A[k− 1] are distinct. The
usage and intuitive interpretation of RP is similar to that of RS, with the exception
that RP is used with a pure sub-formula P (as in RP(P, l, u)) instead of the spatial
sub-formula S in RS(S, l, u). For notational convenience, we will henceforth denote
RP(P, l, u) and RS(S, l, u) simply by RP(P) and RS(S), respectively, when both l

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

12 · Bhargav S. Gulavani et al.

and u are 0.
While the RP and RS predicates are clearly motivated by Reynolds’ iterated sep-

arating conjunction operator [Reynolds 2002], there are some differences as well.
Most important among these is the absence of an explicit iteration bound in the syn-
tax of RP and RS. Specifically, the iteration bounds in RS(S, l, u) and RP(P, l, u) are
provided by the lengths of sequences mapped to array variables with iterated indices
in the sub-formulae S and P , respectively. This implicit encoding of bounds allows
us to uniformly represent simple and nested data structures in a size-independent
manner. To see this, consider a linked list in which every element itself points to
a distinct nested linked list. Suppose further that the nested linked lists have dif-
ferent lengths. If we were to represent this data structure using iterated separating
conjunctions, we would need a formula with two iterated separating conjunctions,
one nested within the scope of the other. Furthermore, the upper bound of the in-
ner iterated separating conjunction would need to be expressed as a function of the
index of the outer iterated separating conjunction. Clearly, this poses additional
complications for algorithms that reason about and manipulate such formulae. In
contrast, the same data structure can be expressed in LISF (with the shorthand
RS(S) for RS(S, 0, 0)) as

RS




X[·] 7→ (nlist : A[·][0], next : X[·+ 1])
∧ (A[·][$0] = null)
∧ RS (A[·][·] 7→ (A[·][·+ 1]))


∧(X[$0] = (nlist : A[$0][0], next : null),

where X is a uni-dimensional array representing elements (with nlist and next fields)
of the outer linked list, and A is a two-dimensional array representing elements (with
a next field) of the nested linked lists. The semantics of this formula will become
clear once we discuss the formal semantics of LISF in the next section. However,
notice that the formula is syntactically independent of the sizes of individual linked
lists. As we will see later, our bi-abduction and acceleration algorithms also do
not require explicit bounds of iterated separating conjunctions. Consequently, we
choose to to keep these bounds implicit. Another way in which the usage of RP
and RS predicates differs from that of iterated separating conjunctions is that the
lower and upper bounds of iteration are expressed as offsets from the start and end,
respectively, of the sequences mapped to array variables. This allows us to refer to
elements at a fixed offset from the beginning or end of a linked list, for example,
without explicitly referring to the length of the list. In summary, the RP and RS
predicates may be viewed as variants of Reynolds’ iterated separating conjunction
operator, in which iteration bounds and indices are implicitly represented, and are
provided by the evaluation context.

4.2 LISF Semantics

We now extend the semantics of separation logic and formally define the semantics
of LISF . Since an LISF expresssion may be an array reference with one or
more iterated indices, we require the mapping of array variables to uni- or multi-
dimensional sequences of locations, and a list of integers, one for every iterated
index, to evaluate an LISF expression in general. Formally, the semantics of an
LISF expresison e is given by the function E(e, L′, s,V), shown in Figure 7. This
function takes as inputs an LISF expression e, a list L′ of non-negative integer

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 13

input:

e expression
L′ list of integers
s stack
V mapping of array variables to uni-

or multi-dimensional sequence(s) of
locations

output: location
requires:

(1) Number of elements in L′ ≥ NumIterInd(e))

(2) If e is an array expression of the form
array var followed by k (fixed or iterated)
indices then the dimension of V(array var)
equals k

E(e, L′, s,V) =

let L = suffix(L′,NumIterInd(e)) in

match e with

| null→ null

| v → s(v)

| ae→ Ea(ae, L,V)

input:

aexpr array expression
L list of integers
V mapping of array variables to uni-

or multi-dimensional sequence(s) of
locations

output:
unique location, or uni-/multi-
dimenional sequence of locations

requires:

(1) Number of elements in L =
NumIterInd(aexpr)

(2) If aexpr is of the form array var followed by
k (fixed or iterated) indices then the dimen-
sion of V(array var) is at least k

Ea(aexpr, L,V) = match aexpr with

| array var → V(array var)

| ae[·]→ Ea(ae, tl(L),V)[hd(L)]

| ae[·+ 1]→ Ea(ae, tl(L),V)[1 + hd(L)]

| ae[c]→ Ea(ae, L,V)[c]

| ae[$c]→ let a = Ea(ae, L,V) in

a[length(a) − 1− c]

Fig. 7. Semantics of expressions, E

values, a stack s, and a mapping V of array variables to uni- or multi-dimensional
sequences of locations, and returns a location as the value of e.
If e is a variable that is not an array, E simply looks up the stack and returns

s(e) as the value of e. If e is the constant null, E returns null. However, if e
is an array expression, E uses the list L′ of integers and the mapping V of array
variables to sequences of locations to determine the value of e. Intuitively, integers
from the list L′ are used to instantiate the iterated indices, [·] and [·+1], appearing
in e. Thus, we need at least as many integers in L′ as the number of iterated
indices in e. This is ensured by the first precondition of function E(e, L′, s,V),
shown in Figure 7, where the function NumIterInd(e) gives the number of iterated
indices in e. Formally, NumIterInd(e) is defined as follows: If array var denotes
an array variable, ae denotes an array expression and v denotes a non-array vari-
able, then NumIterInd(array var) = 0, NumIterInd(ae[·]) = NumIterInd(ae[·+ 1]) =
NumIterInd(ae) + 1, NumIterInd(ae[c]) = NumIterInd(ae[$c]) = NumIterInd(ae), and
NumIterInd(v) = NumIterInd(null) = 0. If e is an array expression of the form
array var followed by k (fixed or iterated) indices, then V must map array var
to a k-dimensional sequence of locations in order to avoid indexing errors during
evaluation of e and to ensure that E(e, L′, s,V) evaluates to a unique location. This
is formalized in the second precondition of E(e, L′, s,V).
In general, a list L′ satisfying the first precondition of E(e, L′, s, V) may contain

more integers than NumIterInd(e). Therefore, we use the function suffix to extract
a suffix of L′ of the same length as NumIterInd(e). The “match e” construct
used in Figure 7 implements a case split based on the structure of the expression
e (analogous to the match expression of functional programming languages like
ML). The helper function Ea implements evaluation of an array expression, as
outlined above. It takes as inputs an array expression aexpr, a list L of integers
and a mapping V of array variables to sequences of locations. The instantiation of
iterated indices in aexpr with integers from L is done recursively. Specifically, each

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

14 · Bhargav S. Gulavani et al.

recursive call instantiates the current rightmost un-instantiated iterated index of
aexpr with the integer at the head of L, and passes the rest of L, i.e. its tail, as
argument to the next recursive call. Function Ea has preconditions similar to those
of E , except that the dimension of V(array var) is allowed to be greater than the
number of indices (fixed or iterated) following array var in e. Initially, function Ea
is called from function E . The preconditions of E and the fact that L is set to a suffix
of L′ of length NumInterInd(aexpr) ensure that the preconditions of Ea are satisfied
when it is called from within E . Subsequently, each recursive call of Ea reduces the
number of (fixed or iterated) indices of aexpr by exactly 1. Moreover, the number
of iterated indices is reduced by 1 in exactly those cases where the length of the list
L is also reduced by 1. This ensures that once the preconditions of Ea are satisfied
in the initial call, they will continue to be satisfied in every subsequent recursive
call.

Let aexpr be of the form array var followed by k′ (fixed or iterated) indices. Let
the dimension of V(array var) be k. The second precondition of Ea(aexpr, L,V)
ensures that k ≥ k′. It is an easy exercise to see that Ea(e, L,V) returns a (k− k′)-
dimensional sequence of locations. Therefore, if k = k′, function Ea(e, L,V) returns
a unique location. Note that the second precondition of function E(e, L′, s,V) en-
sures that whenever Ea is called from within E , we have k = k′. Therefore, every
call of Ea from within E returns a unique location. The functions hd(L) and tl(L)
used in the definition of Ea in Figure 7 return the head and tail, respectively, of the
list L. Similarly, if Ea(e, L,V) returns a sequence a, the function length(a), used in
the definition of Ea, returns the number of elements in a.

We now define a class of well-formed LISF formulae or (wff). The semantics is
non-trivially defined only for well-formed formulae. A LISF formula that is not
well-formed does not have a model. For notational convenience, we overload the
function NumIterInd, used in the definition of E(e, L′, s,V) above, to operate over ex-
pressions as well as predicates. Specifically, the function NumIterInd is defined over
predicates as follows. NumIterInd(e1 ∼ e2) = max(NumIterInd(e1), NumIterInd(e2)),
NumIterInd(P1∧P2) = NumIterInd(P1), NumIterInd(RP(P, ,)) = NumIterInd(P)−1,
NumIterInd(e 7→ (fi : li)) = NumIterInd(e), NumIterInd(S1 ∗ S2) = NumIterInd(S1),
NumIterInd(RS(S, ,)) = NumIterInd(S)− 1. An LISF formula P ∧ S is then said
to be well-formed iff (i) NumIterInd(P) = NumIterInd(S) = 0, (ii) for every sub-
formula P1 ∧ P2 of P , we have NumIterInd(P1) = NumIterInd(P2), (iii) for every
sub-formula S1 ∗ S2 of S, we have NumIterInd(S1) = NumIterInd(S2), and (iv) for
every sub-formula e1 7→ (f : e2) of S, we have NumIterInd(e1) ≥ NumIterInd(e2).

Structures modeling well-formed LISF formulae are tuples (s, h,V), where s
is a stack, h is a heap, and V is a mapping of array variables to uni- or multi-
dimensional sequences of locations. The semantics of assertions is given by the
satisfaction relation (|=) between a structure augmented with a list of integers L,
and an assertion ϕ. The list of integers facilitates evaluation of array expressions
by the function E described above. The formal definition of (s, h,V , L) |= ϕ is given
in Figure 8. Here, the notation i :: L denotes the list L′ obtained by inserting i at
the head of an already existing list L. Similarly, the notation [V|arr : a] denotes
the mapping V ′ defined by V ′(arr) = a, and V ′(X) = V(X) for all array variables X

different from arr. We say that (s, h,V) is a model of ϕ iff (s, h,V , []) |= ϕ.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 15

m |= P ∧ S iff m |= P ∧m |= S

m |= e1 ∼ e2 iff E(e1, L, s,V) ∼ E(e2, L, s,V)

m |= true

m 6|= false

m |= RP(P, l, u) iff ∃k k + 1 = len(V, L, P) ∧ ∀l ≤ i ≤ k − 1− u.(s, h,V, i :: L) |= P

m |= P1 ∧ P2 iff m |= P1 ∧m |= P2

m |= emp iff dom(h) = {}

m |= e1 7→ (f : e2) iff h(E(e1, L, s,V)) = (f : E(e2, L, s,V)) ∧ dom(h) = {E(e1, L, s,V)}

m |= RS(S, l, u) iff ∃k, u′, hl, . . . , hu′ k + 1 = len(V, L, S) ∧ u′ = k − 1− u ∧ h =
⊔

u′

i=l hi ∧
∀l ≤ i, j ≤ u′. i 6= j ⇒ hi#hj ∧ ∀l ≤ i ≤ u

′. (s, hi,V, i :: L) |= S

m |= S1 ∗ S2 iff ∃h1, h2 h1#h2 ∧ h1 ⊔ h2 = h ∧ (s, h1,V, L) |= S1 ∧ (s, h2,V, L) |= S2

m |= ∃v P ∧ S iff ∃n ∈ Locs ∪ {null} ([s|v : n], h,V, L) |= (P ∧ S)

m |= ∃arr P ∧ S iff ∃k ∈ N, a ∈ N
k → (Locs ∪ {null}) (s, h, [V|arr : a], L) |= (P ∧ S)

Fig. 8. Semantics of LISF, m is (s, h,V , L), and len is as explained in text.

Let ϕ be a well-formed LISF formula containing array expression(s), and let
(s, h,V) be a structure over which we wish to evaluate ϕ. It follows from the
definition of the semantics (Figure 8) that in order to determine if (s, h,V , []) |= ϕ,
we must evaluate all array expressions in ϕ in general. In order to avoid indexing
errors when evaluating array expressions, certain restrictions must be imposed on
the mapping V , and hence on the structure (s, h,V). This motivates us to define
the set of well-formed structures for a given well-formed LISF formula ϕ. For
notational convenience, we will denote this set by wfsϕ. Intuitively, a structure
(s, h,V) in wfsϕ avoids indexing errors during the evaluation of array expressions in
ϕ by ensuring that whenever function E is called, the corresponding preconditions
(see Figure 7) are satisfied, and no out-of-bounds exception occurs. Formally, a
structure (s, h,V) is said to be in wfsϕ if s and h are a stack and heap, in the usual
sense of semantics of separation logic, and the mapping V satisfies the following
conditions.

(1) Let ae be a maximally indexed array expression in ϕ, i.e. an array expression
that is not a sub-expression of another array expression in ϕ. Let the under-
lying array variable in ae be array var, and let ae be of the form array var
indexed by a sequence of k (iterated and fixed) indices. Then the dimension of
V(array var) equals k.

(2) The lengths of sequences accessed by array expressions in ϕ are such that
no out-of-bounds exception occurs when function E is used to evaluate these
expressions in the definition of the semantics (Figure 8). Specifically:

(a) If e[c] or e[$c] is an array expression in ϕ, every sequence to which e eval-
uates to during evaluation of ϕ is of length at least c+ 1.

(b) Let ψ be a sub-formula nested within n (≥ 1) RP (or RS) predicates in ϕ.
In general, ψ may refer to one or more array expressions. For every pair of
array expressions e1 and e2 in ψ that have at least n iterated indices, the
sequences accessed by the nth iterated index of e1 and e2 always have the
same length.

(3) All sequences mapped to array variables by V have non-zero lengths.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

16 · Bhargav S. Gulavani et al.

Let ϕ be a well-formed LISF formula, (s, h, V) be a structure in wfsϕ, and L be
a list of r integers, where r ≥ NumIterInd(ae) for all array expressions ae in ϕ. From
the semantics of (s, h,V , L) |= ϕ given in Figure 8, we find that for all constructs
borrowed from standard separation logic, the semantics remains unchanged. The
semantics of predicates RS and RP, which are novel to LISF , however, deserve
some explanation. Consider a RP(P, l, u) (or RS(S, l, u)) predicate nested inside
n− 1 other RP(or RS) predicates. The length of the sequence accessed by the nth

iterated index of every array expression in P (or S) is guaranteed to be identical
by the requirement of well-formed structures of a formula. Given a list L of n− 1
index values corresponding to the evaluation context arising from the outer RP(or
RS) predicates, function len(V , L, P) (or len(V , L, S)) determines the length, say
k+1, of the sequence accessed by the nth iterated index of an array expression in P
(or S). The semantics of RP(P, l, u) then requires that P holds for each array index
i ranging from l to k − 1 − u. Similarly, the semantics of RS(S, l, u) requires that
S holds over a sub-heap hi of h for each array index i ranging from l to k − 1− u,
with the additional constraint that the hi’s are also pair-wise disjoint. Note also
that the definition of wff ensures that whenever E(ae, L, s,V) is invoked in the
definition of the semantics, then ae is a maximally indexed array expression.

