
 1

Supratik Chakraborty
IIT Bombay

(Joint work with Ajith John)

VMCAI 2015 (Jan 14, 2015)

Word-level Quantifier Elimination

 2

Example Embedded Code
 ...
state = 0; done = 0;
while (more_inputs() || (done != 0)) {
 if (state == 0) {
 a = s1.rd(); b = s2.rd(); x = 0;
 state = 1; done = 0;
 }
 else if (state == 1) {
 if (x+a <= b) {
 x = x+1; a = 2*a;
 }
 else if (x == b+1) state = 2;
 else { state = 0; done = 1;}
 }
 else if (state == 2) {
 state = 0; done = 1;
 if (0 < a < x) RaiseAlarm();
 }
}

Repeatedly
 Read a, b from sensors/file
 Iteratively compute smallest

 x s.t. 2
x
 * a + x > b

 If smallest x is b+1 and
 (0 < a < x), raise alarm

0 1

2

Q: Can alarm be raised?

 3

Example Embedded Code
 ...
state = 0; done = 0;
while (more_inputs() || (done != 0)) {
 if (state == 0) {
 a = s1.rd(); b = s2.rd(); x = 0;
 state = 1; done = 0;
 }
 else if (state == 1) {
 if (x+a <= b) {
 x = x+1; a = 2*a;
 }
 else if (x == b+1) state = 2;
 else { state = 0; done = 1;}
 }
 else if (state == 2) {
 state = 0; done = 1;
 if (0 < a < x) RaiseAlarm();
 }
}

Repeatedly
 Read a, b from sensors/file
 Iteratively compute smallest

 x s.t. 2
x
 * a + x > b

 If smallest x is b+1 and
 (0 < a < x), raise alarm

NO, if a, b, x are unbounded

unsigned int (surely 2
b
*a+b >b)

YES, if a, b, x are 8-bit
unsigned int, all ops are mod 28

 (consider a = 26, b = 27+2)

 4

Example Embedded Code
 ...
state = 0; done = 0;
while (more_inputs() || (done != 0)) {
 if (state == 0) {
 a = s1.rd(); b = s2.rd(); x = 0;
 state = 1; done = 0;
 }
 else if (state == 1) {
 if (x+a <= b) {
 x = x+1; a = 2*a;
 }
 else if (x == b+1) state = 2;
 else { state = 0; done = 1;}
 }
 else if (state == 2) {
 state = 0; done = 1;
 if (0 < a < x) RaiseAlarm();
 }
}

Repeatedly
 Read a, b from sensors/file
 Iteratively compute smallest

 x s.t. 2
x
 * a + x > b

 If smallest x is b+1 and
 (0 < a < x), raise alarm

NO, if a, b, x are unbounded

unsigned int (surely 2
b
*a+b >b)

YES, if a, b, x are 8-bit
unsigned int, all ops are mod 28

 (consider a = 26, b = 27+2)

Need for bit-precise reasoning

 5

Modeling Controller Code
 Transition relation formula of one unfolding of loop

Term: If (state = 0) then s2_rd else b

state' = ite(state = 0, 1, ite(state = 1, ite(x+a  b, 1, ite(x = b+1, 2, 0)), 0))
Λ

a' = ite(state = 0, s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))
Λ

b' = ite(state = 0, s2_rd, b)
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a  b, x+1, x), x))

state, a, b, x: Values before execution of loop body
state', a', b', x': Values after one execution of loop body

 6

Modeling Controller Code
 Transition relation formula of one unfolding of loop

((x = b+1) Λ (temp= 2)) Ⅴ ((x b+1)ǂ Λ (temp= 0))

state' = ite(state = 0, 1, ite(state = 1, ite(x+a  b, 1, ite(x = b+1, 2, 0)), 0))
Λ

a' = ite(state = 0, s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))
Λ

b' = ite(state = 0, s2_rd, b)
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a  b, x+1, x), x))

Sub-formula: If (x=b+1) then (temp = 2) else (temp = 0)

Linear equality

Consider temp = ite(x = b+1, 2, 0)

