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Example Embedded Code
 ...
state = 0; done = 0; 
while (more_inputs() || (done != 0)) {
     if (state == 0) {
       a = s1.rd(); b = s2.rd(); x = 0; 
       state = 1; done = 0;
     }
     else if (state == 1) {
       if (x+a <= b)  { 
           x = x+1;  a = 2*a; 
       }
       else if (x == b+1) state = 2;
       else { state = 0; done = 1;}
     }
     else if (state == 2) {
       state = 0; done = 1;
       if (0 < a < x)  RaiseAlarm();
     }
}

Repeatedly 
   Read a, b from sensors/file    
   Iteratively compute smallest 

       x s.t. 2
x
 * a + x > b

   If smallest x is b+1 and 
    (0 < a < x), raise alarm 

0 1

2

Q: Can alarm be raised?
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Example Embedded Code
 ...
state = 0; done = 0; 
while (more_inputs() || (done != 0)) {
     if (state == 0) {
       a = s1.rd(); b = s2.rd(); x = 0; 
       state = 1; done = 0;
     }
     else if (state == 1) {
       if (x+a <= b)  { 
           x = x+1;  a = 2*a; 
       }
       else if (x == b+1) state = 2;
       else { state = 0; done = 1;}
     }
     else if (state == 2) {
       state = 0; done = 1;
       if (0 < a < x)  RaiseAlarm();
     }
}

Repeatedly 
   Read a, b from sensors/file    
   Iteratively compute smallest 

       x s.t. 2
x
 * a + x > b

   If smallest x is b+1 and 
    (0 < a < x), raise alarm 

NO, if a, b, x are unbounded 

unsigned int (surely 2
b
*a+b >b)

YES, if a, b, x are 8-bit 
unsigned int, all ops are mod 28

   (consider a = 26, b  = 27+2)
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Example Embedded Code
 ...
state = 0; done = 0; 
while (more_inputs() || (done != 0)) {
     if (state == 0) {
       a = s1.rd(); b = s2.rd(); x = 0; 
       state = 1; done = 0;
     }
     else if (state == 1) {
       if (x+a <= b)  { 
           x = x+1;  a = 2*a; 
       }
       else if (x == b+1) state = 2;
       else { state = 0; done = 1;}
     }
     else if (state == 2) {
       state = 0; done = 1;
       if (0 < a < x)  RaiseAlarm();
     }
}

Repeatedly 
   Read a, b from sensors/file    
   Iteratively compute smallest 

       x s.t. 2
x
 * a + x > b

   If smallest x is b+1 and 
    (0 < a < x), raise alarm 

NO, if a, b, x are unbounded 

unsigned int (surely 2
b
*a+b >b)

YES, if a, b, x are 8-bit 
unsigned int, all ops are mod 28

   (consider a = 26, b  = 27+2)

Need for bit-precise reasoning
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Modeling Controller Code
 Transition relation formula of one unfolding of loop

Term:  If (state = 0)  then s2_rd   else b

state' = ite(state = 0, 1, ite(state = 1, ite(x+a   b, 1, ite(x = b+1, 2, 0)), 0))  
Λ

a' = ite(state = 0,  s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))  
Λ

b' = ite(state = 0, s2_rd, b)  
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a   b, x+1, x), x))

state, a, b, x:  Values before execution of loop body
state', a', b', x': Values after one execution of loop body
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Modeling Controller Code
 Transition relation formula of one unfolding of loop

((x = b+1) Λ (temp= 2))  Ⅴ  ((x  b+1)ǂ   Λ (temp= 0))

state' = ite(state = 0, 1, ite(state = 1, ite(x+a   b, 1, ite(x = b+1, 2, 0)), 0))  
Λ

a' = ite(state = 0,  s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))  
Λ

b' = ite(state = 0, s2_rd, b)  
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a   b, x+1, x), x))

Sub-formula:  If (x=b+1) then (temp = 2) else (temp = 0) 

Linear equality 

Consider temp = ite(x = b+1, 2, 0)
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Modeling Controller Code
 Transition relation formula of one unfolding of loop

((x = b+1) Λ (temp= 2))  Ⅴ  ((x  b+1)ǂ   Λ (temp= 0))

state' = ite(state = 0, 1, ite(state = 1, ite(x+a   b, 1, ite(x = b+1, 2, 0)), 0))  
Λ

a' = ite(state = 0,  s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))  
Λ

b' = ite(state = 0, s2_rd, b)  
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a   b, x+1, x), x))

