Abstract Interpretation and Program Verification

Supratik Chakraborty
IIT Bombay
Program Analysis: An Example

```c
int x = 0, y = 0, z;
read(z);
while (f(x, z) > 0) {
    if (g(z, y) > 10) {
        x = x + 1;  y = y + 100;
    }
    else if (h(z) > 20) {
        if (x >= 4) {
            x = x + 1;  y = y + 1;
        }
    }
}
```

IDEAS?

- Run test cases
- Get code analyzed by many people
- Convince yourself by ad-hoc reasoning

What is the relation between x and y on exiting while loop?
Program Verification: An Example

```
int x = 0, y = 0, z;
read(z);
while (f(x, z) > 0) {
    if (g(z, y) > 10) {
        x = x + 1; y = y + 100;
    }
    else if (h(z) > 20) {
        if (x >= 4) {
            x = x + 1; y = y + 1;
        }
    }
}
assert(x < 4 OR y >= 2);
```

IDEAS?
- Run test cases
- Get code analyzed by many people
- Convince yourself by ad-hoc reasoning

INVARIANT or PROPERTY
Verification & Analysis: Close Cousins

- Both investigate relations between program variables at different program locations
- Verification: A (seemingly) special case of analysis
 - Yes/No questions
 - No simpler than program analysis
- Both problems **undecidable** (in general) for languages with loops, integer addition and subtraction
 - Exact algorithm for program analysis/verification that works for all programs & properties: an impossibility
- This doesn’t reduce the importance of proving programs correct
 - Can we solve this in special (real-life) cases?
Hope for Real-Life Software

- Certain classes of analyses/property-checking of real-life software feasible in practice
 - Uses domain specific techniques, restrictions on program structure…
 - “Safety” properties of avionics software, device drivers, …
- A practitioner’s perspective
Some Driving Factors

- Compiler design and optimizations
 - Since earliest days of compiler design
- Performance optimization
 - Renewed importance for embedded systems
- Testing, verification, validation
 - Increasingly important, given criticality of software
- Security and privacy concerns
- Distributed and concurrent applications
 - Human reasoning about all scenarios difficult
Successful Approaches in Practical Software Verification

- Use of sophisticated abstraction and refinement techniques
 - Domain specific as well as generic
- Use of constraint solvers
 - Propositional, quantified boolean formulas, first-order theories, Horn clauses ...
- Use of scalable symbolic reasoning techniques
 - Several variants of decision diagrams, combinations of decision diagrams & satisfiability solvers ...
- Incomplete techniques that scale to real programs
Focus of today’s talk

Abstract Interpretation Framework

- Elegant **unifying framework** for several program analysis & verification techniques
- Several success stories
 - Checking properties of avionics code in Airbus
 - Checking properties of device drivers in Windows
 - Many other examples
 - Medical, transportation, communication ...
- But, **NOT a panacea**
- Often used in combination with other techniques
Sequential Program State

- Given sequential program P
 - State: information necessary to determine complete future behaviour
 - (pc, store, heap, call stack)
 - pc: program counter/location
 - store: map from program variables to values
 - heap: dynamically allocated/freed memory and pointer relations thereof
 - call stack: stack of call frames
A simple program:

```c
int func(int a, int b)
{
    int x, y;
    L1: x = 0;
    L2: y = 1;
    L3: if (a >= b + 2)
    L4:   a = y;
    else
    L5:   b = x;
    L6: return (a-b);
}
```

State = (pc, store) heap, stack unchanged within func

```
L1, 2, 7, 2, 0
L2, 0, 7, 2, 0
L3, 0, 1, 2, 0
L4, 0, 1, 2, 0
L6, 0, 1, 1, 0
```
int func(int a, int b)
{ int x, y;
 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 L4: a = y;
 else
 L5: b = x;
 L6: return (a-b);
}
Programs as State Transition Systems

State: pc, x, y, a, b

```c
int func(int a, int b)
{
    int x, y;
    L1: x = 0;
    L2: y = 1;
    L3: if (a >= b + 2)
        L4:   a = y;
    else
        L5:   b = x;
    L6: return (a - b);
}
```
Specifying Program Properties