 7

Modeling Controller Code
 Transition relation formula of one unfolding of loop

((x = b+1) Λ (temp= 2)) Ⅴ ((x b+1)ǂ Λ (temp= 0))

state' = ite(state = 0, 1, ite(state = 1, ite(x+a  b, 1, ite(x = b+1, 2, 0)), 0))
Λ

a' = ite(state = 0, s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))
Λ

b' = ite(state = 0, s2_rd, b)
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a  b, x+1, x), x))

Sub-formula: If (x=b+1) then (temp = 2) else (temp = 0)

Linear disequality

Consider temp = ite(x = b+1, 2, 0)

 8

Modeling Controller Code
 Transition relation of one unfolding of loop

((x+a  b) Λ …) Ⅴ ((x+a > b) Λ …)

Linear inequality

state' = ite(state = 0, 1, ite(state = 1, ite(x+a  b, 1, ite(x = b+1, 2, 0)), 0))
Λ

a' = ite(state = 0, s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))
Λ

b' = ite(state = 0, s2_rd, b)
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a  b, x+1, x), x))

Trans relation R(state, a, b, x, state', a', b', x') :
Boolean combination of Linear Arithmetic Formulae

Y Y'

 9

Whither Quantifiers?

 Computing strongest post-condition (SP) of
a loop

 Suppose state at start of loop satisfies φ(Y)
 What will state after one loop itern satisfy?
 SP(φ(Y), loop-body) = ∃Y. (φ(Y) Λ R(Y, Y'))

 = a formula on Y'

 10

Whither Quantifiers?
 Bounded model checking

 Values before iteration satisfy I(Y)
 Can values satisfy Bad(Z) at the end of k

iterations?
 Check satisfiability of

I(Y
0
) Λ R(Y

0
, Y

1
) Λ … Λ R(Y

k-1
, Y

k
) Λ Bad(Z

k
)

 Includes all variables in each unrolling
 Bottleneck if k is large

 Can we use an abstract transition relation?
 R'(W, W') = ∃(Y\W)∃(Y'\W'). R(Y, Y')
 W  Y and W'  Y'

Z  Y

 11

Whither Quantifiers?

 Projections based state abstractions
 State: Values of all variables in program

at given program location
 e.g. a = 0, b = 1, x = 0

 Set of states:
 (a,b,x) {(0,1,0), (2,8,3), (100,5,98), ...}

 Symbolic state:
 Formula on variables
 Represents set of states that satisfy

formula
 e.g. (b + x) > a … as integers

 12

Whither Quantifiers?

 Projections based state abstractions
 What if values of only some variables

are interesting or relevant?
 Simply symbolic state formula

 e.g. symbolic state φ(Y), but only values
of vars in W  Y relevant

 Abstract(φ(Y)) = ∃(Y\W). φ(Y)
 Program Synthesis

 Several key steps involve existentially
quantifying variables from formulae

 13

Why Eliminate Quantifiers?

 Reasoning about quantified formulas more difficult
in practice

 Efficient decision procedures for several quantifier-
free theories exist

 Corresponding quantified theories may not
have efficient decision procedures

 E.g. linear arithmetic over reals
 Bounded Model Checking with abstract transition

relations
 Fewer vars in formula if abstract trans relation

is quantifier-free

 14

Quantifier Elimination (QE)

 Theory T admits QE if
 for every quantified formula φ(Y) in T,

there is a quantifier-free formula φ'(Y) s.t.
φ(Y) Ξ

T
φ'(Y)

 Not every theory admits QE
 Theory of fixed-width bit-vectors does
 Theory of monadic predicates does not

 QE algorithm for T (that admits QE)

 Given a quantified formula in T, generates
an equivalent quantifier-free formula in T

 15

 Verification tools assuming integer / real types for
program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

Motivation

 16

Motivating Word-level QE

 Verification tools assuming integer / real types for
program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

(x ≥ 3) (x + 1 ∧ ≤ 2)

sat on 2-bit bit-vectors

unsat on integers/reals

 17

Motivation

 Verification tools assuming integer / real types for
program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

(x ≥ 3) (x + 1 ∧ ≤ 2)

sat on 2-bit bit-vectors

unsat on integers/reals

(x ≥ 3) (y > x)∧

unsat on 2-bit bit-vectors

sat on integers/reals

 18

Motivation
 Verification tools assuming integer / real types for

program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

(x ≥ 3) (x + 1 ∧ ≤ 2)

sat on 2-bit bit-vectors

unsat on integers/reals

 Motivates bit-precise (word-level) reasoning techniques

Focus on linear bit-vector arithmetic constraints

(x ≥ 3) (y > x)∧

unsat on 2-bit bit-vectors

sat on integers/reals

Notation

LME : c1.x1+...+ cn.xn = c0 (mod 2p)