Sub-formula:  If (x=b+1) then (temp = 2) else (temp = 0) 

Linear disequality 

Consider temp = ite(x = b+1, 2, 0)
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Modeling Controller Code
 Transition relation of one unfolding of loop

((x+a  b)  Λ …  )  Ⅴ  ((x+a > b)  Λ … )

Linear inequality 

state' = ite(state = 0, 1, ite(state = 1, ite(x+a   b, 1, ite(x = b+1, 2, 0)), 0))  
Λ

a' = ite(state = 0,  s1_rd, ite(state = 1, ite(x+a  b, 2*a, a), a))  
Λ

b' = ite(state = 0, s2_rd, b)  
Λ

x' = ite(state = 0, 0, ite(state = 1, ite(x+a   b, x+1, x), x))

Trans relation R(state, a, b, x, state', a', b', x') : 
Boolean combination of Linear Arithmetic Formulae

Y Y'
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Whither Quantifiers?

 Computing strongest post-condition (SP) of 
a loop 

 Suppose state at start of loop satisfies φ(Y) 
 What will state after one loop itern satisfy?
 SP(φ(Y), loop-body) = ∃Y. (φ(Y) Λ R(Y, Y'))

                                = a formula on Y'
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Whither Quantifiers?
 Bounded model checking

 Values before iteration satisfy I(Y) 
 Can values satisfy Bad(Z) at the end of k 

iterations?  
 Check satisfiability of 

I(Y
0
)  Λ  R(Y

0
, Y

1
) Λ … Λ R(Y

k-1
, Y

k
) Λ Bad(Z

k
)

 Includes all variables in each unrolling
 Bottleneck if k is large

 Can we use an abstract transition relation?
 R'(W, W') = ∃(Y\W)∃(Y'\W'). R(Y, Y')
 W  Y and W'  Y'

Z  Y
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Whither Quantifiers?

 Projections based state abstractions
 State: Values of all variables in program 

at given program location
 e.g.  a = 0, b = 1, x = 0

 Set of states:
 (a,b,x) {(0,1,0), (2,8,3), (100,5,98), ...}

 Symbolic state: 
 Formula on variables
 Represents set of states that satisfy 

formula
 e.g.  (b + x) > a  … as integers
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Whither Quantifiers?

 Projections based state abstractions
 What if values of only some variables 

are interesting or relevant?
 Simply symbolic state formula

 e.g.  symbolic state φ(Y), but only values 
of vars in W  Y relevant 

 Abstract(φ(Y)) = ∃(Y\W). φ(Y)
 Program Synthesis

 Several key steps involve existentially 
quantifying variables from formulae



 13

Why Eliminate Quantifiers?

 Reasoning about quantified formulas more difficult 
in practice 

 Efficient decision procedures for several quantifier- 
free theories exist

 Corresponding quantified theories may not 
have efficient decision procedures

 E.g. linear arithmetic over reals
 Bounded Model Checking with abstract transition 

relations
 Fewer vars in formula if abstract trans relation 

is quantifier-free
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Quantifier Elimination (QE)

 Theory T admits QE if 
 for every quantified formula φ(Y) in T, 

there is a quantifier-free formula φ'(Y) s.t. 
φ(Y) Ξ

T 
φ'(Y)

 Not every theory admits QE
 Theory of fixed-width bit-vectors does
 Theory of monadic predicates does not

 QE algorithm for T (that admits QE) 

 Given a quantified formula in T, generates 
an equivalent quantifier-free formula in T
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 Verification tools assuming integer / real types for 
program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

Motivation
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Motivating Word-level QE

 Verification tools assuming integer / real types for 
program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

(x ≥ 3) (x + 1 ∧ ≤ 2)

sat on 2-bit bit-vectors 

unsat on integers/reals 
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Motivation

 Verification tools assuming integer / real types for 
program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

(x ≥ 3) (x + 1 ∧ ≤ 2)

sat on 2-bit bit-vectors 

unsat on integers/reals 

(x ≥ 3) (y > x)∧

unsat on 2-bit bit-vectors 

sat on integers/reals 
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Motivation
 Verification tools assuming integer / real types for 

program variables can give incorrect results

 Machine arithmetic not same as integer / real arithmetic

(x ≥ 3) (x + 1 ∧ ≤ 2)

sat on 2-bit bit-vectors 

unsat on integers/reals 

 Motivates bit-precise (word-level) reasoning techniques

Focus on linear bit-vector arithmetic constraints

(x ≥ 3) (y > x)∧

unsat on 2-bit bit-vectors 

sat on integers/reals 



  

