
Fairness-Aware Range Queries for Selecting
Unbiased Data

Suraj Shetiya†, Ian P. Swift‡, Abolfazl Asudeh‡, Gautam Das†
†University of Texas at Arlington, ‡University of Illinois at Chicago

†{suraj.shetiya@mavs., gdas@}uta.edu, ‡{iswift2, asudeh}@uic.edu

Abstract—We are being constantly judged by automated
decision systems that have been widely criticised for being
discriminatory and unfair. Since an algorithm is only as good
as the data it works with, biases in the data can significantly
amplify unfairness issues.

In this paper, we take initial steps towards integrating fairness
conditions into database query processing and data management
systems. Specifically, we focus on selection bias in range queries.
We formally define the problem of fairness-aware range queries
as obtaining a fair query which is most similar to the user’s query.
We propose a sub-linear time algorithm for single-predicate range
queries and efficient algorithms for multi-predicate range queries.
Our empirical evaluation on real and synthetic datasets confirms
the effectiveness and efficiency of our proposal.

I. INTRODUCTION

In the era of big data and advanced computation models,
we are all constantly being judged by the analysis, algorithmic
outcomes, and AI models generated using data about us.
Such analysis are valuable as they assist decision makers
take wise and just actions. For example, the abundance of
large amounts of data has enabled building extensive big data
systems to fight COVID-19, such as controlling the spread
of the disease, or in finding effective factors, decisions, and
policies [1]. Similar examples can be found in almost all
corners of human life including resource allocation and city
policies, policing, judiciary system, college admission, credit
scoring, breast cancer prediction, job interviewing, hiring, and
promotion, to name a few. In particular, let us consider the
following as a running example:

Example 1. (Part 1) Consider a company that would like to
make a policy decision, targeted at its “profitable” employees.
Following our real experiment in § V-B, suppose the company
has around 150K employees. Using salary as an indicator of
how profitable an employee is, the business management office
of the company considers the query SELECT * FROM EMP

WHERE salary≥$65K, which includes around 18% of em-
ployees. Surveying this group, the company wants to develop
some mechanisms to motivate and retain these employees.

Looking at these analyses through the lens of fairness,
algorithmic decisions look promising as they seem to eliminate
human biases. However, “an algorithm is only as good as
the data it works with” [2]. In fact, the use of data in all
aforementioned applications have been highly criticised for
being discriminatory, racist, sexist, and unfair [3], [4]. Proba-
bly the main reason is that real-life social data is almost always

“biased” [2]. Using biased data for algorithmic decisions create
fairness dilemmas such as impossibility and inherent trade-offs
of fairness [5], [6], [7]. Besides historical biases and false
stereotypes reflected in data, other sources such as selection
bias can amplify unfairness issues [2]. To highlight a real
example, let us continue with Example 1:

EXAMPLE 1. (Part 2) As we shall later elaborate in § V-B,
it turns out the company has more female employees than
male. Still, due to the known historical discrimination [8], the
selected group of employees contain noticeably more males. As
a result, targeting this group for the analysis, the company will
end up favoring the preferences of the male employees, which
is unfair to female employees and will, in a feedback loop,
result in losing more of the “profitable” female candidates.

Fortunately, recently different computer science communi-
ties, such as machine learning and, in particular, data manage-
ment, have taken fairness issues seriously. In past three years
alone, there have been many publications in related topics such
as fairness-aware data repair, cleaning, and integration [9],
[10], [11], [12], data bias detection/resolution [13], [14],
[15], [16], [17], [18], [19], and data/model annotation [20],
[21], systems [22], [23], [24], ranking [25], [26], [27], [28],
crowdsourcing [29], as well as different keynotes [30], [31]
and tutorials [32], [33], [3] dedicated to this topic in premier
database conferences, that underscore this community’s role
in properly addressing this problem.