Pre-condition:
{ a + b >= 0 }
int func(int a, int b)
{ int x, y;
 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 // assert (a-b <= 1);
 L4: a = y;
 else
 L5: b = x;
 L6: return (a-b);
}

Post-condition:
{ ret_val <= 1 }

State: pc, x, y, a, b
Specifying Program Properties

State: pc, x, y, a, b

Pre-condition:
{ a + b >= 0 }
int func(int a, int b)
{ int x, y;
 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2) // assert (a-b <= 1);
 L4: a = y;
 else
 L5: b = x;
 L6: return (a-b);
}

Post-condition:
{ ret_val <= 1 }
Assertion Checking as Reachability

Path from initial to assertion violating state?

Absence of path: System cannot exhibit error
Presence of path: System can exhibit error

What happens with procedure calls/returns?
State Space: How large is it?

- State = (pc, store, heap, call stack)
 - pc: finite valued
 - store: finite if all variables have finite types
 - Every program statement effects a state transition
 - enum \{wait, critical, noncritical\} pr_state (finite)
 - int a, b, c (infinite)
 - bool *p, *q (infinite)
 - heap: unbounded in general
 - call stack: unbounded in general
- **Bad news: State space infinite in general**
Dealing with State Space Size

- Infinite state space
 - Difficult to represent using state transition diagram
 - Can we still do some reasoning?
- Solution: Use of abstraction
 - Naive view
 - Bunch sets of states together “intelligently”
 - Don't talk of individual states, talk of a representation of a set of states
 - Transitions between state set representations
 - Granularity of reasoning shifted
 - Extremely powerful general technique
 - Allows reasoning about large/infinite state spaces
Simple Abstractions

Group states according to values of variables and pc

```
int func(int a, int b)
{
    int x, y;
    L1: x = 0;
    L2: y = 1;
    L3: if (a >= b + 2)
        L4:   a = y;
    else
        L5:   b = x;
    L6: return (a-b);
}
```

State: pc, x, y, a, b

Group states with same pc

- L1, -1, 10, 9, 1
- L1, 2, 7, 2, 0
- L1, 3, 20, 8, 7
Programs as State Set Transformers

Group states according to values of variables and pc

![Diagram showing program states based on conditions](image-url)

```c
int func(int a, int b)
{
    int x, y;
    L1: x = 0;
    L2: y = 1;
    L3: if (a >= b + 2)
        L4:   a = y;
    else
        L5:   b = x;
    L6: return (a-b);
}
```

- a < 5
- a >= 5

Group states with same pc
Programs as Abstr State Transformers

- Recall: Set of (potentially infinite) concrete states is an abstract state
- Think of program as abstract state transformer

State: pc, x, y, a, b

L4: a = y

Program statement as concrete state transformer

L4, 2, 7, 2, 0

L4, -1, 10, 9, 1

L4, 3, 20, 8, 7

L6, 2, 7, 7, 0

L6, -1, 10, 10, 1

L6, 3, 20, 20, 7

L4, 3, 20, 8, 7
Programs as Abstr State Transformers

- Recall: Set of (potentially infinite) concrete states is an abstract state
- Think of program as abstract state transformer

Central problem: Compute \(a_2 \) from \(a_1 \) and prog stmt (abstract state transitions)
A Generic View of Abstraction

- Every subset of concrete states mapped to unique abstract state
- Desirable to capture containment relations
- Transitions between state sets (abstract states)
Pre-condition:
\{ a + b >= 0 \}

int func(int a, int b)
{ int x, y;
 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 // assert (a-b <= 1);
 L4: a = y;
 else
 L5: b = x;
 L6: return (a-b);
}

Post-condition:
\{ ret_val <= 1 \}
Pre-condition: \{ a + b \geq 0 \}

int func(int a, int b)
{
 int x, y;
 L1: x = 0;
 L2: y = 1;
 L3: if (a \geq b + 2) // assert (a-b \leq 1);
 L4: a = y;
 else
 L5: b = x;
 L6: return (a-b);
}

Post-condition: \{ ret_val \leq 1 \}

The Game Plan

How do we choose the right abstraction?
Is there a method beyond domain expertise?
Can we learn from errors in abstraction to build better (refined) abstractions?
Can refinement be automated?
Supratik Chakraborty, IIT Bombay

Pre-condition: \(\{ a + b \geq 0 \} \)

```c
int func(int a, int b)
{
    int x, y;
    L1: x = 0;
    L2: y = 1;
    L3: if (a >= b + 2) // assert (a-b <= 1);
        L4:   a = y;
    else
        L5:   b = x;
    L6: return (a-b);
}
```

Post-condition: \(\{ \text{ret_val} \leq 1 \} \)

The Game Plan

Abstract state spaces can be infinite. What can we do to make abstract analysis practical? Finite ascending chains what beyond?