Notation

LME : c1.x1+...+ cn.xn = c0 (mod 2p)

LMD : c1.x1+...+ cn.xn ≠  c0 (mod 2p)

LMI :  c1.x1+...+ cn.xn +  c0 ≤ d1.x1+...+ dn.xn +  d0 (mod 2p)

LMC : LME, LMD or LMI (linear arithmetic modulo congruence)

          p : a +ve integer constant
          2p : modulus 
         x

1
,...,x

n
: p-bit non-negative integer variables

         c
0
,...,c

n
, d

0
,...,d

n
: p-bit non-negative integer constants  

Assume for now all LMCs have the same modulus    
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Quick Partial Literature Survey

More Efficient Reasoning about LMEs and LMDs 

 Reducing LMEs into solved form : Ganesh & Dill., 2007

 Interpolation algorithm for LMEs, hardness of  hardness of satisfiability 
problem for LMDs/LMIs : Jain et al 2008, Bjorner et al 2008

 QE algorithm for LMEs and LMDs : John & C. 2011, 2013

Classical work

Presburger Arithmetic with congruence relation admits QE 
[Presburger 1929]

QE algorithm results in exponential (in #vars quantified) 
blowup in all but the simplest cases
      Scalability issues in practice
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Quick Literature Survey

QE from LMCs

 Bit-blasting + QE at bit-level 

 Destroys the word-level structure

 Does not scale well for LMCs with large modulus 

 Conversion to Integer Linear Arithmetic (ILA) + ILA QE  
                                                               Brinkmann et al 2002

 Converting back to modular arithmetic difficult

 Blow-up in many practical cases
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Outline

 QE from conjunctions of LMCs: layered algorithm

 Extending to Boolean combinations

 Experimental results

 Conclusion 
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Layer 1: Substituion (Ganesh & Dill 2007)

                

      ∃x.((2x+z ≠ 0) (2x+3y = 4) (x+y ∧ ∧ ≤ 3)) mod 8
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Layer 1: Substituion (Ganesh & Dill 2007)

                

      ∃x.((2x+z ≠ 0)∧(2x+3y = 4) (x+y ∧ ≤ 3)) mod 8

     ∃x.((2x+z ≠ 0)∧(2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

2x + 3y + 5y = 4 + 5y
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Layer 1: Substitution (Ganesh & Dill 2007)

                

      ∃x.((2x+z ≠ 0) (2x+3y = 4) (x+y ∧ ∧ ≤ 3)) mod 8

     ∃x.((2x+z ≠ 0)∧(2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

   (5y+4+z ≠ 0) x.((2x = 5y+4) (x+y ∧∃ ∧ ≤ 3)) mod 8

 Layer1 may not eliminate quantifier

2x = 5y + 4



 26

λ

x is a bit-vector of size 3

(2x=5y+4)

      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

     x
2
          x

1
       x

0
 

= 5y+4

  Layer 2: Drop unconstraining LMCs

     x
1
          x

0
       0 

 x2 does not affect satisfaction of (2x = 5y+4)
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λ

x is a bit-vector of size 3

(2x=5y+4)

      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

     x
2
          x

1
       x

0
 

= 5y+4

+y ≤ 3

  Layer 2: Drop unconstraining LMCs

     x
1
          x

0
       0 

 x2 does not affect satisfaction of (2x = 5y+4)

(x+y ≤ 3)      x
2
          x

1
       x

0
 

 Can we “engineer” every solution of (2x = 5y+4) to become a solution 
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately?
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λ

x is a bit-vector of size 3

(2x=5y+4)

      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

     x
2
          x

1
       x

0
 

= 5y+4

+y ≤ 3

  Layer 2: Drop unconstraining LMCs

     x
1
          x

0
       0 

 Can we “engineer” every solution of (2x = 5y+4) to become a solution 
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately?

 x2 does not affect satisfaction of (2x = 5y+4)

(x+y ≤ 3)      x
2
          x

1
       x

0
 

if yes, then 
(x+y ≤ 3) is unconstraining
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

00
111

110

101
100

011

010

001
000

values of x
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

010

001  (x+y ≤ 3) ≡ (x+y ≥ 0) (x+y ∧ ≤ 3)
                   

range of x
for y = 0
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

010

001  (x+y ≤ 3) ≡ (x+y ≥ 0) (x+y ∧ ≤ 3)
                   

 y = 0, x = 6 : solution of (2x = 5y+4)