Despite extensive efforts within the database community,
there is still a need to integrate fairness requirements with
database systems. Existing work is limited to query for-
mulation for achieving data coverage (minimum count on
demographic (sub)groups) [34], [35], [36]. To our knowledge,
this paper is the first to integrate fairness (parity on counts)
with (selection) query answering. In particular, as our first
attempt, we consider range queries and pay attention to the
facts: (i) the conditions in the range query may be selected
intuitively by the human user. For instance, in Example 1 the
user could have chosen $65K as the query bound because it
was (roughly) a good choice that would make sense for them;
(ii) considering the ethical obligations and consequences, the
user might be interested in accepting a “similar enough” query
to their initial choice, if it returns a “fair” outcome.

In Example 1, we note that the company could, for instance,
in a post-query processing step, remove some male employees
from the selected group, or it could add some females to the
selected pool, even though they do not belong to the query

1

result. While such fixes are technically easy, those are illegal
in many jurisdictions [37], because those amount to disparate-
treatment discrimination: “when the decisions an individual
user receives change with changes to her sensitive attribute
information” [38], [2], [25]. For instance, one cannot simply
increase or decrease the grade of a student, because of their
race or gender. Instead, they should design a “fair rubric” that
is not discriminatory. Therefore, instead of practicing disparate
treatment, we propose to adjusting the range to find a range
(similar to finding a rubric for grading) with a fair output.

Following the above argument, our system allows the user to
specify the fairness and similarity constraints (in a declarative
manner) along with the selection conditions, and we return an
output range that satisfies these conditions. To further clarify
this, let us continue with Example 1 in the following.

EXAMPLE 1. (Part 3) Being aware of the historical discrim-
ination, ethical obligations, and the potential negative impacts
on the company, besides knowing that the choice of salary
lower-bound has been fuzzy, the business management office
would like to find a query whose output is similar enough to
the initial query and the number of male employees returned
is at most 1000 (around 5%) more than the females. Using our
system, they can issue a SQL query to find such a set. As ex-
plained in § V-B, our system found the most similar fair range
as SELECT * FROM EMP WHERE $60.5K≤salary≤$152K.
Its outcome is 75% similar to the initial range query, and
satisfies the fairness requirement. Observing the high Jaccard
similarity between these two sets, the company now has the
option to use this for their analysis, to make sure they are
not discriminating against their female employees, hence not
losing their valuable candidates.

Our system provides an alternative to the initial query
provided by the user. This is useful since often the choice
of filtering ranges is ad-hoc, hence our system helps the user
responsibly tune their range. If the discovered range is not
satisfactory to the user, they can change the fairness and
similarity requirements and explore different choices until they
select the final result in a responsible manner [39], [25].

Summary of contributions: Initiating fairness-aware query
answering, in this paper we tackle non-trivial technical chal-
lenges and propose proper algorithms to address them. In
particular, we make the following contributions in this paper:

• We initiate research on integrating fairness conditions into
database query processing and data management systems.
While the specific problem investigated in our paper focuses
on fairness in range queries, we hope this work will spur
further research in this important and emerging field.

• We study the problem of fairness-aware range queries. That
is, finding the most similar fair range to a user-provided
range query for the database D. We propose using SQL for
declaring the fairness-aware queries.

• For single-predicate (SP) range queries, we propose the
algorithm SPQA with sub-linear query time. The algorithm
uses an innovative linear-size index Jump pointers.

• We model the problem for multi-predicate (MP) range

id A0 A1 color id A0 A1 color
t0 3.1 1.5 red t7 13 5.4 red
t1 0.7 2.3 red t8 11.3 2.6 blue
t2 8 0.65 blue t9 2.3 8.4 blue
t3 10.9 1.5 red t10 5.6 4.7 red
t4 4.4 8.7 blue t11 12.7 2.8 red
t5 1.2 4.1 red t12 7 0.3 blue
t6 6.2 6.3 blue t13 9.1 9.4 red

TABLE I: A toy example database D with two attributes A0 and
A1 and the sensitive attribute color.

queries as the traversal over a graph where nodes represent
different queries and there is an edge between two nodes if
their outputs differ by one tuple. In particular, we propose
Best First Search MP (BFSMP) algorithm that, starting from
the input range, efficiently explores neighbouring nodes to
find the most similar fair range.

• Inspired by the A* algorithm, we propose Informed BFSMP
that improves BFSMP, using an upper-bound on the Jaccard
similarity for effective graph exploration.