Abstract analysis engine
Desirable Properties of Abstraction

- Suppose $S_1 \subseteq S_2$: subsets of concrete states
 - Any behaviour starting from S_1 can also happen starting from S_2

- If $\alpha(S_1) = a_1, \alpha(S_2) = a_2$ we want this monotonicity in behaviour in abstract state space too
 - Need ordering of abstract states, similar in spirit to $S_1 \subseteq S_2$
Structure of Concrete State Space

- Set of concrete states: \(S \)
 - Concrete lattice \(C = (\mathcal{P}(S), \subseteq, \cup, \cap, S, \emptyset) \)

[Diagram with nodes labeled:
- Powerset of \(S \)
- Partial order
- Least upper bound
- Greatest lower bound
- Bottom element
- Top element]
Structure of Abstract State Space

- Abstract lattice $\mathcal{A} = (\mathcal{A}, \subseteq, \cup, \cap, \top, \bot)$

- Abstraction function $\alpha : \wp(S) \to \mathcal{A}$
 - Monotone: $S_1 \subseteq S_2 \Rightarrow \alpha(S_1) \subseteq \alpha(S_2)$ for all $S_1, S_2 \subseteq S$
 - $\alpha(S) = \top, \quad \alpha(\emptyset) = \bot$

- Concretization function $\gamma : \mathcal{A} \to \wp(S)$
 - Monotone: $a_1 \subseteq a_2 \Rightarrow \gamma(a_1) \subseteq \gamma(a_2)$ for all $a_1, a_2 \in \mathcal{A}$
 - $\gamma(\top) = S, \quad \gamma(\bot) = \emptyset$
A Simple Abstract Domain
Supratik Chakraborty, IIT Bombay

Interval Abstract Domain

- Simplest domain for analyzing numerical programs
- Represent values of each variable separately using intervals
- Example:
 L0: x = 0; y = 0;
 L1: while (x < 100) do
 L2: x = x+1;
 L3: y = y+1;
 L4: end while
If the program terminates, does x have the value 100 on termination?
Interval Abstract Domain

- Abstract states: intervals of values of x, pc implicit
 - [-10, 7]: \(\{ (x, y) \mid -10 \leq x \leq 7 \} \)
 - \((\infty, 20]\): \(\{ (x, y) \mid x \leq 20 \} \)

- \(\sqsubseteq\) relation: Inclusion of intervals
 - \([-10, 7] \sqsubseteq [-20, 9]\)

- \(\sqcup\) and \(\sqcap\): union and intersection of intervals
 - \([-10, 9] \sqcup [-20, 7] = [-20, 9]\)
 - \([-10, 9] \sqcap [-20, 7] = [-10, 7]\)

- \(\bot\) is empty interval of x

- \(\top\) is \((\infty, +\infty)\)
Interval Abstract Domain

- Abstract states: intervals of values of x, pc implicit

 \([-10, 7]: \{ (x, y) | -10 \leq x \leq 7 \} \)

 \((-\infty, 20]: \{ (x, y) | x \leq 20 \} \)

- \(\sqsubseteq\) relation: Inclusion of intervals

 \([-10, 7] \sqsubseteq [-20, 9]\)

- \(\sqcup\) and \(\sqcap\): union and intersection

 \([-10, 9] \sqcup [-20, 7] = [-20, 9]\)

 \([-10, 9] \sqcap [-20, 7] = [-10, 7]\)