4.3 Comparison with summaries generated by separation logic based automated shape
analysis tools

In LISF we represent the values of variables in successive instances of a repeated
formula by using an array instead of hiding them under an existential quantifier
of a recursive predicate. This enables us to relate the data-structures before and
after the execution of a loop. This is crucial for generating succinct specifications.
In the following, we illustrate how more succinct specifications can be generated
using LISF compared to those generated using recursive predicates by recent shape
analysis algorithms [Distefano et al. 2006; Berdine et al. 2007; Calcagno et al. 2007;
2009].
Consider a procedure traverse containing the loop SL: while(v! = null) v :=

v.next , that traverses a singly linked list. Let each element of the list have two fields
named Next and D. A summary in LISF is [v = X[0]∧RS(X[·] 7→ (Next : X[·+1]; D :
Y[·]) ∧ X[$0] = null] traverse(v) [v = X[$0] ∧ RS(X[·] 7→ (Next : X[· + 1]; D :
Y[·]) ∧ X[$0] = null]. This summary states that traverse neither modifies the
elements of the linked list nor the relative links between them. The shape analysis
algorithms presented in [Distefano et al. 2006; Berdine et al. 2007; Calcagno et al.
2007; 2009] would generate the summary [list(v, next)] traverse(v) [list(v, next)],
using the recursive predicate list(v, next). This summary does not indicate whether
the input list or the contents of any of its elements are modified.
Consider the composite statement traverse(v); check(v), where the procedure

check requires, as precondition, a linked list pointed to by v with the D field of each
element pointing to h. This precondition cannot be expressed using the list recursive
predicate. Let clist(v, next, h) be the recursive predicate that captures the desired
precondition. The above two statements cannot be composed unless we have a
summary for traverse that describes the data structure using the clist predicate.
This is because the postcondition of [list(v, next)] traverse(v) [list(v, next)] does
not indicate whether the content of any element of the list is modified by traverse.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 17

Thus, either (i) we need to generate summaries for traverse using all possible re-
cursive predicates (e.g. list, clist, dll) that may be required in some part of the code,
leading to an explosion of summaries, or (ii) we need to reanalyze traverse with
new recursive predicates, making the analysis non-modular. Note that even if we
use the generic predicates defined in [Berdine et al. 2007] to capture both the pred-
icates list and clist in a common framework, the summary for traverse computed
using such predicates does not assert that none of the list elements are modified
by traverse. Hence it is not possible to generate a succinct set of summaries for
traverse that can be used in modular analysis using the recursive predicates and
shape analysis algorithms presented in [Distefano et al. 2006; Berdine et al. 2007;
Calcagno et al. 2007; 2009].
In LISF , the precondition for check can be expressed as v = X[0] ∧ RS(X[·] 7→

(Next : X[· + 1]; D : h) ∧ X[$0] = null. The summaries for traverse and check

can indeed be composed using strong bi-abduction. For this composition, both the
formulas ϕpre and ϕpost can be set to RP(Y[·] = h). Thus, we can use the LISF
summary for traverse in any context that requires the postcondition of traverse
to satisfy some properties in addition to the singly linked list structure, thereby
facilitating modular analysis. Note that relational summaries can be expressed
using higher order recursive predicates other than LISF , as illustrated in [Biering
et al. 2005]. However, we do not know of any other automated tool that generates
relational summaries using higher order recursive predicates.

5. INDUCTIVE COMPOSITION

The rules introduced in Figure 4 are valid even with LISF extension of separa-
tion logic. The set of auxiliary variables, Aux, includes the array variables in this
extension. For clarity, we adopt the following convention in the remainder of the
paper: (i) unless explicitly stated, all formulas in LISF are quantifier free, (ii)
Hoare triples are always expressed as [ϕ] S [∃X. ϕ̂], (iii) free(ϕ) = V ∪ W and
free(ϕ̂) = V ∪W ∪ X , where V denotes the set of logical variables representing
values of program variables, and W,X are sets of auxiliary variables, including ar-
ray variables1. Thus W is the set of free auxiliary variables occurring in ϕ and in
∃X. ϕ̂.

5.1 Inference rule Induct

Let [ϕ] S [∃X. ϕ̂] be a Hoare triple. We wish to compute a strong summary for
S+. In Figure 5 and Example 2 we have presented the intuition of acceleration that
computes summaries of the form [ϕ] S+ [ϕ̂] from the summary of S. We formalize
this intuition in the inference rule Induct as shown in Figure 9. As in the previous
Section, we use ϕi (resp. ϕ̂i) to denote ϕ (resp. ϕ̂) with every free auxiliary variable
w ∈ W replaced by an indexed variable wi. Let ϕ0

pre, ϕ
0
post be formulas such

that free(ϕ0
pre) and free(ϕ0

post) are disjoint from mod(S) and (∃X. ϕ̂0) ∗ ϕ0
pre ⇔

ϕ0
post ∗ ϕ

1. Note that the premises 4, 5, and 6 of Induct imply that free(ϕipre)

and free(ϕipost) are disjoint from mod(S), and that (∃X. ϕ̂i) ∗ ϕipre ⇔ ϕipost ∗ ϕ
i+1

1By restricting preconditions to quantifier free formulas we do not sacrifice expressiveness. Indeed,
the Hoare triple [∃Y. ψ(V,W, Y)] S [∃X. ψ̂(V,W,X)] is valid iff [ψ(V,W, Y)] S [∃X. ψ̂(V,W,X)]
is valid, where W,X, Y are disjoint sets of auxiliary variables (see defn. 124 in [Cousot 1990]).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

18 · Bhargav S. Gulavani et al.

Induct

Given

1. [ϕ] S [∃X. ϕ̂]

2. ϕ̂0 : ϕ̂ with every w ∈W replaced by w0

3. ϕ1 : ϕ with every w ∈W replaced by w1

4. free(ϕ0
pre) ∩mod(S) = ∅

5. free(ϕ0
post) ∩mod(S) = ∅

6. (∃X. ϕ̂0) ∗ ϕ0

pre ⇔ ϕ0

post ∗ ϕ
1

7. α : 〈x→ X[0]〉, for each x in W

8. β : 〈x→ X[$0]〉, for each x in W

9. Function Iter as explained in following text

Infer

[ϕα ∗ Iter(ϕ0
pre)] S+ [∃X. Iter(ϕ0

post) ∗ ϕ̂β]

Inductq

Given

1. [ϕ] S [∃X. ϕ̂]

2. ϕ̂0 : ϕ̂ with every w ∈ W and x ∈ X

replaced by w0 and x1, resp.

3. ϕ1 : ϕ with every w ∈ W replaced by w1

4. free(ϕ0
pre) ∩mod(S) = ∅

5. free(ϕ0
post) ∩mod(S) = ∅

6. (∃X1. ϕ̂
0) ∗ ϕ0

pre ⇔ ∃Z1. (ϕ
0

post ∗ ϕ
1)

7. Z1 ⊆ W1 ∪X1 ⊆ Aux and |Z1| = r

8. free(ϕ0
pre) ∩ Z0 = ∅

9. α : 〈x→ X[0]〉, for each x in W \ Z

10. β, Iter, same as described in Induct

Infer

[ϕα ∗ Iter(ϕ0
pre)]

S+

[∃X,Z1, . . . ,Zr . Iter(ϕ0
post) ∗ ϕ̂β]

Fig. 9. Inference rule for acceleration Induct and Inductq

Iter(ψ)

1: ψren ← warp(ψ)

2: return RP(ψp
ren) ∧ RS(ψp

ren)

warp(ψ)

1: Replace every indexed variable x0 ∈ W (resp.

x1 ∈ W) by X[·] (resp. X[·+ 1])

2: if ψp and ψs do not have any newly introduced

array variables in common then

3: return ψp ∧ pass2(ψs)

4: else

5: return ψ

pass2(ψ)

match ψs with

| emp → true ∧ emp

| e1 7→ e2 → e1 6= null ∧ e1 7→ e2

| s1 ∗ s2 → pass2(s1) ∗ pass2(s2)

| RS(s, l, u)→ let ϕ← pass2(s) in

RP(ϕp, l, u) ∧ RS(ϕs, l, u)

Fig. 10. Definition of Iter(ψ)

for any i. Given these conditions, the Compose rule can be iteratively applied to
obtain an accelerated summary similar to that in (4.1).
We use α, β, and Iter to express ϕ0, ϕ̂k and the iterated separating conjunction

of accelerated summary (4.1) in LISF . The renaming α replaces every variable
x ∈W in ϕ by X[0]. Similarly β replaces every x ∈W in ϕ̂ by X[$0].
The function Iter in premise 9 takes an LISF formula ψ, computes an interme-

diate formula ψren, and returns RP(ψpren) ∧ RS(ψsren) as defined in Figure 10. The
formula ψren is computed by applying a function called warp to ψ. warp makes at
most two passes over the syntax tree of ψ in a bottom-up manner. In the first pass it
renames every indexed auxiliary variable x0 (resp. x1) by a fresh array with iterated
index X[·] (resp. X[·+1]). If ψpren and ψsren do not have any common array variable,
it performs a second pass (formalized in algorithm pass2, Figure 10) in which every
sub-formula e1 7→ e2 in ψsren is replaced by e1 6= null ∧ e1 7→ e2. All resulting sub-
formulas of the form RS(P ∧ S, l, u) are finally replaced by RP(P, l, u) ∧ RS(S, l, u).
This ensures that ψpren and ψsren always have at least one common array variable,
unless ψs is emp. The length of these common arrays determines the implicit upper
bound in the universal quantifier of RPand RSpredicates in Iter(ψ).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 19

Example 3. Recall Example 2 where two instances of the summary [v = x ∧
x 7→ y] S [v = y∧ x 7→ y] are composed using ϕ0

pre : (x1 = y0∧ x1 7→ y1) and
ϕ0
post : (x1 = y0 ∧ x0 7→ y0). For this example, Iter(ϕ0

pre) generates the LISF
formula RP(X[· + 1] = Y[·]) ∧ RS(X[·+ 1] 7→ Y[·+ 1]), and Iter(ϕ0

post) generates the
formula RP(X[· + 1] = Y[·]) ∧ RS(X[·] 7→ Y[·]). In this representation, the arrays
X and Y represent the sequences x0, . . . , xk and y0, . . . , yk, respectively. The
renamed formulas ϕα and ϕ̂β correspond to the formulas v = X[0]∧X[0] 7→ Y[0] and
v = Y[$0] ∧ X[$0] 7→ Y[$0] respectively. The application of Induct thus generates
the summary: [v = X[0]∧RP(X[·+1] = Y[·])∧X[0] 7→ Y[0]∗RS(X[·+1] 7→ Y[·+1])] S+

[v = Y[$0] ∧ RP(X[·+ 1] = Y[·]) ∧ RS(X[·] 7→ Y[·]) ∗ X[$0] 7→ Y[$0]].

5.2 Inference rule Inductq

In general, the strong bi-abduction of ∃X. ϕ̂0 and ϕ1 in premise 6 may require vari-
ables to be existentially quantified on the right hand side. The Induct rule needs
to be slightly modified in this case. However, the basic intuition of acceleration
remains the same, as is illustrated in the Figure 5. The modified rule Inductq is
presented in Figure 9. We use a refined notation in Inductq where ϕi (resp. ϕ̂i)
denotes ϕ (resp. ϕ̂) with every variable w ∈ W replaced by an indexed variable wi
and every variable x ∈ X replaced by xi+1. Let the strong bi-abduction between
ϕ̂0 and ϕ1 be (∃X1. ϕ̂

0) ∗ ϕ0
pre ⇔ ∃Z1. (ϕ

0
post ∗ ϕ

1), where Z1 ⊆W1 ∪X1 is the set
of auxiliary variables. If the additional side-condition free(ϕ0

pre) ∩ Z0 = ∅ holds,
we can infer the accelerated summary in the conclusion of Inductq.

Let Zi be the set of variables {z1i , . . . , z
r
i }. The values of variables in Z0 =

{z10 , . . . z
r
0}, . . . , Zk = {z1k, . . . z

r
k} are represented as elements of r arrays Z1= {z10 ,

. . . , z1k}, . . ., Zr= {zr0, . . . , z
r
k} in the postcondition of conclusion of Inductq. These

two representations are analogous to representing elements of the same matrix
row-wise and column-wise. The variables representing the values of variables in
Z1∪. . .∪Zk need to be existentially quantified in the postcondition of the conclusion
of Inductq because of the existential quantification of Z1 in strong bi-abduction.
Hence we existentially quantify the array variables Z1, . . . ,Zr in the conclusion of
Inductq.

By existentially quantifying the array variables Z1, . . . ,Zr in the conclusion of
Inductq, we also quantify the array indices representing values of the variables in
Z0, which need not be quantified. Although this is sound, we lose the correspon-
dance between the Z0 variables in pre and postcondition of the conclusion. We can
establish this correspondence by adding extra equalities z0 = z, for every variable
z0 ∈ Z0, to ϕ

0
post in the conclusion.

Lemma 5.1. Inference rules Induct and Inductq are sound

Proof. We use induction on number of compositions to prove Inductq. Com-

pose proves the base case, [ϕ0 ∗ ϕ0
pre] S; S [∃X2, Z1. (ϕ

0
post ∗ ϕ̂

1)]. The induction
case can be proved as follows:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

20 · Bhargav S. Gulavani et al.

1. [ϕi] S [∃Xi+1, ϕ̂
i] Premise 1, Aux. variable renaming

2. [ϕ0 ∗ ⊙k−1

j=0
ϕj

pre] S
k+1 [∃Xk+1, Z1, . . . , Zk. ⊙

k−1

i=0
ϕi

post ∗ ϕ̂
k] Induction case assumption

3. (∃Xk+1. ϕ̂
k) ∗ ϕk

pre ⇔ ∃Zk+1. (ϕ
k
post ∗ ϕ

k+1) Premise 6

4. (∃Xk+1, Z1, . . . , Zk. ⊙
k−1

i=0
ϕi

post ∗ ϕ̂
k) ∗ ϕk

pre

m ⊙k−1

i=0
ϕi

postdepends on W0, . . . ,Wk

(∃Z1, . . . , Zk. ⊙
k−1

i=0
ϕi

post ∗ (∃Xk+1. ϕ̂
k)) ∗ ϕk

pre and Z1, . . . , Zk, it is indep. of Xk+1

m By premise 8, Zi ∩ free(ϕ
k
pre) = ∅

(∃Z1, . . . , Zk. ⊙
k−1

i=0
ϕi

post ∗ (∃Xk+1. ϕ̂
k) ∗ ϕk

pre) for any i ∈ {1..k}
m From 3

(∃Z1, . . . , Zk. ⊙
k−1

i=0
ϕi

post ∗ ∃Zk+1. (ϕ
k
post ∗ ϕ

k+1))

m ⊙k−1

i=0
ϕi

postis independent of Zk+1

(∃Z1, . . . , Zk+1. ⊙
k
i=0 ϕ

i
post ∗ ϕ

k+1)

5. [ϕk+1] S [∃Xk+2, ϕ̂
k+1] Premise 1, Aux. var. renaming

6. [ϕ0 ∗ ⊙k−1

i=0
ϕi

pre ∗ ϕ
k
pre] Apply Compose to 2 and 5, using

Sk+2 strong bi-abduction between first

[(∃Z1, . . . , Zk+1. ⊙
k
i=0 ϕ

i
post ∗ (∃Xk+2, ϕ̂

k+1))] and last formulas of 4

7. [ϕ0 ∗ ⊙k
i=0ϕ

i
pre]

Sk+2 from 6

[∃Xk+2, Z1, . . . , Zk+1. ⊙
k
i=0 ϕ

i
post ∗ ϕ̂

k+1] Xk+2 is disjoint from Z1 ∪ . . . ∪ Zk

The Hoare triple in 7 above is expressed in the conclusion of Inductq as [ϕα ∗
Iter(ϕ0

pre)] S
+ [∃X,Z1, . . . ,Zr. Iter(ϕ0

post)∗ϕ̂β]. The formulas⊙ki=0ϕ
i
pre and⊙ki=0ϕ

i
post

are expressed in LISF as Iter(ϕipre) and Iter(ϕipost), respectively. The parameter k
in the pre and postcondition of 7 is implicitly is hidden in the semantics of RS and
RP predicates output by Iter. Every free array variable in Iter(ϕipost) is guaranteed

to be free in Iter(ϕipre) by the strong bi-abduction in the premise of Inductq. This
common array variable ensures the same parameter k in the pre and postcondition
of the resulting Hoare triple. However, it is possible that all the array variables in
Iter(ϕipost) are existentially quantified and hence Iter(ϕipre) and Iter(ϕipost) do not
share an array variable. This results in an over-approximate postcondition. We
can obtain a stronger postcondition in this case by adding a dummy equality e = e
in the RP predicate output by Iter(ϕipost), where e is an expression from Iter(ϕipre)

involving an array variable not present in Iter(ϕipost).