 

 x=



 32

      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

x=010

001  (x+y ≤ 3) ≡ (x+y ≥ 0 (x+y ∧ ≤ 3)
                   

 y = 0, x = 6 : solution of (2x = 5y+4)

 setting x
2
=0 yields y = 0, x = 2:      

solution of (2x = 5y+4) (x+y ∧ ≤ 3)
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 x2 does not affect satisfaction of (2x = 5y+4)

000
111

110

101
100

011

x=010

001  (x+y ≤ 3) ≡ (x+y ≥ 0 (x+y ∧ ≤ 3)
                   

 y = 0, x = 6 : solution of (2x = 5y+4)

 setting x
2
=0 yields y = 0, x = 2:      

solution of (2x = 5y+4) (x+y ∧ ≤ 3)

 Can we “engineer” every solution of (2x = 5y+4) to become a solution 
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately? Yes
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of  
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

 Can we “engineer” every solution of (2x = 5y+4) to become a solution 
of (2x = 5y+4) (x+y ∧ ≤ 3) by choosing x2 appropriately? Yes
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of  
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of  
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)

∃x.((2x = 5y+4))  mod 8 ⇒ x.((2x = 5y+4) (x+y ∃ ∧ ≤ 3)) mod 8

If η≥1 then
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of  
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)

∃x.((2x = 5y+4))  mod 8 ⇒ x.((2x = 5y+4) (x+y ∃ ∧ ≤ 3)) mod 8

∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8 ≡ x.((2x = 5y+4))  mod 8∃

                                  

If η≥1 then
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      ∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8

  Layer 2: Drop unconstraining LMCs

 Number of ways to choose x2 s.t. we can “engineer” every solution of  
(2x = 5y+4) to become a solution of (2x = 5y+4) (x+y ∧ ≤ 3)

we find efficiently
computable

under-approximation
(η)

∃x.((2x = 5y+4))  mod 8 ⇒ x.((2x = 5y+4) (x+y ∃ ∧ ≤ 3)) mod 8

∃x.((2x = 5y+4) (x+y ∧ ≤ 3)) mod 8 ≡ x.((2x = 5y+4))  mod 8∃

                                  ≡ (4y = 0) mod 8

If η≥1 then

0 = (5y + 4) mod 2
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Layer 2: Intuition
 

p-1: LSB0: LSB

k
0

k
1

k
2

Affects C, Z1, Z2 

Affects Z1, Z2

Affects Z2

Affects none

x

∃x. (C Z1 Z2  … Zn) 
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Layer 2: Intuition
 Take an arbitrary solution of C

 In how many ways can it be “engineered” to 
satisfy Z1 without affecting bit-slice that affects 
C?

 Take an arbitrary solution of C Z1
 In how many ways … to satisfy Z2 without 

affecting bit-slices that affect C or Z1?

 If answer > 1, then ∃x. C     ∃x. (CZ1Z2)

 Closed form, efficiently computable, conservative 
formula for answer  
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Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals, rationals

 Normalization: 

Preservation of inequalities under addition and multiplication 
by positive terms

Existence of multiplicative, additive inverses

∃x.((4x+4 ≤ 8y)∧(x ≥ z)) 

∃x.((4x ≤ 8y-4)∧(x ≥ z))

∃x.((x ≤ 2y-1)∧(x ≥ z))
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Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Elimination: 

     (z ≤ y)

∃x.((2x ≤ y)∧(2x ≥ z))
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Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Elimination: Density of reals

     (z ≤ y)

∃x.((2x ≤ y)∧(2x ≥ z))
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Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Normalization: Preservation of inequalities under addition and 
multiplication by positive terms 

Elimination: Density of reals  

(4x+4 ≤ 8y) ≡ (x ≤ 2y-1)

∃x.((2x ≤ y)∧(2x ≥ z)) ≡ (z ≤ y) 
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Layer 3: Fourier-Motzkin style QE

 Fourier-Motzkin: QE from linear inequalities on reals

Normalization:Preservation of inequalities under addition and 
multiplication by positive terms  

Elimination: Density of reals  

both fail for
modular

arithmetic

Need to adapt Fourier-Motzkin

(4x+4 ≤ 8y) ≡ (x ≤ 2y-1)

∃x.((2x ≤ y)∧(2x ≥ z)) ≡ (z ≤ y) 
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Layer 3: Fourier-Motzkin style QE