- \(\bot\) is empty interval of x

- \(\top\) is \((-\infty, +\infty)\)

\[\alpha(\{(L1, 1, 3), (L1, 2, 4), (L1, 5, 7)\}) = [1, 5]\]

\[\alpha(\{(L1, 5, 7), (L1, 7, 6), (L1, 9, 10)\}) = [5, 9]\]

\[\alpha(\{(L1, 5, 7)\}) = [5, 5]\]
Interval Abstract Domain

- Abstract states: pairs of intervals (one for x, y), pc implicit
 - $(\[-10, 7\], (-\infty, 20])$
 - \subseteq relation: Inclusion of intervals
 - $(\[-10, 7\], (-\infty, 20]) \subseteq (\[-20, 9\], (-\infty, +\infty))$
 - \sqcup and \cap: union and intersection of intervals
 - $(\[-10, 9\], (-\infty, 20]) \cap (\[-20, 7\], [3, +\infty)) = (\[-10, 7\], [3, 20])$
 - $(\[-10, 9\], (-\infty, 20]) \sqcup (\[-20, 7\], [3, +\infty)) = (\[-20, 9\], (-\infty, +\infty))$
- \bot is empty interval of x and y
- \top is $(\(-\infty, +\infty\), (-\infty, +\infty))$
Desirable Properties of α and γ

For all $S_1 \subseteq C$ and $S_1 \subseteq \gamma(\alpha(S_1))$.

Set of concrete states C \hspace{2cm} Set of abstract states A

S_1 \hspace{1cm} γ \hspace{1cm} α
Desirable Properties of α and γ

\[S_1 \subseteq \gamma(\alpha(S_1)) \] \[\forall S_1 \subseteq C \]
\[\alpha(\gamma(a_1)) \subseteq a_1 \] \[\forall a_1 \in A \]

α and γ form a Galois connection

Supratik Chakraborty, IIT Bombay
Desirable Properties of α and γ

- α and γ form a Galois connection
- Second (equivalent) view:
 \[\alpha(S_1) \subseteq a_1 \iff S_1 \subseteq \gamma(a_1) \text{ for all } S_1 \subseteq S, \ a_1 \in A \]
Computing Abstract State Transitions

Set of concrete states

Concrete state c1

L4: a = y

Concrete state c2

Set of abstract states

Abstract state a1

L4: a = y

Abstract state a2

Abstraction (\(\alpha\))

Concretization (\(\gamma\))
Computing Abstract State Transitions

- Concrete state set transformer function
 - Example:

\[
S_1 = \{ (L4, x, y, a, b) | \ldots \} : \text{set of concr. states}
\]

\[
S_2 = \{ (L6, x, y, a', b) | (L4, x, y, a, b) \in S_1, \ a' = y \}
\]

\[= F^C(S_1) : \text{set of concrete states}\]

Monotone concrete state set transformer function for stmt at L4
Computing Abstract State Transitions

- Abstract state transformer function
 - Example:

\[
\text{Set of concrete states}
\]

\[
\begin{align*}
\alpha & = \gamma(\mathcal{F}^C(\gamma(a_1))) \\
\mathcal{F}^A(a_1) & \supseteq \alpha(\mathcal{F}^C(\gamma(a_1))) \text{ often used}
\end{align*}
\]
Example Abstr State Transition

L0: \(x = 0; \ y = 0; \)

L1: while \((x < 100)\) do

\[\]

L2: \(x = x+1; \)

L3: \(y = y+1; \)

L4: end while

Abstract states: pairs of intervals (one for \(x, \ y\)), pc implicit

\[
\frac{ly' = ly + 1}{uy' = uy + 1}
\]

\([lx, \ ux] , \ [ly, \ uy]\)

\(F^A(a1) \sqsupseteq \alpha(F^C(y(a1)))\)
Example Abstr State Transition

L0: \(x = 0; \ y = 0; \)
L1: while \((x < 100) \) do
 L2: \(x = x+1; \)
 L3: \(y = y+x; \)
L4: end while

Abstract states: pairs of intervals (one for \(x, y \)), pc implicit

\[
F^A(a1) \equiv \alpha(F^C(y(a1)))
\]

\[
y = y+x;
\]

\[
([lx, ux], [ly, uy]) \rightarrow ([lx, ux], [ly', uy'])
\]

\[
ly' = ly + lx
\]

\[
uy' = uy + ux
\]
Computing Abstract State Transitions

- Abstract state transformer for if-then-else
 - Example:

 ![Diagram](image)

 \[
 \text{acond} = \alpha((x, y, a, b) \mid a \geq b+2)
 \]

 \[
 \text{acondb} = \alpha((x, y, a, b) \mid a < b+2)
 \]

 L3: if \((a \geq b+2)\) goto L4 else goto L5

 \[
 a2 = a1 \cap \text{acond}
 \]

 \[
 \text{pc in a2: L4}
 \]

 \[
 a3 = a1 \cap \text{acondb}
 \]

 \[
 \text{pc in a3: L5}
 \]
Dealing with Loops

Abstract pre-cond: a0

L0: \(a = 0; \) \(b = 0; \)

L1: …… ;

L7: while (a > b) do

L8: ….. ;

L19:…… ;

L20: end while

L21: ……;

L100: ……;
Dealing with Loops

L0: \(a = 0; \ b = 0; \)
L1: \(\ldots \ldots; \)
L7: while \((a > b) \) do
 L8: \(\ldots\ldots; \)
 L19: \(\ldots\ldots; \)
L20: end while
L21: \(\ldots\ldots; \)
L100: \(\ldots\ldots; \)

Abstract state: \(a_1 = F_{a0}^A(a0) \)
Dealing with Loops

L0: \(a = 0; \ b = 0; \)

L1: \(\ldots \ldots; \)

L7: while \((a > b)\) do

L8: \(\ldots \ldots; \)

L19: \(\ldots \ldots; \)

L20: end while

L21: \(\ldots \ldots; \)

L100: \(\ldots \ldots; \)

Abstract state: \(a_{7} = F_{1..7}^{A}(a_{1}) \)
Dealing with Loops

L0: a = 0; b = 0;
L1: ;
L7: while (a > b) do
 L8: ;
 L19:;
L20: end while
L21: ;
L100:;

Abstract state a20? Can’t be computed as $F^A_{8..19}$ (a7 □ acond)
Loop may iterate 0,1,2,... times

$\alpha(...)$ = acond

Loop Body
Dealing with Loops

L0: \(a = 0; \ b = 0; \)

L1: \(\ldots \ldots \); \(\alpha(\text{not } \ldots) = acondb \)

L7: while \((a > b)\) do

L8: \(\ldots \ldots \); \(\alpha(acondb) \)

L100: \(\ldots \ldots \);

L100: \(\ldots \ldots \);

Calculate abstract loop invariant \(a7^* \) at L7. Whenever L7 is reached in program, corresponding abstract state

Abstract state \(a20 = (a7^* \quad acondb) \)
Dealing with Loops

L0: \(a = 0; b = 0;\)

L1:

L7: while \((a > b)\) do

L8:

L19:

L20: end while

L21:

L100:

Abstract state: \(a_{21} = a_{20}\)
Dealing with Loops

L0: a = 0; b = 0;
L1: ;
L7: while (a > b) do
 L8: ;
L19: ;
L20: end while
L21: ;
L100: ;

Abstract state:
\[a_{100} = F^A_{21..100}(a_{21}) \]

Loops can be handled if we know how to compute abstract loop invariants
Computing Abstract Loop Invariant

- Example:
 L7: while (a > b) do
 L8:;
 L19:;
 L20: end while

Given
F^A : abstr state transformer of loop body L8...L19
a : abstr state at L7 the first time L7 is reached

What is the abstract loop invariant at L7?
Computing Abstract Loop Invariant

Given
\(F^A : \) abstr state transformer of loop body,
\(a : \) abstr state at L7 the first time L7 is reached

What is the abstract loop invariant at L7?

\[
a \text{cond} = \alpha(\{ s \mid s \text{ is a concrete state with } a > b \})
\]

Current view of abstract loop invariant
Computing Abstract Loop Invariant

Given

\(F^A \) : abstr state transformer of loop body,
\(a \) : abstr state at L7 the first time L7 is reached

What is the abstract loop invariant at L7?

\[\text{acond} = \alpha(\{ s \mid s \text{ is a concrete state with } a > b \}) \]

Current view of abstract loop invariant

Supratik Chakraborty, IIT Bombay
Computing Abstract Loop Invariant

Given

\(F^A : \text{abstr state transformer of loop body} \),
\(a : \text{abstr state at L7 the first time L7 is reached} \)