• We conduct comprehensive experiments to evaluate our SP
and MP algorithms. Our results demonstrate the efficiency
and efficacy of SPQA for SP queries. Similarly, IBFSMP
performs well for MP queries.

II. PRELIMINARIES

A. Database Model

Database: We consider a relation D with n objects, t1 to tn.
Each object in D, consists of numeric attributes A1 to Ad.
We refer to the value of attribute Aj ∈ R of object ti as
ti[j]. While the numeric attributes of the database D can be
used for range queries, objects may also consist of categorical
attributes. These categorical attributes are used for filtering the
objects based on the user’s criteria.

A toy example of a database can be seen in Table I with 14
objects t0 to t13. The attributes of this database are in the form
of Ai, namely A0, A1. The database also includes the non-
ordinal attribute color used in the fairness model. We use this
database for illustrating various techniques across the paper.
Range Query: Given a database D, a range query is made up
of conjunction of range constraints placed on some/all of the
attributes of D. A range constraint {start, end} (aka a range
predicate) on an attribute Ai filters the objects such that the
attribute Ai lies within the filter range(start ≤ Ai ≤ end). For
instance, Query 1 is a query with one range predicate on the
toy example of Table I that returns the objects {t4, t6, t10, t12}:

QUERY 1: select id from D where 4 ≤ A0 ≤ 7

In this paper, we consider the conjunction of multiple range
predicates using “and” operation.
Similarity Measure: The distance between two range queries
is the dissimilarity of the two queries. Without loss of gener-
ality, the distance measured between two range queries can be
normalized to lie in the range [0, 1]. The similarity between
two range queries can be computed as one minus dissimilarity.
Various similarity models can be used to measure the similarity
between two range queries. Without loss of generality, we use
Jaccard similarity and leave other models for future work.

2

Jaccard similarity between two range queries can be computed
by the ratio of intersection between the output of the two range
queries to the union of the output to the two range queries.

SIM(Q1, Q2) =
out(D, Q1) ∩ out(D, Q2)

out(D, Q1) ∪ out(D, Q2)

where out is the output of the range query on D.
QUERY 2: select id from D where 3 ≤ A0 ≤ 6.2

For instance, the similarity between the example queries
Query 1 and Query 2 (out(D,Query2) = {t0, t4, t6, t10}) is:

SIM(Query 1, Query 2) =
|{t4, t6, t10}|

|{t0, t4, t6, t10, t12}|
= 0.6

B. Fairness Model

Our definition of fairness is based on group fairness [40]
and the notion of demographic parity, aka statistical parity
and disparate impact [41], [42], [40], [2], [3].

Sensitive attribute: Group fairness is defined as parity over
different demographic groups such as white and black. The
demographic groups are identified by a non-ordinal attribute,
such as race or gender, known as sensitive attributes.
In many of the existing applications, sensitive attributes are
binary, separating a minority group (e.g. female) from the
majorities (e.g. male). Therefore, in this paper, we follow the
existing work such as [43] and consider the sensitive attribute
to be binary in nature. We leave the non-binary sensitive
attributes and more general cases for the future work.

As highlighted in our sample database in table I, we use the
attribute color (with two values red and blue) to abstract
the sensitive attribute (and the demographic groups).

Fairness constraint: The fairness measure is defined as the
parity over the demographic groups, identified by the colors
blue and red. The parity condition is identified using a
criteria that decides whether the output of a query is fair. Let
Cr and Cb be the number of red and blue objects in the output.

In some application, the parity can be defined as having
equal number of objects from the demographic groups in the
output set. That is, Cr = Cb. In other words, the objects in
the selected set should have equal chance of belonging to each
demographic group. For instance, Query 1 in our toy example,
returns three blue objects ({t4, t6, t12}) and one red object
({t10}) and does not satisfy the parity condition Cr = Cb,
while Query 2 returns two blue ({t4, t6}) and two red object
({t0, t10}) – hence satisfies the parity condition.