(4x+2 ≤ y)  mod 8

 Weak normal form for LMIs: (ax ≤ t) and (ax ≤ bx)
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Layer 3: Fourier-Motzkin style QE

(4x+2 ≤ y)  mod 8

   +6    +6

if ≡      then 4x ≤ y+6 else 4x > y+6 overflow(4x+2, 6) overflow(y, 6)

condition under
which

(4x+2)+6 overflows
3 bits

 Weak normal form for LMIs: (ax ≤ t) and (ax ≤ bx)
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Layer 3: Fourier-Motzkin style QE

 Weak normal form for LMIs: (ax ≤ t) and (ax ≤ bx)

(4x+2 ≤ y)  mod 8

   +6    +6

if ≡      then 4x ≤ y+6 else 4x > y+6 

if                   ≡                  then 4x ≤ y+6 else 4x > y+64x ≤ 5 y ≥ 2

overflow(4x+2, 6) overflow(y, 6)

y ≥ 2

4x ≤ 5 y ≥ 2y ≥ 2ite (                   ≡                , 4x ≤ y+6, 4x > y+6 )
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Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas
0

6

511

79 8

12

13

14

4

3

2
15 1

10
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Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 Case 1: (difference between y and z) ≥ 3

0

6

5=y11

79 8

12

13

14

4

3

2
15 1

10

i.e. (y ≤ z)∧(z ≥ y+3)∧(y ≤ 12) z=

y+3 does not
overflow
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Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 Case 2: y is a multiple of 4

0

6

511

79 8=y

12

13

14

4

3

2
15 1

10
i.e. (y ≤ z)∧(4y = 0)

z=
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Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 Case 3: (difference between y and z) < 3,

but there exists a multiple of 4 in between

0

6

511

7=y9 8

12

13

14

4

3

2
15 1

10

i.e. (y ≤ z)∧(z < y+3)∧(4y > 4z)

z=y > z mod 4
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Layer 3: Fourier-Motzkin style QE

 Elimination in modular arithmetic: x.((y ∃ ≤ 4x)∧(4x ≤ z)) mod 16

 Existence of multiple of 4 between y and z

 Case analysis: Disjunction of following formulas

 (y ≤ z)∧(z ≥ y+3)∧(y ≤ 12)

 (y ≤ z)∧(4y = 0)

 (y ≤ z)∧(z < y+3)∧(4y > 4z)
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 Last resort: model enumeration

∨i=0..7[(y ≤ 2x)∧(3x ≤ z)]|x=i

Layer 3: Model enumeration

∃x.((y ≤ 2x)∧(3x ≤ z)) mod 8
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Eliminating multiple quantifiers

 Eliminate each quantifier using Layer 1 to Layer 3

 Procedure to eliminate multiple quantifiers called Project
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QE for Boolean combinations of LMCs

 Decision diagram based approach (extending Chaki et al., 
2009, John et al. 2011)

 SMT-solver based approach (extending Monniaux, 2008, 
John et al. 2011)

 Hybrid approach
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QE using Decision Diagrams (DD)

 Represents formula as a DD: BDD with nodes labeled as LMEs 
and LMIs

 Our procedure QE_LMDD eliminates quantifiers from DD by 
applying Project to each path

 Simplifications

 Eliminates single variable at a time

 Simplifies the DD using the LMEs



 58

QE using Decision Diagrams

 To compute x. y∃ ∃ .φ

 Apply Project to each path 

3x+2y = 0 mod 8

4x+m ≤ 2 mod 8

1 0

2x+n ≤ 5 mod 8

QE_LMDD

 Eliminate single variable at a time

 Simplify the DD using the LMEs
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QE using Decision Diagrams

 To compute x. y∃ ∃ .φ

 Apply Project to each path 

3x+2y = 0 mod 8

4x+m ≤ 2 mod 8

1 0

2x+n ≤ 5 mod 8

QE_LMDD

 Eliminate single variable at a time

 Simplify the DD using the LMEs

 Compute DD for x.∃ φ

(3x+2y = 0 mod 8) ≡ (x = 2y mod 8)
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QE using Decision Diagrams

 To compute x. y∃ ∃ .φ

 Apply Project to each path 

3x+2y = 0 mod 8

m ≤ 2 mod 8

1 0

2x+n ≤ 5 mod 8

QE_LMDD

 Eliminate single variable at a time

 Simplify the DD using the LMEs

 Compute DD for x.∃ φ

(3x+2y = 0 mod 8) ≡ (x = 2y mod 8)

DD becomes
 free of x
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QE using Satisfiability Modulo Theories 
(SMT) solver