What is the abstract loop invariant at L7?

\[acond = \alpha(\{s \mid s \text{ is a concrete state with } a > b\}) \]

Current view of abstract loop invariant

Recall: Meet-over-paths
Computing Abstract Loop Invariant

Given

\(F^A : \) abstr state transformer of loop body,
\(a : \) abstr state at L7 the first time L7 is reached

What is the abstract loop invariant at L7?

\[a \text{cond} = \alpha(\{ s \mid s \text{ is a concrete state with } a > b \}) \]

Abstract loop invariant

How do we calculate this effectively without knowing bound of loop iterations?
Abstract Loop Invariant: Another view

\[a \text{cond} = \alpha \{ s \mid s \text{ is a concrete state with } a > b \} \]

Successive views of the loop invariant at L7:
\[z_0 = a \]
Abstract Loop Invariant: Another view

\(a\text{cond} = \alpha (\{s \mid s \text{ is a concrete state with } a > b\}) \)

Successive views of the loop invariant at L7:
- \(z_0 = a \)
- \(z_1 = a \sqcap F^A (z_0 \nabla a\text{cond}) \)
Abstract Loop Invariant: Another View

\[a_{\text{cond}} = \alpha (\{ s \mid s \text{ is a concrete state with } a > b \}) \]

Successive views of loop invariant at L7:
\[z_0 = a \]
\[z_1 = a \sqcap F^A (z_0 \sqcap a_{\text{cond}}) \]
\[z_2 = a \sqcap F^A (z_1 \sqcap a_{\text{cond}}) \]
Abstract Loop Invariant: Another View

\[\text{acond} = \alpha \left(\{ s \mid s \text{ is a concrete state with } a > b \} \right) \]

Successive views of loop invariant at L7:

\[z_0 = a \]
\[z_1 = a \cup F^A (z_0 \cap \text{acond}) \]
\[z_2 = a \cup F^A (z_1 \cap \text{acond}) \]

\ldots\ldots

\[z_{i+1} = a \cup F^A (z_i \cap \text{acond}) \]
Abstract Loop Invariant: Another View

\[\text{acond} = \alpha \ (\{s \mid s \text{ is a concrete state with } a > b\}) \]

Successive views of loop invariant at L7:

\[z_0 = a = a \sqcup \mathcal{F}^A (\perp \sqcap \text{acond}) \]
\[z_1 = a \sqcup \mathcal{F}^A (z_0 \sqcap \text{acond}) = g(\perp) \]
\[z_2 = a \sqcup \mathcal{F}^A (z_1 \sqcap \text{acond}) = g(g(\perp)) \]

\[z_{i+1} = a \sqcup \mathcal{F}^A (z_i \sqcap \text{acond}) = g(\ldots g(\perp) \ldots) \]

\[z_0 \sqsubseteq z_1 \sqsubseteq z_2 \sqsubseteq \ldots \]

Reasonable requirements:

\[\mathcal{F}^A (\perp) = \perp \]

If \(a_1 \sqsubseteq a_2 \) then \(\mathcal{F}^A (a_1) \sqsubseteq \mathcal{F}^A (a_2) \)

\[g(z) = a \sqcup \mathcal{F}^A (z \sqcap \text{acond}) \]

\[g(\) \text{ monotone} \]
Abstract Loop Invariant: Another View

\(a\text{cond} = \alpha (\{s \mid s \text{ is a concrete state with } a > b\}) \)

Successive views of loop invariant at L7:

\[
\begin{align*}
z_0 &= g(\bot) \\
z_1 &= g(g(\bot)) \\
z_2 &= g(g(g(\bot))) \\
&\vdots \\
z_i &= g(\ldots g(\bot)\ldots)
\end{align*}
\]

Abstract loop invar = \(\lim_{i \to \infty} g^{(i)} (\bot) \)

Reasonable requirements:

\(F^A(\bot) = \bot \)

If \(a_1 \sqsubseteq a_2 \) then \(F^A(a_1) \sqsubseteq F^A(a_2) \)

\[
g(z) = a \sqcup F^A(z \cap a\text{cond})
\]