LMD : c1.x1+...+ cn.xn ≠ c0 (mod 2p)

LMI : c1.x1+...+ cn.xn + c0 ≤ d1.x1+...+ dn.xn + d0 (mod 2p)

LMC : LME, LMD or LMI (linear arithmetic modulo congruence)

 p : a +ve integer constant
 2p : modulus
 x

1
,...,x

n
: p-bit non-negative integer variables

 c
0
,...,c

n
, d

0
,...,d

n
: p-bit non-negative integer constants

Assume for now all LMCs have the same modulus

 20

Quick Partial Literature Survey

More Efficient Reasoning about LMEs and LMDs

 Reducing LMEs into solved form : Ganesh & Dill., 2007

 Interpolation algorithm for LMEs, hardness of hardness of satisfiability
problem for LMDs/LMIs : Jain et al 2008, Bjorner et al 2008

 QE algorithm for LMEs and LMDs : John & C. 2011, 2013

Classical work

Presburger Arithmetic with congruence relation admits QE
[Presburger 1929]

QE algorithm results in exponential (in #vars quantified)
blowup in all but the simplest cases
 Scalability issues in practice

 21

Quick Literature Survey

QE from LMCs

 Bit-blasting + QE at bit-level

 Destroys the word-level structure

 Does not scale well for LMCs with large modulus

 Conversion to Integer Linear Arithmetic (ILA) + ILA QE
 Brinkmann et al 2002

 Converting back to modular arithmetic difficult

 Blow-up in many practical cases

 22

Outline

 QE from conjunctions of LMCs: layered algorithm

 Extending to Boolean combinations

 Experimental results

 Conclusion

 23

Layer 1: Substituion (Ganesh & Dill 2007)

 ∃x.((2x+z ≠ 0) (2x+3y = 4) (x+y ∧ ∧ ≤ 3)) mod 8

 24

Layer 1: Substituion (Ganesh & Dill 2007)

 ∃x.((2x+z ≠ 0)∧(2x+3y = 4) (x+y ∧ ≤ 3)) mod 8

 ∃x.((2x+z ≠ 0)∧(2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

2x + 3y + 5y = 4 + 5y

 25

Layer 1: Substitution (Ganesh & Dill 2007)

 ∃x.((2x+z ≠ 0) (2x+3y = 4) (x+y ∧ ∧ ≤ 3)) mod 8

 ∃x.((2x+z ≠ 0)∧(2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 (5y+4+z ≠ 0) x.((2x = 5y+4) (x+y ∧∃ ∧ ≤ 3)) mod 8

 Layer1 may not eliminate quantifier

2x = 5y + 4

 26

λ

x is a bit-vector of size 3

(2x=5y+4)

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 x
2
 x

1
 x

0

= 5y+4

 Layer 2: Drop unconstraining LMCs

 x
1
 x

0
 0

 x2 does not affect satisfaction of (2x = 5y+4)

 27

λ

x is a bit-vector of size 3

(2x=5y+4)

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 x
2
 x

1
 x

0

= 5y+4

+y ≤ 3

 Layer 2: Drop unconstraining LMCs

 x
1
 x

0
 0

 x2 does not affect satisfaction of (2x = 5y+4)

(x+y ≤ 3) x
2
 x

1
 x

0

 Can we “engineer” every solution of (2x = 5y+4) to become a solution
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately?