5.3 Inference rule InductSymm

The inference rule InductSymm enables us to compute summaries that capture
the effect of executing the statement S zero or more times. This is in contrast with
the summaries inferred by Inductq which capture the effect of executing S one or
more times. Additionally, InductSymm also enables us to eliminate some variables
from the pre and postcondition of the inferred summary, thus simplifying it.
If, in equation (4.1) ϕipre (resp. ϕipost) is same as ϕ0 (resp. ϕ̂k) modulo variable

renaming, then we can infer the following summary: [(⊙ki=0 ϕ
i)]Sk+1[(⊙ki=0 ϕ̂

i)].
Recall the accelerated summary inferred in Example 2, which is depicted in Figure
5-c. In this example the shape of ϕ0 (resp. ϕ̂0) and ϕipre (resp. ϕ

i
post) are the same.

Hence we can re-write the accelerated summary as follows. [v = x0 ∧ ⊙ki=0(xi 7→
yi∧ yi = xi+1)] S

k+1 [v = xk+1∧⊙ki=0(xi 7→ yi∧ yi = xi+1)]. This is depicted
in Figure 12-a.
The equalities xi+1 = yi, for each i, in the pre and postcondition identify the

folding points [Guo et al. 2007] of the repeated data-structure in the heap. We can
replace yi by xi+1 from both the pre and postcondition, and thus eliminate all the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 21

InductSymm

Given

1. [ϕ] S [∃X. ϕ̂], |X| = t

2. ϕ̂0 : ϕ̂ with every w ∈W and x ∈ X replaced by w0 and x1, resp.

3. ϕi : ϕ with every w ∈ W replaced by wi, for i ∈ {0, 1}

4. (∃X1. ϕ̂
0) ∗ ϕ1 is satisfiable

5. τi : 〈mod(S) ∩ free(∃X. ϕ̂)→ free(ϕi) \mod(S)〉, for i ∈ {0, 1},

s.t. Pure part of ϕi implies (Eq τi)

6. γ0 : 〈mod(S) ∩ free(ϕ)→ free(∃X1.ϕ̂
0) \mod(S)〉, s.t. Pure part of ∃X1.ϕ̂

0 implies (Eq γ0)

7. α : 〈y0 → Y[0]〉, for each y in W

8. β : 〈y1 → Y[$0]〉, for each y in W

9. Iter same as described in Induct

10. δ10 : 〈W0 →֒W1〉, s.t. a0 → b1 ∈ δ
1
0 iff (Eq γ0)τ1 ⇒ a0 = b1, and a0 /∈ range(τ0)

Infer

[(Eq τ0)α ∧ Iter(ϕ0τ0δ
1
0 ∧ (Eq γ0)τ1δ

1
0)]

S⋆

[∃X1,. . . ,Xt. (Eq τ1)β ∧ Iter(ϕ̂0γ0δ
1
0 ∧ (Eq γ0)τ1δ

1
0)]

Fig. 11. Variant of Inductq, InductSymm

(b)

...

...

(a)

...

...

y1

x1

x2

x1

x1

x0

x1

x0

Sk+1

x2

x1

xk

xk

ϕi : xi 7→ xi+1v = x0

v = xk+1 ϕi : xi 7→ xi+1

xk+1

xk+1y0

x0

y0

x0

Sk+1

y1

x1

yk

xk

yk

xk

ϕi : yi = xi+1 ∧ xi 7→ yiv = x0

ϕ̂i : yi = xi+1 ∧ xi 7→ yiv = xk+1

Fig. 12. (a) Alternate representation of summary in Figure 5-c, and (b) Summary resulting from
application of InductSymm. Each box represents a heap cell, its contents represents the value of
next field. A circled variable above a box denotes the name of the cell.

yi’s. We obtain the following simplified summary from this renaming (depicted in
Figure 12-b). [v = x0 ∧ ⊙ki=0 xi 7→ xi+1] S

k+1 [v = xk+1 ∧ ⊙ki=0 xi 7→ xi+1].
The corresponding summary in LISF is [v = X[0] ∧ RS(X[·] 7→ X[· + 1])] S⋆ [v =
X[$0]∧RS(X[·] 7→ X[·+ 1])]. In this specification, if the length of X is λ+ 1 (where
λ ≥ 0), then it summarizes λ iterations of S. Hence it is a summary for zero or
more iterations of S, denoted as [ϕ] S⋆ [ϕ̂]. The notation [ϕ] S⋆ [ϕ̂] means that for
every initial state satisfying ϕ, there exists a k ≥ 0 such that the state resulting
after k executions of S satisfies ϕ̂. The above ideas are captured formally by the
rule InductSymm in Figure 11.
For a renaming γ, let (Eq γ) denote the conjunction of all the equalities a = b such

that γ renames a to b. The premises 5 and 6 of InductSymm in Figure 11 imply
ϕ0 ≡ Eq τ0∧ϕ0τ0 and ∃X1. ϕ̂

0 ≡ ∃X1. (ϕ̂
0γ0∧Eq γ0), respectively. These premises

also imply that γ0 and τ1 have same domains and their ranges are independent of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

22 · Bhargav S. Gulavani et al.

mod(S) variables, hence (Eq γ0)τ1 is independent of mod(S). This fact implies that

(Eq γ0)∧ (Eq γ0)τ1 ⇔ (Eq τ1)∧ (Eq γ0)τ1. Hence, [ψ
0] S [∃X1. ψ̂

0] is a valid Hoare

triple, where ψ0 ≡ Eq τ0 ∧ ϕ0τ0 ∧ (Eq γ0)τ1 and ψ̂0 ≡ Eq τ1 ∧ ϕ̂0γ0 ∧ (Eq γ0)τ1.

Let ψi (resp. ψ̂i) be same as ψ0 (resp. ψ̂0) except that the variable indices 0 and
1 are replaced by indices i and i+ 1, respectively. By the law of auxiliary variable
renaming, it follows that for any i, [ψi] S [∃Xi+1. ψ̂

i] is a valid Hoare triple. Let

us compose the Hoare triples [ψ0] S [∃X1. ψ̂
0] and [ψ1] S [∃X2. ψ̂

1]. From the

definitions of ψ̂0 and ψ1, we can infer the following strong bi-abduction between
∃X1. ψ̂

0 and ψ1.

(∃X1. ψ̂
0) ∗ ϕ1τ1 ∧ (Eq γ1)τ2︸ ︷︷ ︸

ϕ0
pre

⇔ ∃X1. (ϕ̂
0γ0 ∧ (Eq γ0)τ1︸ ︷︷ ︸

ϕ0
post

∗ ψ1) (5.2)

An interesting feature of this strong bi-abduction is that ϕ0
pre ∧ (Eq τ1) (resp.

ϕ0
post ∧ (Eq τ1)) is same as ψ1 (resp. ψ̂0). Thus the shape of ϕ0

pre (resp. ϕ0
post) is

same as that of ψ0 (resp. ψ̂0). Thus from the premises 1-9, by inductively applying

Compose to the sequence of Hoare triples, [ψ0] S [∃X1. ψ̂
0], [ψ1] S [∃X2. ψ̂

1], . . .,

[ψk] S [∃Xk+1. ψ̂
k], we obtain the following accelerated summary.

[(Eq τ0) ∧ ⊙ki=0ϕ
iτi ∧ (Eq γi)τi+1] S

∗ [(Eq τk+1) ∧ ⊙ki=0∃Xi+1. ϕ̂
iγi ∧ (Eq γi)τi+1]

(5.3)
InductSymm uses the premise 10 to existentially quantify some auxiliary vari-

ables from the summary [ψi] S [∃Xi+1. ψ̂
i] and thus simplify the final accelerated

summary computed above. For this purpose we define a renaming δ10 from vari-
ables in W0 to variables in W1. It is computed from the equalities in (Eq γ0)τ1.
Using the rule for existentially quantifying auxiliary variables, it follows that each
of [ψ0δ10] S [∃X1. ψ̂

0δ10], [ψ
1δ21] S [∃X2. ψ̂

1δ21], . . ., [ψ
kδk+1
k] S [∃Xk+1. ψ̂

kδk+1
k] is

a valid Hoare triple. If a0 → b1 ∈ δ10 then we can eliminate all occurrences of ai’s
by applying the renaming δ10 and δ21 to both sides of the the strong bi-abduction in
(5.2). The renaming δ10 has a property that if b1 ∈ range(δ10) then b1 ∈ range(τ1)
which in turn implies b1 /∈ dom(δ21). This ensures that (a) (Eq τ1)δ

1
0δ

2
1 ≡ (Eq τ1), (b)

(ϕ̂0γ0)δ
1
0δ

2
1 ≡ (ϕ̂0γ0)δ

1
0 , and (c) (Eq γ0)τ1δ

1
0δ

2
1 ≡ (Eq γ0)τ1δ

1
0 . Hence ψ̂

0δ10δ
2
1 ≡ ψ̂0δ10 .

Using the renamings δ10 and δ21 we can therefore infer the following strong bi-

abduction between ∃X1. ψ̂
0δ10 and ψ1δ21 .

(∃X1. ψ̂
0δ10) ∗ ϕ1τ1δ

2
1 ∧ (Eq γ1)τ2δ

2
1︸ ︷︷ ︸

ϕ0
pre

⇔ ∃X1. (ϕ̂
0γ0δ

1
0 ∧ (Eq γ0)τ1δ

1
0︸ ︷︷ ︸

ϕ0
post

∗ ψ1δ21) (5.4)

We require δ10 to satisfy the constraint a0 ∈ dom(δ10) ⇒ a0 /∈ range(τ0) so that

ψ̂0δ10δ
2
1 is equivalent to ψ̂0δ10 and it does not have variables with all indices 0, 1 and

2, otherwise its repetition cannot be expressed by LISF predicates RS and RP.

By inductive application of the compose rule to the sequence of Hoare triples,
[ψ0δ10] S [∃X1. ψ̂

0δ10], [ψ
1δ21] S [∃X2. ψ̂

1δ21], . . ., [ψ
kδk+1
k] S [∃Xk+1. ψ̂

kδk+1
k], we

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 23

get the following accelerated Hoare triple.

[(Eq τ0) ∧ ⊙ki=0 ϕ
iτiδ

i+1
i ∧ (Eq γi)τi+1δ

i+1
i]

S∗

[(Eq τk+1 ∧ ⊙ki=0 ∃Xi+1. ϕ̂
iγiδ

i+1
i ∧ (Eq γi)τi+1δ

i+1
i]

(5.5)

The conclusion of InductSymm uses the renaming α, β and the function Iter
(which are same as those defined in Induct) to represent the above Hoare triple
in LISF .
Example 3 uses the inference rule Induct to accelerate the summary [v = x ∧
x 7→ y] S [v = y∧ x 7→ y]. In the following example we apply the inference rule
InductSymm to accelerate the same summary.

Example 4. Recall the acceleration of summary [v = x0 ∧ x0 7→ y0] S [v =
y0 ∧ x0 7→ y0] in Example 3. For this example we can obtain τi and γ0 as
〈v → xi〉 and 〈v → y0〉, respectively. These renamings satisfy the premises 5 and
6 of InductSymm. With these renamings we find that (Eq γ0)τ1 is equivalent to
y0 = x1. The expressions ϕ0τ0 and ϕ̂0γ0 are both equivalent to x0 7→ y0. Hence
we can infer the valid Hoare triple [ψ0] S [∃X1. ψ̂

0], where ψ0 and ∃X1. ψ̂
0 are

v = x0 ∧ x0 7→ y0 ∧ y0 = x1, and v = x1 ∧ x0 7→ y0 ∧ y0 = x1, respectively.
The renaming 〈 y0 → x1〉 satisfies the requirements of δ10 in the premise 10.

Hence we find that both (ϕ0τ0δ
1
0 ∧ (Eq γ0)τ1δ

1
0) and (ϕ̂0γ0δ

1
0 ∧ (Eq γ0)τ1δ

1
0) are

equivalent to x0 7→ x1.
For composing the two triples [ψ0δ10] S [∃X1. ψ̂

0δ10] and [ψ1δ21] S [∃X2. ψ̂
1δ21],

the following is a valid strong bi-abduction.
(v = x1 ∧ x0 7→ x1) ∗ (x1 7→ x2) ⇔ (v = x1 ∧ x0 7→ x1) ∗ (x1 7→ x2)
Thus the premises of InductSymm guarantee the validity of the following accel-

erated summary [v = x0 ∧ ⊙ki=0 xi 7→ xi+1] S
⋆ [v = xk+1 ∧ ⊙ki=0 xi 7→ xi+1].

Hence by application of InductSymm we obtain the following LISF summary
[v = X[0] ∧ RS(X[·] 7→ X[·+ 1])] S⋆ [v = X[$0] ∧ RS(X[·] 7→ X[·+ 1])]

5.4 Discussion.

The summary inferred by InductSymm captures the effect of executing the state-
ment S zero or more times. This is in contrast with the summaries inferred by
Inductq which capture the effect of executing S one or more times. Summaries
that capture the effect of executing S zero or more times enable us to compute
succinct specifications, and in some cases complete specifications which could not
have been possible otherwise.
As an illustration, consider a program with a while loop nested within an outer

while loop. The outer while loop iterates over a single linked list pointed to by h,
whereas the inner while loop deletes the linked list pointed to by the data field of
each element of the outer linked list. Using the rule Inductq, the inner while loop
is summarized by two Hoare triples one summarizing zero iterations of the loop
body (corresponding to zero length inner linked list), and the other summarizing
one or more iterations of the loop body (corresponding to non-zero length inner
linked list). By one more application of Inductq we can obtain a summary for the
outer while loop whose precondition either expresses the fact that all outer linked
list elements point to zero length inner linked lists or the fact that all outer linked

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

24 · Bhargav S. Gulavani et al.

list elements point to non-zero length inner linked lists. However, the resulting
summary after two applications of Inductq is not a complete specification for the
program.

In contrast, InductSymm enables us to compute a single summary for the inner
while loop. It captures the deletions of inner linked lists of any length (zero or
more). By one more application of InductSymm we can obtain a summary for the
outer while loop whose precondition expresses the fact that data field of each outer
linked list element points to a linked list of length zero or more. Notice that this is
a complete specification for the program.

Note that if any Hoare triple in the premise of inference rules in Figure 4, 9, and
11 is partial (i.e., termination is not guaranteed starting from a state satisfying
precondition), then the Hoare triple in the conclusion will also be partial.

Lemma 5.2. The rule InductSymm is sound.

5.5 Generating summaries using combination of rules

The Compose and Exit rules can be used to obtain summaries of loop free code
fragments and trivial summaries of loops, respectively. Given a loop body summary,
the Induct, Inductq and InductSymm rules generate an accelerated summary
for use in the While rule. Any pair of accelerated summaries can also be composed
to obtain new accelerated summaries.

We now present a procedure to enumerate all possible accelerated summaries
for the while loop while (B) S. This enumeration process may not terminate in
general. However, when it does terminate, it generates a complete specification for
the while loop. Let Ŝ be the set of summaries for the loop body assert(B);S.
For the summaries s1 and s2, let s+1 denote the accelerated summary obtained
by applying one of the Induct, Inductq, or InductSymm rules to s1, and let
s1 ◦ s2 denote the summary obtained by applying the Compose rule to s1 and s2.
Let S̄ be the set of summaries defined as the least fix-point of the following set
transformer: F (S) = {s+ | s ∈ S}∪{s1 ◦s2 | s1, s2 ∈ S}∪Ŝ. The set S̄ contains all
the accelerated summaries – a complete functional specification for the loop while

(B) S (assuming Ŝ is a complete set of summaries for the loop body assert(B);S).
This set can be computed in an iterative fashion, by repeated application of F to
the emptyset. However, this iterative fix-point computation may not terminate.
Hence, in practice we use heuristics to guide the iterative fix-point computation in
order to generate useful summaries. For instance, in practice we could limit the
number of applications of F to a small fixed constant to quickly generate a useful
set of summaries. As another alternative, heuristics used for acceleration in [Bardin
et al. 2005] can be adapted to guide the application of acceleration and composition
rules for synthesizing useful summaries.