\(g(__) \) monotone
Abstract Loop Invariant: Another View

Abstract loop invar = \(\lim_{i \to \infty} g^{(i)}(\bot) \)

= smallest \(a^* \) s.t. \(g(a^*) = a^* \)

= “least fixed point” of \(g(\) \)

Reasonable requirements:

\(F^A(\bot) = \bot \)

If \(a1 \sqsubseteq a2 \) then \(F^A(a1) \sqsubseteq F^A(a2) \)

\(g(z) = a \sqcup F^A(z \sqcap acond) \)

\(g(\) \text{ monotone} \)
Abstract Loop Invariant: Least Fixed Point View

Abstract loop invar a^* computable if \mathcal{A} has no infinite ascending chains

What if there are infinite ascending chains? Can we at least compute an overapprox of a^*?

Observe the sequence

$$g(\bot) \subseteq g^2(\bot) \subseteq \ldots \subseteq g^{(i)}(\bot) \text{ upto i terms}$$

and extrapolate ("informed guess") to a proposed overapprox of a^*

Special extrapolation (widen) operator \triangledown
Abstract Loop Invariant: Widen Operator

\[\nabla: A \times A \rightarrow A \]

Current estimate of limit

Revised estimate of limit

Next element in sequence

Current estimate of limit
Abstract Loop Invariant: Widen Operator

\[\nabla: A \times A \to A \]

Required properties of \(\nabla \)

For every \(a_1, a_2 \) in \(A \)
\[a_1 \nabla a_2 \supseteq a_1 \quad \text{and} \quad a_1 \nabla a_2 \supseteq a_2 \]

For every \(a_0 \subseteq a_1 \subseteq a_2 \subseteq \ldots \), the sequence
\[z_0 = a_0 \]
\[z_1 = z_0 \nabla a_1 \]
\[z_2 = z_1 \nabla a_2 \]
\[\ldots \]
\[z_{i+1} = z_i \nabla a_{i+1} \]

stabilizes, i.e.
There exists an \(i \geq 0 \) s.t. \(z_i = z_{i+1} = z_{i+2} = \ldots \)

Stabilized value \(z^* \supseteq \) limit of \(a_0, a_1, a_2, \ldots \).
Abstract Loop Invariant: Widen Operator

∇: A x A → A

Compute $g(\bot)$, $g^2(\bot)$, ... $g^{(k)}(\bot)$ for parameter $k > 0$

Define $a_0 = g^{(k)}(\bot)$
$a_1 = g(z_0)$
$a_2 = g(z_1)$

........
$a_i = g(z_{i-1})$

Fact: $g^{(k+j)}(\bot) \subseteq a_j \subseteq a_{j+1}$ for all $j \geq 0$

Recall g: $A \rightarrow A$ is monotone
Abstract Loop Invariant: Widen Operator

\(\nabla: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A} \)

Compute \(g(\perp) \), \(g^2(\perp) \), \(\ldots \) \(g^{(k)}(\perp) \) for parameter \(k > 0 \)

Define \(a_0 = g^{(k)}(\perp) \) \(z_0 = a_0 \)
\(a_1 = g(z_0) \) \(z_1 = z_0 \uplus a_1 \)
\(a_2 = g(z_1) \) \(z_2 = z_1 \uplus a_2 \)
\(\ldots \)
\(a_i = g(z_{i-1}) \) \(z_i = z_{i-1} \uplus a_i \)

Fact: \(g^{(k+j)}(\perp) \subseteq a_j \subseteq a_{j+1} \) for all \(j \geq 0 \)

If \(z_i = z_{i+1} \), then
\(a_{j+1} = a_{i+1} \) for all \(j \geq i \)
\(z_j = z_i \) for all \(j \geq i \)

Can detect when sequence stabilizes
Abstract Loop Invariant: Widen Operator

\[\nabla: A \times A \rightarrow A \]

Compute \(g(\perp), g^2(\perp), \ldots g^{(k)}(\perp) \) for parameter \(k > 0 \)

Define \(a_0 = g^{(k)}(\perp) \)

\[z_0 = a_0 \]
\[a_1 = g(z_0) \]
\[z_1 = z_0 \nabla a_1 \]
\[a_2 = g(z_1) \]
\[z_2 = z_1 \nabla a_2 \]
\[\ldots \]
\[a_i = g(z_{i-1}) \]
\[z_i = z_{i-1} \nabla a_i \]