 28

λ

x is a bit-vector of size 3

(2x=5y+4)

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 x
2
 x

1
 x

0

= 5y+4

+y ≤ 3

 Layer 2: Drop unconstraining LMCs

 x
1
 x

0
 0

 Can we “engineer” every solution of (2x = 5y+4) to become a solution
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately?

 x2 does not affect satisfaction of (2x = 5y+4)

(x+y ≤ 3) x
2
 x

1
 x

0

if yes, then
(x+y ≤ 3) is unconstraining

 29

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

00
111

110

101
100

011

010

001
000

values of x

 30

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

010

001 (x+y ≤ 3) ≡ (x+y ≥ 0) (x+y ∧ ≤ 3)

range of x
for y = 0

 31

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

010

001 (x+y ≤ 3) ≡ (x+y ≥ 0) (x+y ∧ ≤ 3)

 y = 0, x = 6 : solution of (2x = 5y+4)

 x=

 32

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

x=010

001 (x+y ≤ 3) ≡ (x+y ≥ 0 (x+y ∧ ≤ 3)

 y = 0, x = 6 : solution of (2x = 5y+4)

 setting x
2
=0 yields y = 0, x = 2:

solution of (2x = 5y+4) (x+y ∧ ≤ 3)

 33

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

x=010

001 (x+y ≤ 3) ≡ (x+y ≥ 0 (x+y ∧ ≤ 3)

 y = 0, x = 6 : solution of (2x = 5y+4)

 setting x
2
=0 yields y = 0, x = 2:

solution of (2x = 5y+4) (x+y ∧ ≤ 3)

 Can we “engineer” every solution of (2x = 5y+4) to become a solution
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately? Yes

 34

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

 Can we “engineer” every solution of (2x = 5y+4) to become a solution
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately? Yes

 35

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)

 36

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)

∃x.((2x = 5y+4)) mod 8 ⇒ x.((2x = 5y+4) (x+y ∃ ∧ ≤ 3)) mod 8

If η≥1 then

 37

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)

∃x.((2x = 5y+4)) mod 8 ⇒ x.((2x = 5y+4) (x+y ∃ ∧ ≤ 3)) mod 8

∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8 ≡ x.((2x = 5y+4)) mod 8∃

If η≥1 then

 38

 ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

 Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)

∃x.((2x = 5y+4)) mod 8 ⇒ x.((2x = 5y+4) (x+y ∃ ∧ ≤ 3)) mod 8

∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8 ≡ x.((2x = 5y+4)) mod 8∃

 ≡ (4y = 0) mod 8

If η≥1 then

0 = (5y + 4) mod 2

 39

Layer 2: Intuition

p-1: LSB0: LSB

k
0

k
1

k
2

Affects C, Z1, Z2

Affects Z1, Z2

Affects Z2

Affects none

x

∃x. (C Z1 Z2  … Zn)

 40

Layer 2: Intuition
 Take an arbitrary solution of C

 In how many ways can it be “engineered” to
satisfy Z1 without affecting bit-slice that affects
C?

 Take an arbitrary solution of C Z1
 In how many ways … to satisfy Z2 without

affecting bit-slices that affect C or Z1?

 If answer > 1, then ∃x. C  ∃x. (CZ1Z2)

 Closed form, efficiently computable, conservative
formula for answer

 41

Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals, rationals

 Normalization:

Preservation of inequalities under addition and multiplication
by positive terms

Existence of multiplicative, additive inverses

∃x.((4x+4 ≤ 8y)∧(x ≥ z))

∃x.((4x ≤ 8y-4)∧(x ≥ z))

∃x.((x ≤ 2y-1)∧(x ≥ z))

 42

Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Elimination:

 (z ≤ y)

∃x.((2x ≤ y)∧(2x ≥ z))

 43

Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Elimination: Density of reals

 (z ≤ y)

∃x.((2x ≤ y)∧(2x ≥ z))

 44

Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Normalization: Preservation of inequalities under addition and
multiplication by positive terms

Elimination: Density of reals

(4x+4 ≤ 8y) ≡ (x ≤ 2y-1)

∃x.((2x ≤ y)∧(2x ≥ z)) ≡ (z ≤ y)

 45

Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Normalization:Preservation of inequalities under addition and
multiplication by positive terms

Elimination: Density of reals

both fail for
modular

arithmetic

Need to adapt Fourier-Motzkin

(4x+4 ≤ 8y) ≡ (x ≤ 2y-1)

∃x.((2x ≤ y)∧(2x ≥ z)) ≡ (z ≤ y)

 46

Layer 3: Fourier-Motzkin style QE

(4x+2 ≤ y) mod 8

 Weak normal form for LMIs: (ax ≤ t) and (ax ≤ bx)