Given procedure summaries, non-recursive procedure calls can be analyzed by
the Compose rule, as in [Calcagno et al. 2009]. The Inductq rule can be used
to compute accelerated summaries of tail recursive procedures having at most one
self-recursive call.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 25

Join

[x = 0 ∧ ϕ1] assert(e); S1 [ϕ̂1], [x 7→ (f : y) ∗ ϕ2] assert(!e); S2 [ϕ̂2],

ϕ̂1µ⇒ ϕ̂2, ϕ1µ⇔ ϕ2, A is a fresh auxiliary variable, mod(S1) = mod(S2)

[x = A[0] ∧A[$0] = null ∧ RP(A[·+ 1] = null) ∧ RS(A[·] 7→ (f : y)) ∗ ϕ2] if(e, S1, S2) [ϕ̂2]

Fig. 13. The rule Join.

5.6 Generating conscise summaries using the Join rule

In order to avoid explosion of summaries for programs with many branching state-
ments, we present the rule Join. It facilitates merging the summaries for two
branches of if-then-else statement into a single summary. The Join rule is
presented in Figure 13. Consider two summaries [x = 0 ∧ ϕ1] assert(e); S1 [ϕ̂1],
and [x 7→ (f : y) ∗ ϕ2] assert(!e); S2 [ϕ̂2] of two branches of the statement if

(e, S1, S2) (first two premises of Join). If ϕ̂1µ ⇒ ϕ̂2 and ϕ1µ ⇔ ϕ2, where
µ renames auxiliary variables, are valid then we can infer the concise summary
[(x = 0 ∨ x 7→ (f : y)) ∗ ϕ2] if(e, S1, S2) [ϕ̂2]. Since LISF does not permit
disjunctions, the precondition cannot be directly expressed in LISF . However, we
can encode the disjunction (x = 0∨ x 7→ (f : y)) using a fresh auxiliary array vari-
able A as: ψ ≡ x = A[0] ∧ A[$0] = null ∧ RP(A[·+ 1] = null) ∧ RS(A[·] 7→ (f : y)).
The formula ∃A ψ is equivalent to x = null (resp. x 7→ (f : y)) when the length of
A is 1 (resp. 2). It in inconsistent when the length of A is greater than 2. Hence
it is equivalent to (x = 0 ∨ x 7→ (f : y)). In the section 6 on strong bi-abduction
we show how to implement the checks ϕ1µ ⇔ ϕ2 and ϕ̂1µ ⇒ ϕ̂2 for quantifier free
LISF formulas, as required by the Join rule. Although the Join rule is valid even
if the postconditions of the two summaries in the premise have existentially quanti-
fied variables, in order to implement the checks in the premise using the algorithm
that we will present in section 6, we require them to be quantifier free formulas.
Hence we assume that ϕ1, ϕ̂1 are quantifier free formulas over free variable V,W
and ϕ2, ϕ̂2 are quantifier free formulas over free variable V, Y .

5.7 Generating summaries with recursive predicates

Instead of translating a recurrence into a LISF formula, we could as well translate
it into a recursive predicate in the conclusion of Induct, Inductq or Induct-

Symm. As an illustration, recall the summary [v = x0 ∧ ⊙ki=0 xi 7→ xi+1] S
⋆

[v = xk+1 ∧ ⊙ki=0 xi 7→ xi+1] generated by the InductSymm rule in Exam-
ple 4. The recurrence ⊙ki=0 xi 7→ xi+1 obtained above can be translated into a
recursive predicate list(x0, xk+1), where list(x0, xk+1) is the standard recursive
predicate that characterizes a linked-list segment [Distefano et al. 2006; Calcagno

et al. 2007; 2009]. It is defined recursively as follows, list(x0, xk+1)
def
= x0 7→

xk+1 ∨ ∃ x1. x0 7→ x1 ∗ list(x1, xk+1). Hence we can generate the summary
[v = x0 ∧ list(x0, xk+1)] S

⋆ [v = xk+1 ∧ list(x0, xk+1)], using recursive predi-
cates as a conclusion of InductSymm.
In general, we could either use the acceleration inference rules to generate new re-

cursive predicates, or pick a recursive predicate from the set of predefined predicates
to generate the accelerated summary. But summaries with recursive predicates do
not relate the input and output data-structures of a procedure and hence are non-
functional.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

26 · Bhargav S. Gulavani et al.

Decompose(ϕ, ψ)

1: res← {}
2: for all (M,C,L1, L2) ∈ Match(ϕs, ψs, 0)

do
3: ∆← (ϕp ∧ L1) ∗ (M ∧ C) ∗ (ψp ∧ L2)
4: if sat(∆) then
5: δ1 ←M ∧ ψp ∧ L2

6: δ2 ←M ∧ ϕp ∧ L1

7: res← res ∪ {(δ1, δ2)}
8: return res

BiAbduct(ϕ, ψ, mod1, mod2)

1: res← {}
2: for all (δ1, δ2) ∈ Decompose(ϕ,ψ) do
3: δ′1 ← RemoveVar(δ1, ϕ,mod1, V ∪W)
4: δ′2 ← RemoveVar(δ2, ψ,mod2, V ∪ Y)
5: γ ← ComputeRenaming(δ′1, Y,mod1)
6: κ1 ← δ′1γ

7: Ẑ ← dom(γ)
8: if IsIndep(κ1,mod1) and IsIndep(δ′2,mod2) then
9: θ ← ComputeRenaming(κ1, Y,X)

10: Z̃ ← Domain(θ)
11: κ′

1 ← RemoveRedundant(κ1θ,ϕ
p)

12: if IsIndep(κ′

1, X) then
13: κ2 ← RemoveRedundant(δ′2θ̄, ψ

p)

14: res← res ∪ (κ′

1, κ2, Ẑ ∪ Z̃)
15: return res

Fig. 14. Algorithm BiAbduct

No-Match

(true, emp, S1, S2) ∈ Match(S1, S2, d)

Cell-Match
k1 ≡ x 7→ (f i : xi), k2 ≡ y 7→ (f i : yi)

M ≡ x = y ∧
∧
{xi = yi}

(M,x 7→ (f i : xi), {}, {}) ∈ Match(k1, k2, d)

Recursion
S1 = S′

1 ∗ k1, S2 = S′

2 ∗ k2
(M,C, L1, L2) ∈ Match(k1, k2, d)

(N,C′, L′

1, L
′

2) ∈ Match(S′

1 ∗ L1, S
′

2 ∗ L2, d)

(M ∧N,C ∗ C′, L′

1, L
′

2) ∈ Match(S1, S2, d)

UnrollFront
k1 ≡ RS(S, l, u), k2 ≡ x 7→ (f : y),

k′ ≡ unrollf(RS(S, l, u), d)

(M,C,L1, L2) ∈ Match(k′, k2, d)

(M,C,L1 ∗ RS(S, l + 1, u), L2) ∈ Match(k1, k2, d)

UnrollBack
k1 ≡ RS(S, l, u), k2 ≡ x 7→ (f : y),

k′ ≡ unrollb(RS(S, l, u), d)

(M,C,L1, L2) ∈ Match(k′, k2, d)

(M,C,L1 ∗ RS(S, l, u+ 1), L2) ∈ Match(k1, k2, d)

MatchRs
k1 ≡ RS(S1, l, u), k2 ≡ RS(S2, l, u),

(M,C, {}, {}) ∈ Match(S1, S2, d + 1)

(M0,M1) = separate zero depth(M)

(RP(M1, l, u) ∧M0,RS(C, l, u), {}, {}) ∈ Match(k1, k2, d)

Note: unrollf (RS(S, l, u), d) and separate zero depth(M) defined in the text.

Fig. 15. Rules for procedure Match

6. A STRONG BI-ABDUCTION ALGORITHM FOR LISF

In this section we present a procedure to compute strong bi-abduction. We first
present a solution to a sub-problem of computing LISF formulas δ1 and δ2, given
two quantifier free LISF formulas ϕ and ψ, such that ϕ∗δ1 ⇔ δ2∗ψ. The algorithm
Decompose given in Figure 14 computes such δ1 and δ2 given ϕ and ψ as input.
The key step in Decompose is the Match procedure used in line 2. Match takes

two spatial formulas ϕs and ψs and an integer constant (that corresponds to nesting
depth of ϕs and ψs within RS predicate) as inputs and returns a set of four-tuples
(M,C,L1, L2) where M is a pure formula and C,L1, L2 are spatial formulas. For
each such tuple, M describes a constraint under which the heaps defined by ϕs and
ψs can be decomposed into an overlapping part defined by C and non-overlapping
parts defined by L1 and L2 respectively.
We present procedure Match as a set of inference rules in Figure 15. The rule

No-Match does not find any overlap between S1 and S2, whereas Cell-Match

matches the two input mapsto predicates. The rule Recursion recursively finds
all possible overlaps between S1 and S2.
The utility of the integer parameter d of Match is in unrolling the RS predicate

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 27

in UnrollFront and UnrollBack. The function unrollf(RS(S, l, u), d) required
by rule UnrollFront unrolls RS once from the beginning. It returns the formula
obtained by replacing every (d+1)th iterated index [·] (resp. [·+1]) in S by the fixed
index [l] (resp. [l + 1]). Similarly unrollb(RS(S, l, u), d), required by UnrollBack

unrolls RS once from the end. It returns the formula obtained by replacing every
(d + 1)th iterated index [·] (resp. [· + 1]) in S by the fixed index [$u + 1] (resp.
[$u]). The rule MatchRs finds an overlapping part of the two RS predicates. This
is the only rule that increments d. The function separate zero depth(M) used in
the premise of MatchRs returns a pair of predicates M0 and M1. M0 is the
conjunction of predicates in M with depth zero (i.e., those predicates for which dim
evaluates to 0, refer definition of the function dim in Section 4.2) and M1 is the
conjunction of remaining predicates in M . For example, separate zero depth(X[·] =
h∧ RP(A[·] = D[·]) ∧ x = y) would return (RP(A[·] = D[·]) ∧ x = y, X[·] = h). The
predicates in M1 are embedded in an RP predicate in the conclusion of MatchRs,
whereas the predicates in M0 are not embedded in an RP predicate since it would
result in a non well-formed formula. This is the main purpose of separating M0

from M1.
These inference rules can be easily implemented as a recursive algorithm. Note

that in rules UnrollFront and UnrollBack, the size of the formula L1 ∗
RS(, ,) in the conclusion may be larger than the size of formula k1 in the premise.
This may lead to non-termination of the recursion. In practice we circumvent this
problem by limiting the number of applications of these rules.

Lemma 6.1. Every (M,C,L1, L2) computed in line 2 of Decompose satisfies (i)
M ∧ ϕs ⇔ (M ∧ C) ∗ L1, and (ii) M ∧ ψs ⇔ (M ∧ C) ∗ L2.

Proof. We prove the lemma by induction on the depth of the recursion tree
of Match. Base case. Single recursive call. Rules No-Match and Cell-Match

trivially satisfy the property. Induction step. Assuming that the call to Match in
the premise of rules Recursion, UnrollFront, UnrollBack and MatchRs

satisfies properties (i) and (ii), we prove that the conclusion of these rules also
satisfies properties (i) and (ii). In the following we prove only property (i), property
(ii) can be proved symmetrically.

(1) Recursion

1. M ∧ k1 ⇔M ∧ C ∗ L1 assumption
2. N ∧ S′

1 ∗ L1 ⇔ N ∧ C′ ∗ L′

1 assumption
3. M ∧N ∧ S′

1 ∗ L1 ⇔M ∧N ∧ C′ ∗ L′

1

4. M ∧N ∧ S′

1 ∗ L1 ∗ C ⇔M ∧N ∧ C′ ∗ L′

1 ∗ C
5. M ∧N ∧ S′

1 ∗ k1 ⇔M ∧N ∧ C′ ∗ L′

1 ∗ C from 1
6. M ∧N ∧ S1 ⇔M ∧N ∧ C ∗ C′ ∗ L′

1 premise

(2) UnrollFront

1. M ∧ k′ ⇔M ∧ C ∗ L1 assumption
2. M ∧ RS(S, l, u)⇔M ∧ k′ ∗ RS(S, l+ 1, u)) Defn. of unrollf
3. M ∧ RS(S, l, u)⇔M ∧ C ∗ L1 ∗ RS(S, l+ 1, u) from 1

(3) MatchRs

1. M ∧ S1 ⇔M ∧ C assumption
2. M ∧ S2 ⇔M ∧ C assumption
3. M0 ∧ RP(M1, l, u) ∧ RS(S1, l, u)⇔M0 ∧ RP(M1, l, u) ∧ RS(C, l, u) from 1 and definition of

separate zero depth

4. M0 ∧ RP(M1, l, u) ∧ RS(S2, l, u)⇔M0 ∧ RP(M1, l, u) ∧ RS(C, l, u) from 2 and definition of
separate zero depth

Note that proof of UnrollBack is similar to that of UnrollFront.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

28 · Bhargav S. Gulavani et al.

Given a possible decomposition (M,C,L1, L2) of ϕs and ψs as computed by
Match(ϕs, ψs, 0), line 4 of Decompose checks whether this decomposition is consis-
tent with ϕp and ψp. This is done by checking the satisfiability of (ϕp ∧L1) ∗ (M ∧
C) ∗ (ψp ∧L2). If this formula is found to be satisfiable, δ1 and δ2 are computed as
M ∧ ψp ∧ L2 and M ∧ ϕp ∧ L1, respectively.

Lemma 6.2. Every (δ1,δ2) pair computed in lines 5 and 6 of Decompose satisfies
ϕ ∗ δ1 ⇔ δ2 ∗ ψ

Proof. Follows from the following equivalences
A. ϕp ∧ ϕs ∧M ⇔ (M ∧ C) ∗ (ϕp ∧ L1) from Lemma 6.1
B. ψp ∧ ψs ∧M ⇔ (M ∧ C) ∗ (ψp ∧ L2) from Lemma 6.1
C. ∆⇔ ϕ ∗ (M ∧ ψp ∧ L2) defn of ∆ and A
D. ∆⇔ ψ ∗ (M ∧ ϕp ∧ L1) defn of ∆ and B
5. ϕ ∗ (M ∧ ψp ∧ L2)⇔ ϕ ∗ δ1 defn. of δ1, line 5 of Decompose
6. ψ ∗ (M ∧ ϕp ∧ L1)⇔ ψ ∗ δ2 defn. of δ2, line 6 of Decompose

Note that theMatch procedure results in a possibly exponential number of decom-
positions, many of which could be discarded by the check on line 4 of Decompose.
One of the reasons for this exponential blow-up is the application of Recursion

rule which explores all possible overlaps between ϕs and ψs. The exponential blow-
up can be mitigated by early identification of inconsistent decompositions during
the application of the Recursion rule. This can be done by pruning the applica-
tion of Recursion rule if the partial decomposition indicated in its second premise,
(M,C,L1, L2) ∈ Match(k1, k2, 0), is inconsistent with ϕ

p∧ψp, i.e., whenM∧ϕp∧ψp

is unsatisfiable.
For a model (s, h,V) of ϕ ∗ δ1 (and also of δ2 ∗ψ), let hϕ and hδ1 be disjoint sub-

heaps that partition h, i.e., h = hϕ⊔hδ1 , such that (s, hϕ,V) |= ϕ and (s, hδ1 ,V) |=
δ1. Similarly, let hψ and hδ2 be disjoint sub-heaps that partition h, i.e., h = hψ⊔hδ2 ,
such that (s, hψ,V) |= ψ and (s, hδ2 ,V) |= δ2. It follows from Lemma 6.1 that every
pair (δ1, δ2) computed by Decompose satisfies the following minimality property.

Definition 6.1. (Minimality Property) If ϕ ∗ δ1 ⇔ δ2 ∗ ψ then δ1 and δ2 are
said to be minimal if for every model (s, h,V) of ϕ ∗ δ1 (and also of δ2 ∗ ψ), for
every hδ1 , hϕ and every hδ2 , hψ, we have hδ1 ⊆ hψ and hδ2 ⊆ hϕ.