Alternatively, some applications consider the underlying
distributions and require that the set of selected objects to
represent the underlying demographic from which they were
chosen from. In other words, the objects from different demo-
graphic groups should have equal chances of being selected in
the output set. That is, Cr/nr = Cb/nb, where nr and nb are
the total number of red and blue objects in D. Similarly,
different applications may require different notions of parity
based on societal norms. To support all these cases under the
same fairness model, we abstract the fairness constraint, using

FAIR RANGE QUERY PROBLEM: Given a database
D, a range query Q and a disparity value ε, find a fair
range that is most similar to Q with a disparity value
at most ε.

Fig. 1: Problem Formulation

DECLARATIVE FAIRNESS-AWARE QUERY:
SELECT ... FROM DATABASE
WHERE

RANGE-PREDICATES
SUBJECT TO

|WrCr - Wb Cb| <= eps and SIM >= tau

Fig. 2: Declarative Query Model

a weight parameter W as following: WrCr = WbCb. Specif-
ically, we refer to the case where W1 = W2 as unweighted
fairness and other cases as weighted fairness model.

Achieving perfect demographic parity in form of equality is
rarely practical in the real-world, hence we use a threshold ε
to identify an acceptable disparity [41]. Using this threshold,
the fairness constraint can be rewritten as

|WrCr −WbCb| ≤ ε (1)

C. Problem definition
Having formally defined the database and fairness notions,

we are now ready to provide our problem formulation. We
consider the problem of finding the most similar fair range to
a user provided range query for the database D. Figure 1 pro-
vides the formal formulation of the fair range query problem.
This problem formulation helps the data scientists to slightly
change their query to find the data that is similar to their initial
query output and is also fair.
Declarative query model: Our problem formulation follows
a declarative fairness-aware query model as specified in
Figure 2. Using this declarative interface, we expect the user
to easily formulate the fairness-aware queries. In particular,
we realize that the user might not be interested to accept the
queries that are far from their initial choices, hence might
require to identify a constraint on the minimum similarity they
would find relevant. This, along with the fairness constraint, is
identified as part of the constraints, followed after the “subject
to” phrase. Note that there may be multiple queries equally
near to the input range query that satisfy the constraints. The
problem of finding all fair range queries nearest to the given
query is an interesting direction for future work, discussed
in section VII. For example, knowing that Query 1 does not
satisfy the demographic parity for unweighted fairness, the
user can reformulate the query in form of Query 3 to discover
a similar query (with at least 80% similarity) that has at most
a disparity of 1.

QUERY 3: select id from D where 4 ≤ A0 ≤ 7
subject to |Cb−Cr| ≤ 1 and SIM ≥ 80%

Formulating Query 3 as fair range query problem, the
optimal solution, by changing the range predicate to 3.1 ≤
A0 ≤ 7, adds t0 to the output set, satisfying both the fairness
and similarity constraints specified by the user.

3

After providing the terms and discussing the problem
formulation, we now turn attention to designing efficient
algorithms for our problem. In particular, we realize that a
large portion of the queries in practice have a single range
predicate. Therefore, in § III, we focus on this case, designing
a tailored solution for it. Then in § IV, we will devise an
algorithm for the queries with multiple range predicates. We
show empirical results in § V.

III. SINGLE-PREDICATE RANGE QUERIES

Next, we consider queries with a single range condition. We
first provide definitions and theorems that form the basis for
our algorithms, in § III-A. Then we design SPQA, our algo-
rithm for the unweighted case in § III-B, discuss preprocessing
details in § III-C, and present weighted SPQA in § III-D.
A. Jump pointers

Query answering systems usually conduct offline prepro-
cessing (indexing) that facilitates online query answering. One
extreme approach for finding fair range queries, that optimises
for query time, is to precompute and store the answer to
all possible range queries during preprocessing. Such an
approach, using proper data structures, enables constant-time
query answering. This, however, requires an extensive space
of O(n2) to store the answer to all possible single-predicate
range queries, which might not be reasonable, specifically for
databases with millions of objects. The other extreme is to
optimize for the space and to delay the computation to online
query answering time. This, however, might require enumerat-
ing O(n2) possible ranges, which makes query answering in-
efficient – O(n2). Our proposal is between these two extremes,
by building a linear-size index (Jump pointers) that enables
the sublinear query answering time of O(log n+ disparity),
where disparity is the unfairness of the input query.