 47

Layer 3: Fourier-Motzkin style QE

(4x+2 ≤ y) mod 8

 +6 +6

if ≡ then 4x ≤ y+6 else 4x > y+6 overflow(4x+2, 6) overflow(y, 6)

condition under
which

(4x+2)+6 overflows
3 bits

 Weak normal form for LMIs: (ax ≤ t) and (ax ≤ bx)

 48

Layer 3: Fourier-Motzkin style QE

 Weak normal form for LMIs: (ax ≤ t) and (ax ≤ bx)

(4x+2 ≤ y) mod 8

 +6 +6

if ≡ then 4x ≤ y+6 else 4x > y+6

if ≡ then 4x ≤ y+6 else 4x > y+64x ≤ 5 y ≥ 2

overflow(4x+2, 6) overflow(y, 6)

y ≥ 2

4x ≤ 5 y ≥ 2y ≥ 2ite (≡ , 4x ≤ y+6, 4x > y+6)

 49

Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas
0

6

511

79 8

12

13

14

4

3

2
15 1

10

 50

Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 Case 1: (difference between y and z) ≥ 3

0

6

5=y11

79 8

12

13

14

4

3

2
15 1

10

i.e. (y ≤ z)∧(z ≥ y+3)∧(y ≤ 12) z=

y+3 does not
overflow

 51

Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 Case 2: y is a multiple of 4

0

6

511

79 8=y

12

13

14

4

3

2
15 1

10
i.e. (y ≤ z)∧(4y = 0)

z=

 52

Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 Case 3: (difference between y and z) < 3,

but there exists a multiple of 4 in between

0

6

511

7=y9 8

12

13

14

4

3

2
15 1

10

i.e. (y ≤ z)∧(z < y+3)∧(4y > 4z)

z=y > z mod 4

 53

Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 (y ≤ z)∧(z ≥ y+3)∧(y ≤ 12)

 (y ≤ z)∧(4y = 0)

 (y ≤ z)∧(z < y+3)∧(4y > 4z)

 54

 Last resort: model enumeration

∨i=0..7[(y ≤ 2x)∧(3x ≤ z)]|x=i

Layer 3: Model enumeration

∃x.((y ≤ 2x)∧(3x ≤ z)) mod 8

 55

Eliminating multiple quantifiers

 Eliminate each quantifier using Layer 1 to Layer 3

 Procedure to eliminate multiple quantifiers called Project

 56

QE for Boolean combinations of LMCs

 Decision diagram based approach (extending Chaki et al.,
2009, John et al. 2011)

 SMT-solver based approach (extending Monniaux, 2008,
John et al. 2011)

 Hybrid approach

 57

QE using Decision Diagrams (DD)

 Represents formula as a DD: BDD with nodes labeled as LMEs
and LMIs

 Our procedure QE_LMDD eliminates quantifiers from DD by
applying Project to each path

 Simplifications

 Eliminates single variable at a time

 Simplifies the DD using the LMEs

 58

QE using Decision Diagrams

 To compute x. y∃ ∃ .φ

 Apply Project to each path

3x+2y = 0 mod 8

4x+m ≤ 2 mod 8

1 0

2x+n ≤ 5 mod 8

QE_LMDD

 Eliminate single variable at a time

 Simplify the DD using the LMEs

 59

QE using Decision Diagrams

 To compute x. y∃ ∃ .φ

 Apply Project to each path

3x+2y = 0 mod 8

4x+m ≤ 2 mod 8

1 0

2x+n ≤ 5 mod 8

QE_LMDD

 Eliminate single variable at a time

 Simplify the DD using the LMEs

 Compute DD for x.∃ φ

(3x+2y = 0 mod 8) ≡ (x = 2y mod 8)

 60

QE using Decision Diagrams

 To compute x. y∃ ∃ .φ

 Apply Project to each path

3x+2y = 0 mod 8

m ≤ 2 mod 8

1 0

2x+n ≤ 5 mod 8

QE_LMDD

 Eliminate single variable at a time

 Simplify the DD using the LMEs

 Compute DD for x.∃ φ

(3x+2y = 0 mod 8) ≡ (x = 2y mod 8)

DD becomes
 free of x

 61

QE using Satisfiability Modulo Theories
(SMT) solver

 Monniaux et al. 2008: Algorithm to extend Fourier-Motzkin to
Boolean combinations of Linear Inequalities over Reals