The minimality property ensures that strong bi-abduction does not include any
more heap cells in δ1 and δ2 than those already present in ψ and ϕ, respectively.
As an example, suppose we wish to compose the two summaries [v = a] v :=

new [∃ b v 7→ b] and [v = c ∧ c 7→ d] v := v.next [v = d ∧ c 7→ d] used
for illustrations in Example 1. In order to compose these summaries we need
to compute a strong bi-abduction between ∃ b v 7→ b and v = c ∧ c 7→ d. We
use this as a running example to demonstrate our implementation of strong bi-
abduction. Let ϕ ≡ v 7→ b, ψ ≡ v = c ∧ c 7→ d. One of the two decompositions
returned by Match(ϕs, ψs) is 〈true, emp, v 7→ b, c 7→ d〉. This decomposition
indicates that v 7→ b and c 7→ d belong to disjoint portions of the heap, thus
implying v 6= c. However, since ψp asserts that v = c, this decomposition is
inconsistent with ϕp ∧ ψp. Hence it is discarded. The other decomposition is
〈v = c ∧ b = d, v 7→ b, emp, emp〉. This decomposition is consistent with
ϕp ∧ ψp, and hence (v = c ∧ b = d ∧ emp, v = c ∧ b = d ∧ emp) is returned as
a solution of Decompose(ϕ, ψ).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 29

6.1 Algorithm BiAbduct

We now present a sound algorithm for computing ϕpre, ϕpost and Z in the equiva-
lence (∃X ϕ̂)∗ϕpre ⇔ ∃Z (ϕpost ∗ϕ) in the premise of the Compose and Inductq

rules. Simplifying notation, the problem can be stated as follows: given variable
sets mod1 and mod2, and two LISF formulas ∃X ϕ(V,W,X) and ψ(V, Y) where
V,W,X, Y are disjoint sets of variables, we wish to compute ϕpre, ϕpost, and a set
Z ⊆ X∪Y such that (i) (∃X ϕ)∗ϕpre ⇔ ∃Z (ϕpost ∗ψ), (ii) free(ϕpre)∩mod1 = ∅,
and (iii) free(ϕpost) ∩mod2 = ∅.
Our strong bi-abduction algorithm, BiAbduct, is presented in Figure 14. We

first illustrate the intuition of BiAbduct using our running example: ϕ ≡ v 7→ b,
ψ ≡ v = c ∧ c 7→ d, V = {v},W = {}, X = { b}, Y = { c, d} and mod1 =
mod2 = {v}. As explained before, Decompose(ϕ, ψ) returns the decomposition
(v = c ∧ b = d ∧ emp, v = c ∧ b = d ∧ emp). Thus we have ϕ ∗ (v = c ∧ b =
d ∧ emp) ⇔ (v = c ∧ b = d ∧ emp) ∗ ψ. We explain the intuition of our strong
bi-abduction algorithm in the following three steps.

—We want ϕpre and ϕpost to be independent mod1 and mod2, respectively. To
do this we use the equalities involving mod1 variables in ϕ (respectively, mod2
variables in ψ) to eliminate mod1 (respectively, mod2) variables from ϕpre (re-
spectively, ϕpost). In our current example, we replace v ∈ mod2 by c in ϕpost
since ψ contains the equality v = c. Hence we obtain ϕ ∗ (v = c ∧ b =
d∧emp) ⇔ (b = d∧emp) ∗ψ. However, using this transformation we cannot
make ϕpre independent of v, since ϕ does not have any equalities involving v.

—In order to make ϕpre independent ofmod1 variables we existentially quantify the
auxiliary variables that are equated to mod1 variables in ϕpre from both sides
of the equivalence. In our current example, we existentially quantify c from
both sides of the equivalence. As a consequence we can drop the equality v = c
involving the auxiliary variable c from ϕpre, thus making ϕpre independent of v.
We now obtain the equivalence ϕ ∗ (b = d ∧ emp) ⇔ ∃ c (b = d ∧ emp) ∗ ψ.

—Our goal is to compute a strong bi-abduction between ∃ b ϕ and ψ. Since the
current ϕpre has free b, ∃ b (ϕ∗ϕpre) is not equivalent to (∃ b ϕ)∗ϕpre. However,
if we can make ϕpre independent of b then the equivalence would hold. In order
to make ϕpre independent of b, we existentially quantify the auxiliary variables
that are equated to b in ϕpre from both sides of the equivalence. In our current
example, since ϕpre contains b only in the equality b = d, we existentially
quantify d from both sides of the equivalence, thus giving ϕ ∗ (true ∧ emp) ⇔
∃ c, d (b = d ∧ emp) ∗ ψ. The right-hand side can be further simplified by
eliminating d to obtain ∃ c (true∧emp)∗ψ. Now we can existentially quantify
b from both sides of the equivalence and obtain (∃ b ϕ) ∗ (true ∧ emp) ⇔
∃ c, b (true ∧ emp) ∗ ψ.

The above intuitions are formalized in the procedure BiAbduct given in Figure 14.
The key step of bi-abduction is the Decompose procedure described above. For each
pair (δ1, δ2) returned by Decompose(ϕ, ψ), we compute δ′1 and δ′2 from δ1 and δ2,
respectively, using the function RemoveVar (lines 3, 4). The function RemoveVar(φ1,
φ2,modi, B) replaces every free variable v ∈ modi in φ1 by e if φ2 implies v = e
and free(e) ∈ B \modi. After renaming, it also removes any redundant equalities

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

30 · Bhargav S. Gulavani et al.

of the form x = x, and equalities implied by φp2 from φ1. For our running example,
δ1 ≡ v = c ∧ b = d and δ2 ≡ v = c ∧ b = d. RemoveVar(δ2, ψ,mod2, V ∪ Y)
renames v by c in δ2, hence δ

′
2 ≡ b = d. RemoveVar(δ1, ϕ,mod1, V ∪W) does not

rename any variables from δ1, hence δ1 ≡ δ′1 ≡ v = c ∧ b = d.
Next, we process the formula δ′1 so as to make it independent of mod1. In

line 5, we compute a renaming γ : 〈Y →֒ mod1〉 such that δ′1γ is independent of
mod1 variables. This is done by invoking function ComputeRenaming. The function
ComputeRenaming(φ,A,B) renames a variable a ∈ A by b ∈ B if φp implies the
equality a = b. The renaming γ ensures that ϕ∗κ1 ⇔ ∃Ẑ (δ′2 ∗ ψ), where κ1 ≡ δ′1γ
and Ẑ = dom(γ). If δ′1γ is not independent of mod1 or δ′2 is not independent of
mod2, we discard the pair (δ′1, δ

′
2) (line 8). Note the asymmetry in dealing with

δ′1 and δ′2, which stems from the asymmetric structure (∃Z only on right side) of
the required solution (∃X ϕ) ∗ ϕpre ⇔ ∃Z (ϕpost ∗ ψ). For our running example,

Ẑ = { c} and γ : 〈 c→ v〉 gives a valid renaming, since δ′1γ ≡ b = d is independent
of v.

Lemma 6.3. Every κ1 and Ẑ computed in lines 6 and 7 of BiAbduct satisfy
ϕ ∗ κ1 ⇔ ∃Ẑ (δ′2 ∗ ψ).

Proof. Follows from the following equivalences.
1. ∃Ẑ ϕ ∗ δ′1 ⇔ ∃Ẑ δ′2 ∗ ψ Definition of Decompose and RemoveVar, and ∃ elimination

2. ∃Ẑ ϕ ∗ δ′1 ⇔ ϕ ∗ δ′1γ ∃Ẑ δ′1 ⇔ δ′1γ, and ϕ is independent of Ẑ variables

3. ϕ ∗ δ′1γ ⇔ ∃Ẑ δ′2 ∗ ψ from 1,2

For every κ1 at line 9 we compute a renaming θ : 〈Z̃ → X〉, where Z̃ ⊆ Y , so as to
render κ1θ independent ofX (lines 9, 10, 11). The function ComputeRenaming(κ1, Y,

X) computes the renaming θ. Let θ̄ : 〈X →֒ Z̃〉 be a renaming such that θ̄(x) = z
only if θ(z) = x. The function RemoveRedundant(φ1, φ

p
2) removes the equalities

from φ1 that are implied by φp2. It also removes trivial equalities like x = x or
RP(X[·] = X[·]) from φ1. If κ′1 = RemoveRedundant(κ1θ, ϕ

p) is independent of

X then BiAbduct returns (κ′1, κ2, Z̃ ∪ Ẑ), where κ2 is the formula returned by
RemoveRedundant(δ′2θ̄, ψ

p), as a solution of strong bi-abduction.
The invocations of ComputeRenaming in lines 5 and 9 have one important differ-

ence: in line 5 only non-array variables inmod1 are renamed, whereas in line 9 array
variables in Y may be renamed. The function ComputeRenaming(φ,A,B) renames
array variables as follows. An array variable a ∈ A is renamed to another array vari-
able b ∈ B if φp implies one of the following facts: (i) RP(A[·] = D[·])∧A[$0] = D[$0],
or (ii) RP(A[·+1] = D[·+1])∧A[0] = D[0], or (iii) RP(A[·] = D[·]∧A[·+1] = D[·+1]).
Higher dimensional arrays can be renamed by performing similar checks for each
dimension. For our running example, we haveX = { b}, Z̃ = { d} and θ : 〈 d→ b〉.
It is evident that (∃ b v 7→ b)∗(true∧emp) ⇔ ∃ c, d (true∧emp)∗(v = c∧ c 7→
d). Thus ϕpre ≡ κ′1 ≡ RemoveRedundant(κ1θ, ϕ

p) ≡ true ∧ emp, ϕpost ≡ κ2 ≡
RemoveRedundant(δ′2θ̄, ψ

p) ≡ true ∧ emp, and and Z = { c, d} is a solution of
strong bi-abduction between ∃ b ϕ ≡ ∃ b v 7→ b and ψ ≡ v = c ∧ c 7→ d.

Lemma 6.4. Every θ and Z̃ at line 12 of BiAbduct satisfy (∃X ϕ) ∗ κ1θ ⇔

∃Ẑ, Z̃ (δ′2θ̄ ∗ ψ)

Proof. Follows from the following equivalences.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 31

1. ϕ ∗ κ1 ⇔ ∃Ẑ δ′2 ∗ ψ from previous step

2. ∃Z̃(ϕ ∗ κ1)⇔ ∃Ẑ, Z̃ (δ′2 ∗ ψ) quantify Z̃

3. ∃Z̃ (ϕ ∗ κ1)⇔ ϕ ∗ κ1θ ϕ independent of Z̃, and ∃Z̃ κ1 ⇔ κ1θ

4. ϕ ∗ κ1θ ⇔ ∃Ẑ, Z̃ δ′2 ∗ ψ from 2,3
5. ϕ ∗ κ1θ ⇔ ϕ ∗ RemoveRedundant(κ1θ,ϕ

p) definition of RemoveRedundant

6. ϕ ∗ κ1θ ⇔ ϕ ∗ κ′

1 κ′

1 ⇔ RemoveRedundant(κ1θ,ϕ
p)

7. ∃X ϕ ∗ κ′

1 ⇔ ∃Ẑ, Z̃, X (δ′2 ∗ ψ) from 4 and 6
8. κ′

1 and ψ are independent of X assumption

9. (∃X ϕ) ∗ κ′

1 ⇔ ∃Ẑ, Z̃ (δ′2θ̄ ∗ ψ) ∃X δ′2 ⇔ δ′2θ̄

10. (∃X ϕ) ∗ κ′

1 ⇔ ∃Ẑ, Z̃ (κ2 ∗ ψ) from 9 and definition of κ2

Example 5. Let us compute strong bi-abduction between ∃X ϕ ≡ ∃X h = X[0]∧
RS(X[·] 7→ X[·+ 1]) ∧ X[$0] = null and ψ ≡ h = Y[0] ∧ RS(Y[·] 7→ Y[·+ 1]) ∧ Y[$0] =
null. Let the sets mod1 and mod2 be empty

—The Match procedure finds the following overlap between ϕ and ψ: (M,C, emp, emp)
where M is RP(X[·] = Y[·] ∧ X[· + 1] = Y[· + 1]) and C is RS(X[·] 7→ X[· + 1]).
Hence δ1 is computed as M ∧ h = Y[0] ∧ Y[$0] = null∧ emp and δ2 is computed
as M ∧h = X[0]∧X[$0] = null∧emp, thus giving the equivalence ϕ∗δ1 ⇔ δ2 ∗ψ.

—Since the mod set is empty, γ is an empty renaming and Ẑ is an empty set.

—The set of quantified variables X contains the array variable X. We compute the
renaming θ as 〈Y → X〉, from the predicate RP(X[·] = Y[·] ∧ X[· + 1] = Y[· + 1])
present in δ1. δ1θ is the formula RP(X[·] = X[·] ∧ X[· + 1] = X[· + 1]) ∧ h =
X[0] ∧ X[$0] = null ∧ emp. RemoveRedundant(δ1θ, ϕ

p) eliminates the redundant
equalities from δ1θ and returns the formula true ∧ emp which is independent of
X. θ̄ is 〈X → Y〉 and δ2θ̄ is the formula RP(Y[·] = Y[·] ∧ Y[·+ 1] = Y[·+ 1]) ∧ h =
Y[0]∧Y[$0] = null∧emp, and RemoveRedundant(δ2θ̄, ψ

p) removes the redundant
equalities and returns the formula true ∧ emp. Hence the result of strong bi-
abduction is (∃X ϕ) ∗ true ∧ emp ⇔ ∃Y (true ∧ emp ∗ ψ).

6.2 Implementation of the Join rule

In section 5.6 we presented the Join rule to merge summaries for two branches of
the statement if (e, S1, S2). The premises of Join require us to check whether
ϕ1µ⇔ ϕ2 and ϕ̂1µ⇒ ϕ̂2 for quantifier free LISF formulas ϕ̂1, ϕ̂2, ϕ1 and ϕ2. We
now show how the BiAbduct can be used to implement these checks. We will use
the observations in the Proposition 6.1.

Proposition 6.1. Given ψ and ψ̂.

(1) if ψ ∗ (true ∧ emp) ⇔ (true ∧ emp) ∗ ψ̂ then ψ ⇔ ψ̂

(2) if ψ ∗ (true ∧ emp) ⇔ (P ∧ emp) ∗ ψ̂ then ψ ⇒ ψ̂

In order to check whether ϕ1µ ⇔ ϕ2, where ϕ1 is a formula over free variables
V,W and ϕ2 is a formula over free variables V, Y , we call BiAbduct(∃W ϕ1, ϕ2, V, V).
The following lemma gives sufficient conditions under which we can infer ϕ1µ⇔ ϕ2.

Lemma 6.5. If Ẑ computed at line 7 of BiAbduct (Figure 14) is ∅, and θ com-
puted at line 9 of BiAbduct is such that κ1θ̄ and δ′2θ̄ are both equivalent to true ∧
emp then we can infer ϕ1θ̄ ⇔ ϕ2.

Proof. Follows from the following equivalences.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

32 · Bhargav S. Gulavani et al.

1. ϕ1 ∗ κ1 ⇔ δ′2 ∗ ϕ2 From Lemma 6.3 and since Ẑ is ∅
2. ϕ1θ̄ ∗ κ1θ̄ ⇔ δ′2 θ̄ ∗ ϕ2θ̄ Apply renaming θ̄
3. ϕ1θ̄ ∗ (true ∧ emp)⇔ (true ∧ emp) ∗ ϕ2 ϕ2 is indep. of dom(θ̄) and κ1θ̄ ≡ δ

′

2 θ̄ ≡ true ∧ emp
4. ϕ1θ̄ ⇔ ϕ2 Proposition 6.1

In order to implement the check ϕ̂1µ⇒ ϕ̂2, where ϕ̂1 is a quantifier free formula
over free variables V,W and ϕ̂2 is a quantifier free formula over free variables V, Y ,
we use the renaming θ̄ computed in the previous step and call BiAbduct(ϕ̂1θ̄, ϕ̂2, V, V).
The following lemma characterizes sufficient conditions for validity of ϕ̂1θ̄ ⇒ ϕ̂2.

Lemma 6.6. If δ′1 computed at line 3 of BiAbduct is equivalent to true ∧ emp
and δ′2 computed at line 4 of BiAbduct is equivalent to P ∧ emp then we can infer
ϕ̂1θ̄ ⇒ ϕ̂2.