The idea behind the Single Predicate Query Answering
(SPQA) algorithm is to quickly lookup fair ranges, each of
which have a similarity of ε. Theorem 1 proves that for any
unfair unweighted query, the nearest fair query has a disparity
value of exactly ε. Among the fair ranges which have a
disparity of ε, the ones which have a potential to be nearest
by Jaccard similarity to the input range are explored by SPQA
to find the most similar fair range.
Definition 1. (Jump pointers): Consider a database D and
the attribute A for the single-predicate range query model. A
right (resp. left) blue jump pointer from location oi points to
the nearest/closest location br(resp. bl) such that the number
of blues in the range [oi + 1, br] (resp. [bl, oi − 1]) is equal
to the number of reds plus one. Red jump pointers are also
defined in the same manner.

For the sample database of Table I, Figure 3a depicts the
right and left jump pointers for attribute A0. The index is
constructed on top of the sorted list of object ids according
to their values on A0. Therefore, since t1[0] = 0.7 is the
minimum of A0, t1 is the first object in the list. For example,
consider the object t12, where t12[0] = 7; the range [8, 10.9]
(8 ≤ A0 ≤ 10.9) consists of the smallest range starting from 8
that has one additional red than the blues in the range. Hence,

its right red jump pointer points to t3 (t3[0] = 10.9). Note that
not all objects have jump pointers; for example there is no right
red jump pointer from t10 as no location ahead of t10 has one
additional red that than the number of blues in the same range.
Even though there exists four jump pointers ({left or right}
and {blue or red}) for every object in the list, two of those
pointers are trivial. For example, the range [8, 8] (8 ≤ A0 ≤ 8)
consists of t2 and is the smallest range after t12 that consists of
one additional blue. As this trivial information can be quickly
determined in O(1) time, this pointer need not maintained and
can be looked up at query time. Left jump pointer follows a
similar pattern; for example the node t8 maintains a left blue
pointer to t6 as the range [6.2, 10.9] (6.2 ≤ A0 ≤ 10.9) consist
of one additional blue than reds.

We refer to travelling along the jump pointer from location
oi as following a jump pointer. Following a blue jump pointer
k times from location oi gives us the closest location oj from
oi such that the range from oi to oj has k blues more than
the range that would end at oi. The algorithm to find jump
pointers is described in § III-C.
Lemma 1. Following the red colored jump pointer k times
from oi lands at a location where the range ending at it is
has k more reds than the same range ending at oi.

Proof. We provide the proof by induction:
Base case: By the definition of jump pointer, a red colored
jump pointer points to the nearest location which has one
additional red. This gives us the base case for k = 1.

Induction step: Assume that the lemma holds for k− 1 red
jump pointers. Let the k − 1th jump pointer point at location
ol and kth jump pointer point at location om. Suppose there
exists a om′ which is closer to oi than om while also satisfying
the k additional reds criteria. If om′ lies to the left of ol then
we already have a contradiction as the k − 1th jump pointer
would lie to the left of om′ . On the other hand if om′ lies to
the right of ol, then the red jump pointer should point to om′
as the range ol to om′ consists of one additional red than blue.
As both cases are not possible, om′ is the same as om.

Jump pointers will be used for two operations (expansion
and shrink) in single-predicate range queries. An expansion
operation expands a range to include more objects. Excluding
objects by shrinking the range is done using shrink operations.
Definition 2. (Cumulative sum): Consider an attribute A for
the single-predicate range query model. The cumulative sum
ci at a location oi is the difference between the number of
reds and blues from the left most location along A to oi.

As an illustration from the sample dataset, consider comput-
ing the cumulative sum for t0. There is one blue and three reds
until t0 from the left most position t1. Hence, the cumulative
sum for t0 is −2 (1− 3 = −2).