  Monniaux et al. 2008: Algorithm to extend Fourier-Motzkin to 
Boolean combinations of Linear Inequalities over Reals

 

 Our procedure extends Monniaux's approach

 Predicates are LMCs, not Linear Inequalities over Reals

 Project in place of Fourier-Motzkin
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Hybrid approach for QE 

 Tries to combine strengths of DD and SMT based approaches

 Given X.f, where f is a DD∃

f



 63

Hybrid approach for QE 

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f

f

path
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Hybrid approach for QE 

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f 

     f
1

f C1

path

 Convert X.f into a disjunction of  ∃

∃X.(f
1
∧C

1
), X.(f∃

2
∧C

2
), …., X.(f∃

n
∧C

n
)

 f
i 
: DD

C
i
: conjunction of LMCs along the path
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Hybrid approach for QE 

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f 

     f
1

f C1

path

C2

     f
2

 Convert X.f into a disjunction of ∃

∃X.(f
1
∧C

1
), X.(f∃

2
∧C

2
), …., X.(f∃

n
∧C

n
)

 f
i 
: DD

C
i
: conjunction of LMCs along the path
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Hybrid approach for QE 

 Tries to combine strengths of DD and SMT based approaches

 Traverse a satisfiable path in f 

     f
1

f C1

path

C2

     f
2

 Each X.(f∃
i
∧C

i
) computed by DD 

based approach

 ∨
i=1..n

[ X.(f∃
i
∧C

i
)] computed by      

Monniaux style loop
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Experimental Results

 Existentially quantified Boolean combinations of LMCs

 198 LinDD benchmarks (from Chaki et al. 2009)

 ax+by ≤ k over integers, a, b  {-1, 1}∈  

 Converted to LMCs assuming 16-bits for integers

 23 VHDL benchmarks (from transition relation abstraction)

Benchmarks
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QE_LMDD vs Monniaux vs QE_Combined

 DD and SMT based approaches incomparable

 Hybrid approach inherits strengths of both
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Project details

Type 's∃ LMCs %Contribution         Time in milliseconds
                                       L1     L2    L3 L1   L2     L3    Project   

LinDD 38    37    51     44     5    3     5   13149    674

VHDL     8    15            95     4.5  0.5     1     6       161        3      
 

Avg

Layer1 and 2
more effective

Layer3 expensive
than Layer 1 and 2 

Avg Avg per  ∃ eliminated
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Project Vs Layer1 + Bit-level QE

 Project compared with Layer1 followed by blasting + QE using BDDs
 

 Project outperforms  
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Project Vs Layer1 + Omega Test

 Project compared with Layer1 followed by conversion to ILA + QE 
using Omega Test  

 Project outperforms  
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Layer3 Vs Omega Test

 Layer3 compared with conversion to ILA + QE using Omega Test
 

 Layer3 outperforms  
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Conclusions 

 Modular arithmetic based techniques exist for QE from LMEs,   
LMDs, and LMIs

 Further work needed on other non-linear constraints

 Keep the final result in modular arithmetic

 Outperform Integer Linear Arithmetic and bit-blasting based 
techniques
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Questions ?
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QE using SMT-solver

Monniaux's algorithm : ∃x
1
,...,∃x

t
.φ 

H ← F;
O ← false;
while(H is sat)

{ 
a ← a model of H;  {a ⊨ H}

          M
1
← Generalize1(φ, a);  {M

1
⊨ F}

          M
2
← Generalize2(φ, M

1
);  {M

2
 ⊨ F}

          π ← ∃x
1
,...,∃x

t
. M

2
;

O ← O∨π;
           H ← H∧¬π;

}
Ensure : O ≡∃x

1
,...,∃x

t
.φ

LIR
Formula

Fourier-
Motzkin

LIR
Solver

Solver-based
Strategy
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Monniaux: ∃x
1
,...,∃x

t
.φ 

H ← F;
O ← false;
while(H is sat)

{ 
a ← a model of H;  {a ⊨ H}

          M
1
← Generalize1(φ, a);  {M

1
⊨ F}

          M
2
← Generalize2(φ, M

1
);  {M

2
 ⊨ F}

          π ← ∃x
1
,...,∃x

t
. M

2
;

O ← O∨π;
           H ← H∧¬π;

}
Ensure : O ≡∃x

1
,...,∃x

t
.φ

LMC
Formula

Project

BV
Solver

Evaluation
Based

Strategy

QE using SMT-solver
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