Proof. If δ′1 is true ∧ emp then γ computed at line 5 of BiAbduct is an empty
renaming (by the definition of ComputeRenaming). Hence the set Ẑ computed at
line 7 of BiAbduct is an empty set. Therefore by Lemma 6.3 we have ϕ̂1θ̄ ∗ (true∧
emp) ⇔ (P ∧ emp) ∗ ϕ̂2. The proof now follows from Proposition 6.1.

6.3 A note on incompleteness of BiAbduct

A strong bi-abduction procedure can be said to be complete if, whenever there
exists LISF formulas ϕpre and ϕpost and a set Z of auxiliary variables for input
LISF formulas ∃X ϕ and ψ such that ∃X ϕ∗ϕpre ⇔ ∃Z (ϕpost ∗ψ), the procedure
finds such ϕpre, ϕpost and Z. For the LISF formulas ϕ : h = X[0] ∧ RS(X[·] 7→
X[·+1], 0, 0)∧X[$0] = null and ψ : h = Y[$0]∧RS(Y[·+1] 7→ Y[·], 0, 0)∧Y[0] = null,
the fact that ∃X ϕ ∗ (true ∧ emp) ⇔ ∃Y ((true ∧ emp) ∗ ψ) is valid. However,
BiAbduct will not be able to compute this strong bi-abduction. This is because
the Match procedure cannot find the correct overlap between ϕs and ψs. Hence
BiAbduct is not a complete strong bi-abduction procedure. The pure constraint
expressing the correct overlap between ϕs and ψs is not expressible in LISF . In
the next section we present techniques to do sophisticated matching.

7. AN EXTENSION OF LISF

In this section, we describe a couple of limitations of the strong bi-abduction tech-
nique presented so far and present extensions to overcome these limitations.

ϕ : h = X[0] ∧ RS(X[·] 7→ X[·+ 1], 0, 0) ∧ X[$0] = null

ψ : h 7→ Y[0] ∗ RS(Y[·] 7→ Y[·+ 1], 0, 0) ∧ Y[$0] = null

Consider the formulas ϕ and ψ defined above. The formula ϕ represents a linked
list of any length (including zero) pointed to by h. The length of array X in ϕ is
one greater than the length of the linked list pointed to by h. Whereas, the formula
ψ characterizes a linked list of non-zero length pointed to by h. In ψ, the length of
array Y is same as the length of the list pointed to by h. The strong bi-abduction
of ϕ and ψ, however, does not have a valid solution since the constructs of LISF
do not allow us to relate arrays of different lengths (X and Y in this case). In
order to overcome this shortcoming and enable computation of strong bi-abduction
between ϕ and ψ we enrich LISF with sub predicate. Section 7.1 describes this
enhancement.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 33

Now consider the same formula ϕ as described above and φ defined below.

φ : h = Z[$0] ∧ RS(Z[·+ 1] 7→ Z[·], 0, 0) ∧ Z[0] = null

The formulas ϕ and φ are different representations for the linked list of any length
(including zero) pointed to by h. The length of arrayX (resp. Z) in ϕ (resp. φ) is one
greater than the length of the linked list pointed to by h. The strong bi-abduction
of ϕ and φ returns a solution (ϕpre, ϕpost) that restricts the length of linked list in
ϕ ∗ϕpre (or ϕpost ∗φ) to one, although both ϕ and φ model linked lists of arbitrary
lengths. The reason for this ‘too restrictive’ solution is that LISF does not allow us
to compare array elements at equal offsets from opposite ends. In order to overcome
this shortcoming and enable computation of strong bi-abduction between ϕ and φ
we enrich LISF with rev predicate. We describe this enhancement in section 7.2.

7.1 Enhancement of LISF with sub predicate

The Match algorithm can match the RS predicates of ϕs and ψs and return the
four-tuple (RP(X[·] = Y[·]∧X[·+1] = Y[·+1]), ϕs, {}, h 7→ Y[0]). But this overlap
is not consistent with ϕp and ψp. The Match algorithm returns another solution
for the pair ϕs and ψs. It first unrolls the predicate RS(X[·] 7→ X[·+1], 0, 0) to give
X[0] 7→ X[1] ∗RS(X[·] 7→ X[·+1], 1, 0) and matches X[0] 7→ X[1] with h 7→ Y[0]. The
residual RSpredicate in ϕs cannot be matched with the one in ψs because of the
different offsets in the two RS predicates. The solution returned by Match, in this
case, is the four-tuple (h = X[0] ∧ Y[0] = X[1], h 7→ Y[0], RS(X[·] 7→ X[· + 1], 1, 0),
RS(Y[·] 7→ Y[·+1], 0, 0)). For this decomposition,M ∧ϕs ∗L2 (and alsoM∧ψs∗L1)
is inconsistent sinceM implies Y[0] = X[1] whereas the spatial parts have predicates
Y[0] 7→ ∗ X[1] 7→ and hence imply Y[0] 6= X[1]. Due to the inability to relate
arrays of different lengths in LISF , Match cannot find the right overlap between
ϕs and ψs. Hence the strong bi-abduction of ϕ and ψ fails, although they represent
structures for which strong bi-abduction should be possible.
To remedy this problem we introduce a new pure predicate sub(e, l, u, e′) where

e and e′ are two LISF expressions that differ only in the array name and l, u are
non-negative integers. Let a and a′ be the arrays accessed by the first iterated
index of expressions e and e′, respectively. Intuitively, sub(e, l, u, e′) establishes the
equality of all elements of array a′ and the elements of array a between the offsets l
and u from its start and end, respectively. Thus, it implicitly constrains the lengths
of arrays a and a′. The semantics of sub(e, l, u, e′) is formally defined as follows.
Note that we overload the function len defined in section 4.2 and used in Figure 8
to operate over single expressions instead of pure or spatial formulas.

(s, h,V, L) |= sub(e, l, u, e′) iff ∃k k + 1 = len(V, L, e′) ∧ len(V, L, e) > l + u ∧
len(V, L, e′) = len(V, L, e) − l− u ∧
∀0 ≤ i ≤ k. Ea(e, (i + l) :: L, s,V) = Ea(e

′, i :: L, s,V)
(7.6)

For example, the pure predicate sub(X[·], 1, 0,Y[·]), represents the fact that length
of array X is one more than that of array Y and that the sequence X[1], . . . ,X[$0] is
same as the sequence Y[0], . . . ,Y[$0]. It may seem that we could have used just array
names in the sub predicate and written the above fact as sub(X, 1, 0,Y). However,
we wish to express sub relationships among the nested arrays in a uniform manner,
e.g., the predicate sub(A[1][·], 1, 0,D[2][·]) expresses the sub relationship between

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

34 · Bhargav S. Gulavani et al.

MatchRsA

k1 : RS(S1, 0, 0), k2 : RS(S2, l, u),

(M,C, {}, {}) ∈ Match(S1, SubS(S2, l, u), 1)

(RP(M, 0, 0) ∧ SubP(S2, l, u),RS(C, 0, 0), {}, {}) ∈ Match(k1, k2, 0)

the arrays A[1] and D[2]. Hence we use array expressions instead of array names.
The sub predicate provides us with the vocabulary to relate arrays of different

lengths. We now introduce new match rule that uses this predicate to match arrays
of different lengths. To avoid nesting of the sub predicate within a RP predicate
we allow introduction of sub predicate only while matching RS predicate which are
not nested within another RS predicate.
For notational convenience we introduce two macros SubS and SubP, which are

defined as follows. SubS(S, l, u) is defined as the spatial formula obtained by re-
placing the array variable, say A, in every expression e in S having at least one
iterated index with an expression e′ which is same as e but the array variable is
replaced with a primed version, say A

′. Intuitively, SubS(S, l, u) returns a spatial
formula over the primed versions of the array names that will be related to the
original unprimed names by the sub predicates. SubP(S, l, u) generates a pure fact
relating the newly introduced array variables, like A

′, with the old ones, like A. Let
the function lb(e) replace the first iterated index in e by the index [·]. SubP(S, l, u)
returns a conjunction of facts of the form sub(lb(e), l, u, lb(e′)) for every expression
e in S replaced with e′ by SubS(S, l, u). The macro SubP(S, l, u) generates the
conjunction of such sub predicates. For example, SubS(X[·] 7→ X[·+1], 1, 0) returns
the spatial formula X

′[·] 7→ X
′[·+1] and SubP(X[·] 7→ X[·+1], 1, 0) returns the pure

formula sub(X[·], 1, 0,X′[·]) ∧ sub(lb(X[·+ 1]), 1, 0, lb(X′[·+ 1])). By definition of lb,
sub(lb(X[·+ 1]), 1, 0, lb(X′[·+ 1])) ≡ sub(X[·], 1, 0,X′[·]).

Proposition 7.1. For a predicate RS(S, l, u) not embedded in any RS predicates,
RS(S, l, u) ∧ SubP(S, l, u) ⇔ RS(SubS(S, l, u), 0, 0) ∧ SubP(S, l, u).

We extend the rule MatchRs in Match algorithm to the rule MatchRsA

that uses sub predicate to match two RS predicates. We can now use the rule
MatchRsA to match RS(X[·] 7→ X[· + 1], 1, 0) and RS(Y[·] 7→ Y[· + 1], 0, 0), and
thus compute Match(ϕs, ψs) as a set consisting of (M,ψs, {}, {}), where M is
h = X[0]∧Y[0] = X[1]∧RP(X′[·] = Y[·]∧X

′[·+1] = Y[·+1], 0, 0)∧sub(X[·], 1, 0,X′[·]).
This match is consistent with ϕp and ψp. Hence the procedure Decompose com-
putes δ1 as M ∧Y[$0] = null∧ emp and δ2 as M ∧ h = X[0]∧X[$0] = null∧ emp,
such that ϕ ∗ δ1 ⇔ δ2 ∗ ψ.
The use of sub predicate allows us to express equality constraints between arrays

of different lengths. Implicitly this allows to express difference constraints between
lengths of array variables which is not expressible in LISF . LISF can express
only equality of array lengths.

7.2 Enhancement of LISF with rev predicate

Consider the formulas ϕ and φ defined at the start of section 7. The Match
algorithm will match the RSpredicates in ϕs and φs and return the four-tuple
(M,ϕs, {}, {}) as the only solution, where M is the pure formula RP(X[·] = Z[· +
1] ∧ Z[·] = X[· + 1], 0, 0). But this too restrictive constraint restricts the length of
the matched list to be ≤ 1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 35

MatchRsB

k1 : RS(S1, l, u), k2 : RS(S2, u, l),

(M,C, {}, {}) ∈ Match(S1,RevS(S2), 1)

(RP(M, l, u) ∧ RevP(S2),RS(C, l, u), {}, {}) ∈ Match(k1, k2, 0)

Although ϕ and φ represent a same set of structures in the heap, bi-abduction of
ϕ and φ generates constraints that reduce this set of structures. This is because the
pure constraint describing the overlap of a list expressed as RS(X[·] 7→ X[·+1], 0, 0)
and the same list expressed as RS(Z[·+1] 7→ Z[·], 0, 0) cannot be expressed in LISF
without restricting the lengths of X and Z. To remedy this problem we introduce
a new predicate rev(e, e′) where e and e′ are LISF expressions that differ only in
the array name. The semantics of rev(e, e′) is defined as follows.

(s, h,V, L) |= rev(e, e′) iff ∃k. k + 1 = len(V, L, e′) = len(V, L, e) ∧
∀0 ≤ i ≤ k. Ea(e, i :: L, s,V) = Ea(e

′, (k − i) :: L, s,V)
(7.7)

For example the predicate rev(X[·], Z[·]) asserts that X and Z are arrays of same
lengths and that the sequence X[0],X[1], . . . ,X[$0] is same as Z[$0], Z[$1], . . . , Z[0].
The rev predicate provides us with the vocabulary to relate array elements that

are at the same offsets from the opposite ends. We now introduce new match rule
that uses rev predicate to match an array with the reverse of another array. To
avoid nesting of the rev predicate within a RP predicate, we allow introduction of
rev predicate only while matching RS predicates that are not nested within another
RS predicate.
For notational convenience we introduce two macros RevS and RevP, which are

defined as follows. RevS(S) is the spatial formula obtained as follows. Initially, we
replace the first iterated index [·] (resp. [· + 1]) in every expression e in S with
an iterated index [· + 1] (resp. [·]). Then we replace the array variable in such
expressions, say A, with a primed variable, say A

′. The function RevP(S) denotes a
pure fact relating the newly introduced array variables, like A

′, with the old ones,
like A. Recall from previous section that lb(e) returns the expression same as e but
with its first iterated index switched to [·]. RevP(S) returns a conjunction of facts
of the form rev(lb(e), lb(e′)) for every expression e in S replaced with e′ by RevS(S).
Intuitively, RevS(S) returns a spatial formula over the primed versions of the array
names that are related to the original unprimed names through the rev predicates.
The macro RevP(S) generates the conjunction of such rev predicates. For example,
RevS(Z[·+1] 7→ Z[·]) returns the spatial formula Z

′[·] 7→ Z
′[·+1] and RevP(Z[·+1] 7→

Z[·]) returns the pure formula rev(lb(Z[· + 1]), lb(Z′[·])) ∧ rev(lb(Z[·]), lb(Z′[· + 1])).
Note that by definition of lb the above formula reduces to rev(Z[·], Z′[·]).

Proposition 7.2. For a predicate RS(S, l, u) not embedded in any RS predicate,
RS(S, l, u) ∧ RevP(S) ⇔ RS(RevS(S), u, l) ∧ RevP(S).

We extend the rule MatchRs in Match algorithm to the rule MatchRsB that
uses rev predicate to match two RS predicates. We can now use the ruleMatchRsB

to match RS(X[·] 7→ X[· + 1], 0, 0) and RS(Z[· + 1] 7→ Z[·], 0, 0), and thus com-
pute Match(ϕs, φs) as (M,ϕs, {}, {}), where M is RP(X[·] = Z

′[·] ∧ X[· + 1] =
Z
′[·+ 1], 0, 0) ∧ rev(Z[·], Z′[·+ 1]). This match is consistent with ϕp and φp. Hence

the procedure Decompose computes δ1 as M ∧ h = Z[$0] ∧ Z[0] = null ∧ emp and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

36 · Bhargav S. Gulavani et al.

δ2 as M ∧ h = X[0] ∧ X[$0] = null ∧ emp, such that ϕ ∗ δ1 ⇔ δ2 ∗ φ.
The use of rev predicates allows us to equate array elements which are arbitrary

distance apart (e.g. i and k−i in Equation 7.7). LISF does not allow us to express
this fact.

8. SATISFIABILITY CHECKING ALGORITHMS

In this section we provide a sound procedures for checking satisfiability of (a) LISF
formulas, and (b) LISF extended with sub and rev predicates. Any LISF formula
is of the form P ∧ S or ∃X. P ∧ S. Since ∃X. P ∧ S is equisatisfiable with P ∧ S,
we present satisfiability procedures only for quantifier free LISF formulas.

8.1 Satisfiability checking procedure for LISF

The basic idea of the satisfiability checking procedure is to convert a LISF formula
to a formula in separation logic without iterated predicates (satisfiability checking
of these formulas can be reduced to satisfiability checking of formulas in the theory
of equality and is hence efficiently decidable). This is achieved by instantiating the
lengths of all dimensions of all arrays to fixed constants, and by soundly unrolling
the RP and RS predicates. The array lengths are so chosen that the offsets speci-
fied in the fixed indices of all expressions in the formula are within the respective
array bounds. We illustrate the algorithm through an example before presenting it
formally.