Given the two locations oi and oj ([oi, oj]), cumulative sums
can be used to obtain the disparity between the start and end
location in O(1) time.

disparity = c[i]− c[j − 1] (2)

4

Fox example, consider the example query II-A, with range
4 ≤ A0 ≤ 7. The objects lying in the input range are
{t4, t10, t6, t12}. With 3 blues and a red, the query has a
disparity of 2 which can be computed using cumulative sum
by c[12]−c[0] = 2. Note that any two locations with the same
cumulative sum represent a range with perfect parity.
B. Query answering for unweighted fairness

A range predicate is made up of two points, start and end. If
one were to fix one of the two end points of the range query, to
make the range query fair, the other end point can be moved to
shrink the range or to expand it. An expansion would require
an addition of |disparity−ε| deficient colored objects to make
it fair (proved later in theorem 1). For example, consider the
input range query to be [4.4, 7] (4.4 ≤ A0 ≤ 7) with ε = 0.
Figure 4a shows the query range [4.4, 7] (4.4 ≤ A0 ≤ 7)
marked with an enclosing box. As there are two more blues in
the range query, we require two additional reds to expand the
query range to make it fair. Expanding the range by following
two red jump pointers gives us a fair range. Figure 4a shows a
fair range when the start of the range, t4, is fixed and the other
end point is allowed to expand to incorporate two additional
reds, thus obtaining the range [4.4, 13] (4.4 ≤ A0 ≤ 13),
marked by the dotted line. In general, one can follow the
deficient pointer |disparity − ε| times.

Our goal is to find the most similar range that resolves the
disparity of |disparity−ε|. Such a disparity can be covered by
moving either end points, that is |disparity− ε| should equal
to the sum of the changes on the right and left. For instance,
figure 4b shows the end of the input query expanded by one
red pointer and start expanded (resp. shrunk) by one red (resp.
blue) pointer. Similarly, figures 4c, 4d and figure 4e shows the
input query expanding/shrinking to cover the disparity of 2.
We design a window-sweeping algorithm to find such a range.

Algorithm 1, SPQA, describes our approach, for finding the
most similar fair range to the input query. Algorithm 3, JP
describes the algorithm used for moving along a jump pointer.

Initially, the start end-point of the range is fixed and SPQA
expands end end-point until a fair query is found, as shown
in Figure 4a. The window is shown in the figure with the
dotted lines indicating start and end of the fair range. The
naming convention used for the boundaries is, S for start of
input range and E for end of input range; L for left and R for
right. Hence, SL (resp. SR) stands for start of input range
expanded (resp. shrunk) to the left (resp. right). When the
window is swept to the left, the start end point can perform a
shrink or an expansion as shown in Figure 4b. The remaining
steps of the exploration by SPQA can be seen in Figures 4c,
4d and 4e. Among each of these, the output of the fair range
which is most similar to the input query is provided as output
to the user.
Theorem 1. Given a database D, the disparity threshold ε,
and the input query Q(Aj : [start, end]), the optimal range
has a disparity value of exactly ε.

Proof. Let d be the disparity of the given range query. Let
the disparity of optimal range be dopt. Knowing that both

the left and right end points of the input range could have
moved, let the range for optimal range be [lopt, ropt]. Let us
consider two new ranges, [lopt, start− 1], [end+ 1, ropt] and
let their corresponding disparities be dlopt and dropt. The total
disparity dopt can be written as the sum of disparity of three
different ranges, dlopt for range [lopt, start − 1], dropt for
range [end+ 1, ropt] and d for range [start, end].

d− dopt = dlopt − dropt

Suppose dopt 6= ε. Let us now construct a range [l′opt, r
′
opt]

such that the disparity is exactly ε. To construct the range we
will modify lopt and ropt. If lopt lies on the left of start, then
there was an expansion operation that has been performed.
Instead of expanding it to cover a disparity of dlopt, one
can only expand it to a smaller extend such that the over
all disparity is exactly ε. As the expansion was smaller the
Jaccard similarity measure would be larger. Applying a similar
approach in case lopt was on the right of start would also
result in a larger Jaccard similarity measure as intersection
between the two sets would be larger. A similar approach can
be applied to the ropt end point. The newly constructed range
[l′opt, r

′
opt] is more similar and has disparity of exactly ε.

Lemma 2. (Correctness) Given a database D, the disparity
threshold ε, and the input query Q(Aj : [start, end]), SPQA
Algorithm 1 finds the optimal solution (the most similar fair
range to q).

Proof. To prove this theorem we use the property that the fair
optimal range has a disparity of exactly ε, which is proved in
theorem 1.