Stabilized value \(z^* \) overapproximates \(g^{(i)}(\perp) \) for all \(i \geq 0 \)

Abstract loop invariant

In fact, \(g^{(r)}(z^*) \) also overapproximates \(g^{(i)}(\perp) \) for all \(r \geq 0 \)
Another View of Widening

Supratik Chakraborty, IIT Bombay

Least fixed point

Post-fixed points $g(x) \subseteq x$

Fixed points $g(x) = x$

Pre-fixed points $x \subseteq g(x)$
Another View of Widening

Post-fixed points $g(x) \subseteq x$

Fixed points $g(x) = x$

Pre-fixed points $x \subseteq g(x)$

Fixed points $g(x) = x$
Another View of Widening

\[z^* = z^* \sqcup g(z^*) \]
implies
\[g(z^*) \sqsubseteq z^* \]

\[z^* \] is a
post-fixed point

\[g^k(\bot) \]
\[g^{k+1}(\bot) \]

\[z^* \]
\[z_1 \]
\[z_2 \]
\[z_3 \]
\[z_m \]

Post-fixed points
\[g(x) \sqsubseteq x \]

Fixed points
\[g(x) = x \]

Pre-fixed points
\[x \sqsubseteq g(x) \]

Supratik Chakraborty, IIT Bombay
Another View of Widening

$z^* = z^* \vee g(z^*)$ implies $g(z^*) \sqsubseteq z^*$

z^* is a post-fixed point

$g^{(r)}(z^*)$ is a post-fixed point and $\text{lfp} \sqsubseteq g^{(r)}(z^*)$

$z^* = z^* \sqcup g(z^*)$
implies $g(z^*) \sqsubseteq z^*$

z^* is a post-fixed point

$g(z^*)$ is a post-fixed point and $\text{lfp} \sqsubseteq g^{(r)}(z^*)$

$g(\bot)$
$g^{(k)}(\bot)$

Pre-fixed points $x \sqsubseteq g(x)$

Fixed points $g(x) = x$

Post-fixed points $g(x) \sqsubseteq x$

Supratik Chakraborty, IIT Bombay
Putting It All Together

- Given a program P and an assertion φ at location L
 - Choose an abstract lattice (domain) A with a \triangledown operator
 - Compute abstract invariant at each location of P
 - If abstract invariant at L is a_L, check if $\gamma(a_L)$ satisfies φ
 - The theory of abstract interpretation guarantees that

 - $\gamma(a_L) \supseteq \text{concrete invariant at } L$
Interval Abstract Domain

- Simplest domain for analyzing numerical programs
- Represent values of each variable separately using intervals

Example:

L0: x = 0; y = 0;
L1: while (x < 100) do
 L2: x = x+1;
 L3: y = y+1;
L4: end while

If the program terminates, does x have the value 100 on termination?
Interval Abstract Domain

- Abstract states: pairs of intervals (one for each of x, y)
 - $[-10, 7]$, $(-\infty, 20]$
 - \sqsubseteq relation: Inclusion of intervals
 - $[-10, 7]$, $(-\infty, 20] \sqsubseteq [-20, 9]$, $(-\infty, +\infty)$
 - \cup and \cap: union and intersection of intervals
 - $[a, b] \sqcup [c, d] = [e, f]$, where
 - $e = a$ if $c \geq a$, and $e = -\infty$ otherwise
 - $f = b$ if $d \leq b$, and $f = +\infty$ otherwise
 - \sqcap similarly defined, and \sqcup is simply $(\sqcup x, \sqcup y)$
 - \perp is empty interval of x and y
 - \top is $(-\infty, +\infty)$, $(-\infty, +\infty)$
Analyzing our Program

L0: \(x = 0; y = 0;\)

L1: while \((x < 100)\) do

L2: \(x = x+1;\)

L3: \(y = y+1;\)

L4: end while
Some Concluding Remarks

- Abstract interpretation: a fundamental technique for analysis of programs
- Choice of right abstraction crucial
- Often getting the right abstraction to begin with is very hard
 - Need automatic refinement techniques
- Very active area of research