Example 6. Consider a LISF formula ϕ ≡ (h = X[0]) ∧ (g = Y[0]) ∧ (t =
X[$1]) ∧ (X[$0] = Y[$0]) ∧ (Y[$0] = null) ∧ RS(X[·] 7→ X[·+ 1] ∗ Y[·] 7→ Y[·+ 1], 0, 0).
The RS predicate in ϕ requires that X and Y have same lengths. The expressions X[0]
and X[$0] (respectively Y[0] and Y[$0]) require that the length of array X (respectively,
array Y) be at least 1. Similarly the expression X[$1] requires that the length of X

be at least 2. A sound way of checking the satisfiability of ϕ is to guess the lengths
of the arrays and expand the RS and RP predicates for these array lengths so as to
obtain a standard separation logic formula (one without RS or RP predicates). For
the current example, setting the lengths of both arrays X and Y to 2 satisfies the
constraints imposed on their lengths by ϕ. If the length of array X is 2, we have
X[0] = X[$1] and X[1] = X[$0]. Similarly, if length of Y is 2, we have Y[$0] = Y[1].
Moreover, the predicate RS(X[·] 7→ X[· + 1] ∗ Y[·] 7→ Y[· + 1], 0, 0) can be written
as X[0] 7→ X[1] ∗ Y[0] 7→ Y[1], by applying the semantic definition of RS (given
in Figure 8). Hence, if we set the lengths of X and Y to 2, we can rewrite ϕ as
ψ ≡ h = X[0]∧g = Y[0]∧t = X[0]∧X[1] = Y[1]∧Y[1] = null∧X[0] 7→ X[1]∗Y[0] 7→ Y[1].
The only array expressions in ψ are of the form X[i] or Y[i], i ∈ {0, 1}. It has no
RS or RP predicates. Hence it is a standard separation logic formula. It is evident
that if ψ is satisfiable then so is ϕ. The formaula ψ can be satisfied by having
X[0] = h = t = l1,Y[0] = g = l2 and X[1] = Y[1] = null, l1 6= l2, h(l1) = null, and
h(l2) = null. Hence ϕ is satisfiable.

The above intuition is formalized in the satisfiability procedure sat given in Fig-
ure 16. The key step of sat procedure is the conversion of an LISF formula ϕ to
a formula ψ in separation logic without iterated predicates using the Flatten pro-
cedure. In order to soundly eliminate iterated predicates from an LISF formula
ϕ, Flatten requires the lengths of all dimensions of all the array variables in ϕ.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 37

sat(ϕ)

1: lentbl ← GetLengths(ϕ)
2: ψ ← Flatten(ϕ, lentbl)
3: return sat sep(ψ)

GetLengths(ϕ)

1: F ← 0 = 0
2: for all (X, i, l) ∈ LB(ϕ) do
3: F ← F ∧ (l + 1 ≤ 〈X, i〉)
4: for all (X, i, u) ∈ UB(ϕ) do
5: F ← F ∧ (u + 1 ≤ 〈X, i〉)
6: for all (〈X, i〉, 〈Y, j〉) ∈ IterConstr(ϕ) do
7: F ← F ∧ (〈X, i〉 = 〈Y, j〉)
8: return Solve(F)

Flatten(ϕ, lentbl)

1: while ¬ isFlat(ϕ) do
2: for all top-level terms t : RP(. . . , l, u) or

RS(. . . , l, u) in ϕ do
3: len ← FindLength(t, lentbl)
4: cnt← max({len− 1 − l− u, 0})
5: t′ ← iter unrollf(t, cnt)
6: replace t with t′ in ϕ
7: end while
8: ModifyUB(ϕ, lentbl)
9: return ϕ

Fig. 16. Satisfiability procedure: sat(ϕ)

iter unrollf(RP(P, l, u), c) =
if (c = 0) then true else
unrollf(RP(P, l, u), 0) ∧ iter unrollf(RP(P, l+1, u), c−1)

iter unrollf(RS(S, l, u), c) =
if (c = 0) then emp else
unrollf(RS(S, l, u), 0) ∗ iter unrollf(RS(S, l+1, u), c−1)

Fig. 17. Unroll functions

IterConstr(ϕ)
def
= IterExpr(ϕ, 1)

IterExpr(ϕ, i)
def
= match ϕ with

| RS(ψ, l, u)
| RP(ψ, l, u)→ {〈X, j〉 = 〈Y, k〉 | X = free(e1),Y = free(e2), e1, e2 ∈ ψ and

j = iterDim(e1, i), k = iterDim(e2, i) and
j, k ≥ 0, and

} ∪ IterExpr(ψ, i + 1)
| → {}

Fig. 18. Function IterConstr(ϕ)

The function GetLengths(ϕ) computes these lengths. Any model of the flattened
formula ψ is also a model of LISF formula ϕ. The function sat sep(ψ) determines
the satisfiability of a separation logic formula ψ.
The predicates RS, RP and the expressions with fixed indices in ϕ impose re-

strictions on the length of different dimensions of array variables. The function
GetLengths encodes these constraints in the formula F . The variables in F are rep-
resented as 〈X, i〉, where X is a free k-dimensional array variable in ϕ and 1 ≤ i ≤ k.
The variable 〈X, i〉 represents a safe length for the ith dimension of X that avoids
indexing errors. Lines 2-7 add constraints to F so that evaluation of fixed indices
in the expressions of ϕ does not cause an array indexing error. The function LB(ϕ)
returns a set of tuples (X, i, l) such that there is an expression in ϕ accessing the
ith dimension of array X with a fixed index l. Similarly, UB(ϕ) returns a set of
tuples (X, i, u) such that there is an expression in ϕ accessing the ith dimension of
array X with a fixed index $u. The function IterConstr(ϕ) returns a set of pairs
(〈X, i〉, 〈Y, j〉) such that there exist expressions e1 and e2 embedded in an RS (or
RP) predicate such that free(e1) = X, free(e2) = Y and i and j are the dimen-
sions of X and Y, respectively, over which the RS (or RP) predicate iterates. Lines
6 and 7 capture constraints imposed by RS and RP predicates on the lengths
of array dimensions. The function IterConstr is defined in Figure 18. The function
iterDim(e, i) used in Figure 18 returns the dimension number corresponding to the
ith iterated index in e if e has at least i iterated indices, otherwise it returns −1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

38 · Bhargav S. Gulavani et al.

The formula F is always satisfiable as the only constraints it has are of the form
c ≤ 〈X, i〉 or 〈X, i〉 = 〈Y, j〉 (c is a constant). To construct a satisfying assignment
to the variables in F we first compute the equivalence classes of variables (implied
by equality constraints) in F . We set the value of each variable in an equivalence
class to the largest constant among all the inequality constraints involving those
variables. The function Solve(F) returns such an assignment to the variables in F .
Any structure having array sizes conforming to lentbl returned by GetLengths(ϕ)
(line 1 of sat) is a well-formed structure for ϕ.
Flatten uses an intermediate function isFlat(ϕ) which returns true if ϕ does not

have any RS or RP predicate, otherwise it returns false. The function FindLength(t,
lentbl), where t is RP(P, l, u) (resp. RS(S, l, u)), returns the length of array dimen-
sion corresponding to the first iterated index of any array expression in P (resp. S).
Flatten then eliminates the iterated predicates t by the function iter unrollf(t, cnt),
which is a repeated application of unrollf(t, 0) as defined in Figure 17. Recall that
unrollf(RS(S, l, u), d) is defined in Section 6 as the formula obtained by replacing
the (d + 1)th iterated index [·] (resp. [·+ 1]) of every expression in S by the fixed
index [l] (resp. [l + 1]). The function unrollf(RP(P, l, u), d) is analogously defined.
Finally, all expressions that access a dimension, say i, of an array, say X, with a
fixed index $u are modified by replacing [$u] with [lentbl(X, i)−1−u]. The function
ModifyUB(ϕ, lentbl) does this transformation.

Lemma 8.1. For a LISF formula ϕ, if sat(ϕ) returns true then ϕ is satisfiable.

8.2 Satisfiability checking procedure for LISF extended with sub and rev predicates

With the use of sub and rev lemmas in bi-abduction, the pure part of LISF for-
mulas can have additional conjunction of constraints of the form sub(e, l, u, e′) and
rev(e, e′). We need to modify the Flatten and GetLengths algorithms for checking
satisfiability of LISF formulas in the presence of these additional constraints. The
modified algorithms FlattenL and GetLengthsL are presented in Figure 19. The
algorithm satL(ϕ) uses these modified algorithms to flatten ϕ.
Algorithm GetLengthsL takes into account the constraints imposed on array

lengths by sub(e, l, u, e′) and rev(e, e′) in addition to the constraints considered
in GetLengths to calculate the array lengths.
Let arr(e) give the array name used to build the array expression e and idim(e)

give the dimension number corresponding to first iterated index in e. The predicate
sub(e, l, u, e′) requires that the length, len, of dimension idim(e′) of arr(e′) be equal
to length of dimension idim(e) of arr(e) - (l + u) (as defined in Eq. 7.6). Lines
2-5 add such constraints to F . The predicate rev(e, e′) requires that the length of
dimension idim(e) of arr(e) be same as the length of dimension idim(e′) of arr(e′)
(as defined in Eq. 7.7). Lines 7-10 of GetLengthsL add these constraints to F .
Suppose for a predicate sub(e, l, u, e′) (or rev(e, e′)), the number of dimensions of
arr(e) and arr(e′) are k and k′, respectively. The definition of sub (resp. rev)
requires that for every 0 ≤ j ≤ k − idim(e), the length of dimension idim(e) + j
of arr(e) is same as the length of dimension idim(e′) + j of arr(e′). The function
EquateHigher(e, e′, F) adds such constraints to F (lines 6 and 11). Lines 12-17
add constraints imposed on array lengths by RS and RP predicates and expressions
with fixed indices. In contrast to constraints obtained in GetLengths, constraints

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 39

satL(ϕ)

1: lentbl ← GetLengthsL(ϕ)
2: ψ ← FlattenL(ϕ, lentbl)
3: return sat sep(ψ)

FlattenL(ϕ, lentbl)

1: lentbl ← GetLengthsL(ϕ)
2: p1 ← AddRevConstrs(ϕ)
3: p2 ← AddSubConstrs(ϕ)
4: return p1 ∧ p2 ∧ Flatten(ϕ, lentbl)

GetLengthsL(ϕ)

1: F ← 0 = 0
2: for all predicates sub(e, l, u, e′) in ϕ do
3: v ← 〈arr(e), idim(e)〉
4: v′ ← 〈arr(e′), idim(e′)〉
5: F ← F ∧ v′ = v − l − u ∧ v > l + u
6: EquateHigher(e, e′, F)
7: for all predicates rev(e, e′) in ϕ do
8: v ← 〈arr(e), idim(e)〉
9: v′ ← 〈arr(e′), idim(e′)〉
10: F ← F ∧ (v = v′)
11: EquateHigher(e, e′, F)
12: for all (X, i, l) ∈ LB(varphi) do
13: F ← F ∧ (l+ 1 ≤ 〈X, i〉)
14: for all (X, i, u) ∈ UB(varphi) do
15: F ← F ∧ (u+ 1 ≤ 〈X, i〉)
16: for all (〈X, i〉, 〈Y, j〉) ∈ IterConstr(ϕ) do
17: F ← F ∧ (〈X, i〉 = 〈Y, j〉)
18: if sat dc(F) then
19: return SolveDiff(F)
20: else
21: raise unsat

Fig. 19. Satisfiability procedure: satL(ϕ)

in GetLengthsL may have difference constraints. This is due to the constraints
imposed by the predicate sub(e, l, u, e′) in line 5. Hence the formula F may be
unsatisfiable. The function sat dc(F) at line 18 checks whether F is satisfiable. If
F is satisfiable GetLengthsL returns the model constructed by SolveDiff(F) (line
19), otherwise it raises an an error indicating unsatisfiability of ϕ (line 21). Any
structure having array sizes confirming to lentbl returned by GetLengthsL(ϕ) is a
well-formed structure for ϕ.
The function FlattenL first soundly eliminates the predicates sub(e, l, u, e′) (line

2) and rev(e, e′) (line 3) from ϕ. It replaces the predicates sub(e, l, u, e′) (resp.
rev(e, e′)) with a pure constraint given in the defining equation 7.6 (resp. 7.7)
by calling AddSubConstrs (resp AddRevConstrs) at line 2 (resp. line 3). Finally it
soundly eliminates the iterative predicates in ϕ by calling Flatten(ϕ, lentbl).

Lemma 8.2. Given a LISF formula ϕ with sub and rev predicates, if satL(ϕ)
returns true then ϕ is satisfiable.

The satisfiability procedures presented in the previous subsections are sound but
incomplete. This is because GetLengths(ϕ) and GetLengthsL(ϕ) return only one of
the many (possibly infinite) mappings from array dimensions to their lengths. The
formula ϕ may be satisfiable, but not for the array length mappings returned by
the function GetLengths or GetLengthsL. In [Gulavani et al. 2009] we show that
satisfiability checking of a subclass of LISF having only single dimensional arrays
is decidable. Any formula ϕ belonging to this subclass is satisfiable iff it is satisfiable
for some array length mapping in the finite set Mϕ of array length mappings. This
means that if ϕ is satisfiable then there exists a model of bounded size. Hence
satisfiability checking is decidable for this subclass of LISF . Unfortunately, the
size of the finite set is doubly exponential in the size of ϕ in the worst case. However,
the efficient but incomplete procedures of the previous two subsections and the
inefficient but complete decision procedure given in [Gulavani et al. 2009] are two
extremes of the satisfiability checking procedures. The insights in these contrasting

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

40 · Bhargav S. Gulavani et al.

Progs size time(s) IV V

init 16 0.007 2 Yes
del-all 21 0.006 2 Yes
del-circ 23 0.007 2 Yes
delete 42 0.058 * 19 No
append 23 0.010 3 Yes
ap-disp 52 0.036 6 Yes
copy 33 0.324 3 Yes
find 28 0.017 4 Yes
insert 53 0.735 6 Yes
merge 60 0.511 12 No
reverse 20 0.012 * 3 No

(a)

Progs size time(s) IV V

dll-reverse 23 0.084 3 No
fumble 20 0.010 2 Yes
zip 37 0.374 4 No

(b)
BusReset 145 0.043 * 3 Yes
CancelIrp 87 0.743 * 32 Yes
SetAddress 96 0.122 * 6 Yes
GetAddress 94 0.122 * 6 Yes
PnpRemove 460 37.600 34 No

(c)
nested 24 0.028 5 Yes
rev-rev 30 0.150 3 No
off-trav 31 0.122 0 No
dll-trav-2 24 0.126 2 No

(d)

Fig. 20. Experimental results on (a) list manipulating examples from [Calcagno et al. 2007], (b)
examples from [Abdulla et al. 2008; Møller and Schwartzbach 2001], (c) functions from Firewire
Windows Device Drivers, and (d) a miscellaneous set of programs. For a program in each row,
Column ‘size’ indicates its size in terms of lines of code, Column ‘time(s)’ indicates time in seconds
taken by the SpInE to calculate the number of triples indicated in Column IV, and Column V
indicates whether the discovered triples give a complete specification for the program. Experiments
performed on Pentium 4 CPU, 2.66GHz, 1 GB RAM.

procedures can be exploited for tuning the efficiency and precision of satisfiability
checking procedure as suitable for a specific application domain.

9. IMPLEMENTATION

We have implemented the inference rules to generate specifications of programs in
a tool SpInE2. It takes as input a C program and outputs summaries for each
procedure in the program. SpInE analyzes the program in a bottom-up manner,
i.e., a procedure is analyzed before analyzing its callers. We tabulate the procedure
summaries in a central repository. Currently SpInE cannot generate accelerated
summaries for (mutually) recursive procedures. Analysis of pointer arithmetic is
also beyond its current scope. SpInE takes two optional input arguments – -lemmas
and -join – to guide the application of heuristics for generating useful summaries.
Option -lemmas. With this option the strong bi-abduction algorithm uses the

predicates sub and rev, described in Section 7, to generate more expressive sum-
maries. The algorithmMatch uses the rulesMatchRsA andMatchRsB described
in Section 7 in addition to the rules outlined in Figure 15.
Option -join. With this option turned on SpInE tries to merge summaries

for two branches of the if-then-else statement by using the rule Join presented in
Figure 13. This helps generate concise specifications for branching constructs and
potentially complete specifications when such constructs are embedded in loops.

9.1 Experimental Evaluation of SpInE

The results of running SpInE on a set of challenging programs, without -lemmas
or -join option, are tabulated in Table 20. Programs in Table 20(a) are adopted
from [Calcagno et al. 2007]. Program delete is the same as the motivating ex-
ample in Section 1. Programs in Table 20(b) are adopted from [Abdulla et al.