 Our procedure extends Monniaux's approach

 Predicates are LMCs, not Linear Inequalities over Reals

 Project in place of Fourier-Motzkin

 62

Hybrid approach for QE

 Tries to combine strengths of DD and SMT based approaches

 Given X.f, where f is a DD∃

f

 63

Hybrid approach for QE

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f

f

path

 64

Hybrid approach for QE

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f

 f
1

f C1

path

 Convert X.f into a disjunction of ∃

∃X.(f
1
∧C

1
), X.(f∃

2
∧C

2
), …., X.(f∃

n
∧C

n
)

 f
i
: DD

C
i
: conjunction of LMCs along the path

 65

Hybrid approach for QE

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f

 f
1

f C1

path

C2

 f
2

 Convert X.f into a disjunction of ∃

∃X.(f
1
∧C

1
), X.(f∃

2
∧C

2
), …., X.(f∃

n
∧C

n
)

 f
i
: DD

C
i
: conjunction of LMCs along the path

 66

Hybrid approach for QE

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f

 f
1

f C1

path

C2

 f
2

 Each X.(f∃
i
∧C

i
) computed by DD

based approach

 ∨
i=1..n

[X.(f∃
i
∧C

i
)] computed by

Monniaux style loop

 67

Experimental Results

 Existentially quantified Boolean combinations of LMCs

 198 LinDD benchmarks (from Chaki et al. 2009)

 ax+by ≤ k over integers, a, b {-1, 1}∈

 Converted to LMCs assuming 16-bits for integers

 23 VHDL benchmarks (from transition relation abstraction)

Benchmarks

 68

QE_LMDD vs Monniaux vs QE_Combined

 DD and SMT based approaches incomparable

 Hybrid approach inherits strengths of both

 69

Project details

Type 's∃ LMCs %Contribution Time in milliseconds
 L1 L2 L3 L1 L2 L3 Project

LinDD 38 37 51 44 5 3 5 13149 674

VHDL 8 15 95 4.5 0.5 1 6 161 3

Avg

Layer1 and 2
more effective

Layer3 expensive
than Layer 1 and 2

Avg Avg per ∃ eliminated

 70

Project Vs Layer1 + Bit-level QE

 Project compared with Layer1 followed by blasting + QE using BDDs

 Project outperforms

 71

Project Vs Layer1 + Omega Test

 Project compared with Layer1 followed by conversion to ILA + QE
using Omega Test

 Project outperforms

 72

Layer3 Vs Omega Test

 Layer3 compared with conversion to ILA + QE using Omega Test

 Layer3 outperforms

 73

Conclusions

 Modular arithmetic based techniques exist for QE from LMEs,
LMDs, and LMIs

 Further work needed on other non-linear constraints

 Keep the final result in modular arithmetic

 Outperform Integer Linear Arithmetic and bit-blasting based
techniques

 74

Questions ?

 75

QE using SMT-solver

Monniaux's algorithm : ∃x
1
,...,∃x

t
.φ

H ← F;
O ← false;
while(H is sat)

{
a ← a model of H; {a ⊨ H}

 M
1
← Generalize1(φ, a); {M

1
⊨ F}

 M
2
← Generalize2(φ, M

1
); {M

2
 ⊨ F}

 π ← ∃x
1
,...,∃x

t
. M

2
;

O ← O∨π;
 H ← H∧¬π;

}
Ensure : O ≡∃x

1
,...,∃x

t
.φ

LIR
Formula

Fourier-
Motzkin

LIR
Solver

Solver-based
Strategy

 76

Monniaux: ∃x
1
,...,∃x

t
.φ

H ← F;
O ← false;
while(H is sat)

{
a ← a model of H; {a ⊨ H}

 M
1
← Generalize1(φ, a); {M

1
⊨ F}

 M
2
← Generalize2(φ, M

1
); {M

2
 ⊨ F}

 π ← ∃x
1
,...,∃x

t
. M

2
;

O ← O∨π;
 H ← H∧¬π;

}
Ensure : O ≡∃x

1
,...,∃x

t
.φ

LMC
Formula

Project

BV
Solver

Evaluation
Based

Strategy

QE using SMT-solver

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	The Present Situation
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