2acronym for Spefication Inference Engine

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 41

Progs size time(s) IV V

delete 42 0.082 * 21 No
rev-rev 30 0.025 4 No
off-trav 31 0.016 1 Yes
dll-trav-2 24 0.014 3 Yes
PnpRemove 460 23.800 * 32 Yes

Fig. 21. Experimental results of running SpInE with -lemmas and -join option. Columns are
same as in Table 20

2008; Møller and Schwartzbach 2001]. These programs manipulate singly or dou-
bly linked lists. In each of these tables, the fourth column indicates the number
of summaries inferred by SpInE. The last column indicates whether the inferred
summaries provide a complete specification for the corresponding program. SpInE
inferred richer summaries than those inferred by the tool in [Calcagno et al. 2007].
For example, for the programs delete and reverse, SpInE infers preconditions
with cyclic lists (indicated by * in fourth column). For the program delete some
of the inferred preconditions even have a lasso structure.
The examples in Table 20(c) are program fragments modifying linked structures

in the Firewire Windows Device Driver. We report only the summaries discov-
ered for the main procedures in these programs. A complete set of summaries is
discovered for all the other procedures in these programs. The original programs
and data structures have been modified slightly so as to remove pointer arithmetic.
These programs perform selective deletion or search through doubly linked lists.
The program PnpRemove iterates over five different cyclic lists and deletes all of
them; it has significant branching structure. All programs except CancelIrp refer
to only the next field of list nodes. The program CancelIrp also refers to the prev
field of list nodes. The increased number of inferred summaries for CancelIrp is
due to the exploration of different combinations of prev and next fields in the the
pre and postconditions. We have checked whether the computed summaries form a
complete specification for the corresponding programs by manually going through
the susmmaries output by SpInE3. We found that the summaries inferred for all
programs except PnpRemove are complete. These summaries capture the transfor-
mations on an unbounded number of heap cells, although they constrain only the
next fields of list nodes. Hence these summaries can be plugged in contexts where
richer structural invariants involving both next and prev fields are desired.
Programs in Table 20(d) is a miscellaneous collection of singly or doubly linked

list manipulating routines. Program nested deletes a nested linked list, rev-rev
reverses a linked list twice. Program off-trav has two loops – the first loop
traverses all elements except the head and the second loop traverses all elements
of the list. Program dll-trav-2 also has two loops – the first loop traverses the
double linked list from head to tail following the next field and the second loop
traverses the same list from tail to head following the prev field. SpInE is unable
to generate a complete specification for any of these programs, except the program
nested.
We repeated the experiments by running SpInE with -lemmas and -join op-

tion. SpInE can now generate richer specifications for the program tabulated in

3available to the interested readers at http://www.cfdvs.iitb.ac.in/~bhargav/spine.html

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

42 · Bhargav S. Gulavani et al.

Table 21. Complete specification can now be generated for programs off-trav and
PnpRemove. The use of rev (resp. sub) predicate was instrumental for generating
richer specifications for rev-rev and dll-trav-2 (resp. off-trav). The use of
Join rule was instrumental for generating complete specification for PnpRemove.
PnpRemove has several nested branching constructs of the form if (v != null)
delete(v) inside while loops. The use of Join rule enabled SpInE to generate a
single, complete summary for such branching constructs. This facilitated the gen-
eration of complete specification for each while loop in the program PnpRemove.
With the options -lemma and -join, SpInE neither produced any new summaries
nor did it take more time while analyzing the remaining programs.

10. CONCLUSION

We have presented inference rules for bottom-up and compositional shape analysis.
Strong bi-abduction and satisfiability checking form the basis of our inference rules.
The novel insight of inductive composition is captured by the inference rule Induct.
This rule enables us to hoist the Hoare triple of a loop body outside the loop. This
enables uniform application of the compositional analysis to entire program, albeit
without recursive procedures.
We have introduced a new logic called LISF to express the Hoare triples. LISF

provides a uniform framework to express recursive predicates characterizing list-
like and nested list-like data-structures. This logic enables us to relate the data-
structures in the pre and postcondition of the program. We illustrate the advan-
tages of Hoare triples expressed using LISF over those expressed using recursive
predicates with respect to succinctness and composability.
We have presented sound procedures for strong bi-abduction and satisfiability

checking of LISF formulas. Although neither of these procedures are complete,
we identify a fragment of LISF that has a small model property. Hence checking
satisfiability of this fragment is decidable. But, its worst case complexity is doubly
exponential. Secondly, we do not yet know whether the satisfiability checking of
entire LISF is decidable. Hence we use the sound procedure sat in our implemen-
tation for checking satisfiability of LISF formulas.
One possible direction for future work is to enhance the strong bi-abduction

procedure to make it complete for an expressive fragment of LISF . Another pos-
sibility is to have a fall-back mechanism to compute only a bi-abduction, whenever
strong bi-abduction cannot be computed (or strong bi-abduction does not exist).
Identifying a class of programs for which our inference rules can generate com-
plete specification is also an interesting problem to solve. In future we would like
to extend our technique to generate expressive specifications for programs having
recursive procedures and those manipulating tree-like data-structures.

Acknowledgment. We thank Hongseok Yang and Dino Distefano for introducing
us to the idea of abduction and for providing us with benchmark programs. We
also thank the anonymous reviewers for their insightful and critical comments.
The ideas in the appendix are motivated by the suggestions made by one of the
reviewers of earlier draft. The first author was supported by Microsoft Corporation
and Microsoft Research India under the Microsoft Research India PhD Fellowship
Award.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 43

REFERENCES

Abdulla, P., Bouajjani, A., Cederberg, J., Haziza, F., and Rezine, A. 2008. Monotonic
abstraction for programs with dynamic memory heaps. In Proc. of CAV. 341–354.

Abdulla, P. A., Jonsson, B., Nilsson, M., and Saksena, M. 2004. A survey of regular model
checking. In Proc. of CONCUR. Springer, 35–48.

Bardin, S., Finkel, A., Leroux, J., and Schnoebelen, Ph. 2005. Flat acceleration in symbolic
model checking. In Proc. of ATVA. 474–488.

Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W., Wies, T., and Yang,

H. 2007. Shape analysis for composite data structures. In Proc. of CAV. 178–192.

Biering, B., Birkedal, L., and Torp-Smith, N. 2005. Bi hyperdoctrines and higher-order
separation logic. In ESOP. 233–247.

Boigelot, B., Legay, A., , and Wolper, P. 2003. Iterating transducers in the large. In Proc.

of CAV. Springer, 223–235.

Bouajjani, A., Habermehl, P., Moro, P., and Vojnar, T. 2005. Verifying programs with
dynamic 1-selector-linked structures in reg ular model checking. In Proc. of TACAS. Springer,
13–29.

Bouajjani, A., Habermehl, P., and Rogalewicz, A. 2006. Abstract regular tree model checking
of complex dynamic data struct ures. In Proc. of SAS. Springer, 52–70.

Bouajjani, A., Habermehl, P., and Tomas, V. 2004. Abstract regular model checking. In Proc.

of CAV. Springer, 372–386.

Calcagno, C., Distefano, D., O’Hearn, P., and Yang, H. 2009. Compositional shape analysis
by means of bi-abduction. In Proc. of POPL.

Calcagno, C., Distefano, D., O’Hearn, P. W., and Yang, H. 2007. Footprint analysis: A
shape analysis that discovers preconditions. In Proc. of SAS. 402–418.

Cousot, P. 1990. Methods and logics for proving programs. In Formal Models and Seman-

tics, J. van Leeuwen, Ed. Handbook of Theoretical Computer Science, vol. B. Elsevier Science
Publishers B.V., Chapter 15, 843–993.

Distefano, D., O’Hearn, P. W., and Yang, H. 2006. A local shape analysis based on separation
logic. In Proc. of TACAS. 287–302.

Gulavani, B. S., Chakraborty, S., Ramalingam, G., and Nori, A. V. 2009. Bottom-up
shape analysis using lisf. Tech. Rep. TR-09-31, CFDVS, IIT Bombay. www.cfdvs.iitb.ac.

in/~bhargav/spine.html.

Guo, B., Vachharajani, N., and August, D. I. 2007. Shape analysis with inductive recursion
synthesis. In Proc. of PLDI. 256–265.

Jeannet, B., Loginov, A., Reps, T. W., and Sagiv, S. 2004. A relational approach to interpro-
cedural shape analysis. In SAS. 246–264.

Lev-Ami, T., Sagiv, M., Reps, T., and Gulwani, S. 2007. Backward analysis for inferring
quantified preconditions. Tech. Rep. TR-2007-12-01, Tel Aviv University.

Møller, A. and Schwartzbach, M. I. 2001. The pointer assertion logic engine. In Proc. of

PLDI. Also in SIGPLAN Notices 36(5) (May 2001).

O’Hearn, P. W., Reynolds, J. C., and Yang, H. 2001. Local reasoning about programs that
alter data structures. In Proc. of CSL. 1–19.

Podelski, A., Rybalchenko, A., and Wies, T. 2008. Heap assumptions on demand. In Proc.

of CAV. 314–327.

Reynolds, J. C. 2002. Separation logic: A logic for shared mutable data structures. In Proc. of

LICS. 55–74.

Rinetzky, N., Bauer, J., Reps, T. W., Sagiv, S., and Wilhelm, R. 2005. A semantics for
procedure local heaps and its abstractions. In POPL. 296–309.

Rinetzky, N., Sagiv, M., and Yahav, E. 2005. Interprocedural shape analysis for cutpoint-free
programs. In Proc. of SAS. 284–302.

Rinetzky, N. and Sagiv, S. 2001. Interprocedural shape analysis for recursive programs. In CC.
133–149.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

44 · Bhargav S. Gulavani et al.

Sagiv, M., Reps, T., and Wilhelm, R. 1999. Parametric shape analysis via 3-valued logic. ACM

TOPLAS 24, 2002.

Touili, T. 2001. Regular model checking using widening techniques. In Proc. of VEPAS’01.

Yorsh, G., Rabinovich, A. M., Sagiv, M., Meyer, A., and Bouajjani, A. 2006. A logic of
reachable patterns in linked data-structures. In FoSSaCS. 94–110.

A. COMPOSITION OF STRONG HOARE TRIPLES USING STRONG BI-ABDUCTION

Let Post(S, (s, h)) denote the set of states resulting from the execution of S starting
from the initial state (s, h). We say that a program statement S satisfies domain
expansion property if for any state (s′, h′) ∈ Post(S, (s, h)), we have dom(h′) ⊇
dom(h). A program statement S satisfies minimal resource property if (s′, h′) ∈
Post(S, (s, h)) implies that for all h0 disjoint from h and h′, (s′, h′ ⊔ h0) ∈ Post(S,
(s, h ⊔ h0)). It is straightforward to see that all the primitive program statements
given in Figure 2, except the deallocation statement dispose, satisfy the domain
expansion and minimal resource properties.
Note that although the program fragment S : x := new; dispose x satisfies the

domain expansion property, it does not satisfy the minimal resource property. This
can be shown as follows. Consider (s′, h′) ∈ Post(S, (s, h)), where s′(x) = s′(y) = l′,
s(x) = l, s(y) = l′, and dom(h′) = dom(h) = ∅. Let dom(h0) = {l′}. Starting from
a state (s, h ⊔ h0), execution of S cannot result in a state (s′, h′ ⊔ h0) because the
statement x := new cannot allocate a new object at an already allocated location
l′ ∈ dom(h ⊔ h0). Hence, (s′, h′ ⊔ h0) /∈ Post(S, (s, h ⊔ h0)), although h0 is disjoint
from h and h′.
In the following, we first show that programs without the deallocation statement

satisfy the domain expansion and minimal resource properties. Later, we prove
that if the deallocation statement is disallowed then the composition of strong
Hoare triples using strong bi-abudction yields strong Hoare triples.

Lemma A.1. If statements S1 and S2 satisfy domain expansion and minimal
resource properties then their composition S1; S2 also does.

Proof. Consider (s′′, h′′) ∈ Post(S1; S2, (s, h)). Let (s′, h′) be an intermediate
state such that (s′, h′) ∈ Post(S1, (s, h)) and (s′′, h′′) ∈ Post(S2, (s

′, h′)). Since
S1 and S2 both satisfy domain expansion property, it follows that dom(h′′) ⊇
dom(h′) ⊇ dom(h). Hence S1; S2 satisfies the domain expansion property.
Consider a trace starting from (s, h) such that (s′, h′) ∈ Post(S1, (s, h)) and

(s′′, h′′) ∈ Post(S2, (s
′, h′)). By the domain expansion property, we have dom(h′′) ⊇

dom(h′) ⊇ dom(h). Hence for all h0 such that h0#h
′′, we have h0#h

′ and h0#h.
Combining these with the fact that both S1 and S2 satisfy minimal resource prop-
erty, we obtain that for all h0 such that h0#h

′′, (s′′, h0⊔h′′) ∈ Post(S2, (s
′, h0⊔h′))

and (s′, h0 ⊔ h′) ∈ Post(S1, (s, h0 ⊔ h)). Hence S1; S2 satisfies minimal resource
property.

Lemma A.2. If assert(B); S satisfies domain expansion and minimal resource
properties then while(B) S also does.

Proof. This can be proved by induction on the number of times the loop body
iterates using Lemma A.1 as the base case.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Bottom-up Shape Analysis using LISF · 45

Lemma A.3. If S1 satisfies domain expansion and minimal resource properties,
[ϕ1] S1 [ϕ̂1] is a strong Hoare triple, and ϕpre∩mod(S1) = ∅ then [ϕ1∗ϕpre] S1 [ϕ̂1∗
ϕpre] is a strong Hoare triple.

Proof. By frame rule, it is evident that [ϕ1∗ϕpre] S1 [ϕ̂1∗ϕpre] is a valid Hoare
triple.
We now show that [ϕ1 ∗ϕpre] S1 [ϕ̂1 ∗ϕpre] is strong. Consider (s, h) |= ϕ̂1 ∗ϕpre.

Let h = h1#h2 such that (s, h1) |= ϕ̂1 and (s, h2) |= ϕpre. Since [ϕ1] S1 [ϕ̂1] is a
strong Hoare triple, there exists (s′, h′1) |= ϕ1 such that (s, h1) ∈ Post(S1, (s

′, h′1)).
Since s and s′ map variables other than mod(S1) to same values, and since ϕpre is
independent of mod(S1), it follows that (s

′, h2) |= ϕpre. Moreover, since S1 satisfies
domain expansion property, dom(h′1) ⊆ dom(h1) and hence h′1#h2. Consequently,
(s′, h′1 ⊔h2) |= ϕ1 ∗ϕpre. Furthermore, since S1 satisfies minimal resource property,
(s, h1 ⊔ h2) ∈ Post(S1, (s

′, h′1 ⊔ h2)). Thus for every (s, h) |= ϕ̂1 ∗ ϕpre there exists
(s′, h′) |= ϕ1∗ϕpre such that (s, h) ∈ Post(S1, (s

′, h′)). Hence [ϕ1∗ϕpre] S1 [ϕ̂1∗ϕpre]
is a strong Hoare triple.

Lemma A.4. If statements S1 and S2 satisfy domain expansion and minimal
resource properties, [ϕ1] S1 [ϕ̂1] and [ϕ2] S2 [ϕ̂2] are strong Hoare triples, ϕ̂1 ∗
ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2), and ϕpre ∩ mod(S1) = ϕpost ∩ mod(S2) = ∅ then [ϕ1 ∗
ϕpre] S1; S2 [∃Z. (ϕpost ∗ ϕ̂2)] is a strong Hoare triple.

Proof. Given the assumptions and using the frame rule, it is straightforward
to show that [ϕ1 ∗ ϕpre] S1; S2[∃Z. (ϕpost ∗ ϕ̂2)] is a valid Hoare triple.
From Lemma A.3 it follows that [ϕ1∗ϕpre] S1 [ϕ̂1∗ϕpre] and [ϕpost∗ϕ2] S2 [ϕpost∗

ϕ̂2] are strong Hoare triples. Hence [∃Z. (ϕpost∗ϕ2)] S2 [∃Z. (ϕpost∗ϕ̂2)] is a strong
Hoare triple.
Since ϕ̂1∗ϕpre ⇔ ∃Z. (ϕpost∗ϕ2) it follows that [ϕ1∗ϕpre] S1; S2 [∃Z. (ϕpost∗ϕ̂2)]

is a strong Hoare triple.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