SPQA uses a windowed approach to explore all ranges
around the input range which have a disparity value of ε.
Let the disparity covered by moving the left the left end point
disparity([left, start−1]) be dl and the disparity covered by
the right end point, dr be equal to disparity([end+1, right]).
The sum of dl, dr and d is ε.

dl + dr = ε− d

SPQA explores 4×disparity number of windows, where every
pair of dl, dr satisfies the above equation. Thus the optimal
result must lie in one of these pairs.
Time complexity: The total amount of time taken by SPQA
to answer the unweighted fairness queries with one range
predicate is O(log(n)+disparity(input)), which can be seen
in theorem below.
Theorem 2. Given a database D with n tuples and an input
range with disparity d the total time taken by SPQA algorithm
is O(log(n) + d).

Proof. Searching the jump pointer data structure to reach the
end points takes O(log(n)) time. Once the end points are
found in the data structure, SPQA algorithm uses a window
based approach to explore the fair ranges whose disparity is
exactly equal to ε. There are a total of O(4d) such ranges,
each of which takes O(1) time to compute Jaccard similarity.
Thus, the total amount of time taken is O(log(n) + d).

5

-1 -2 -1 -2 -1 -2 -1 -10 0 0 -2-11

(a) Right and left jump pointers for attribute A0 of the sample database of Table 1.

-2 -4 -1 -3 0 -2 1 34 5 6 247

(b) Right and left jump pointers for attribute A0 of the sample database of Table 1 with weights

Fig. 3: Jump pointers for sample database of Table 1

Disparity = 2

Fair range

Input Query

(a) Setting up the window by expanding the end point of the single predicate input query

Fair range starting at StackSR

Fair range starting at StackSL

Input Query

(b) Moving the window to the left from the initial position

Fair range starting at StackSL

Input Query

(c) Window reaches the position where the end of the input lies

Fair range starting at
StackSR

Fair range starting at StackSL

Input Query

(d) The right end point of the window shrunk within the input query

Fair range starting at StackSL , StackSR

Input Query

(e) Exploration for all windows is completed
Fig. 4: Step wise movement of the window over the course a run of the single predicate algorithm

General positioning assumption: The algorithm and the
definitions in the current section have been designed with the
general positioning assumption. General positioning makes the
assumption that no two points are co-located for the given
attribute. In practice, with small modifications, our algorithms
can handle the case when multiple points are present at a
single location. Combining the co-located points into a single
point with the aggregate weight would help us in creating
a new dataset with no co-location. When the jump pointer
encounters the new point with a variable weight, it needs to
update the data structure with the variable weight value. Note
though that the similarity function needs to take the number of
points co-located into account while computing the similarity.

This algorithm holds unless there are too many of the same
demographic data point at the same location so as to move a
range from unfair because of lack of a group to unfair because
of excess of that group. Note that this case is highly unlikely in
practise. In such extreme cases, where the unfairness suddenly

switches from one group being disadvantaged to the other, we
choose two problems, one in which the aggregate point does
not belong thus limiting one side of the search space or the
second in which we explore further by looking for the inverse
jump pointers past that point.

C. Prepossessing

For every attribute in D, a jump pointers index is created
during the preprocessing. For this, the objects in every list are
sorted based on the corresponding attribute (Figure 3a) so that
look ups can be performed quickly and then right and left
pointers from each location of the database is calculated.
Finding jump pointer: Jump pointers play a key role in SP
queries. A right red jump pointer points to the closest location
to the right of the current location such that the number of
reds in the range exceed the number of blues by 1. At any
given location oi, the range [oi + 1, oi + 1] is a trivial range
that satisfies this criteria. Hence, one of the 2 colored jump

6

Algorithm 1 SPQA Algorithm
Input : Database D, Input query Q(Aj : [start, end]), accept-

able disparity ε
Output : Most similar fair range query fair

1: ts ← binary search(D, Aj , start)
2: te ← binary search(D, Aj , end)
3: disparity ← c[j, ts]− c[j, te]
4: dColor ← disparity > 0 . deficient: true-red, false-blue
5: if disparity ≤ ε then . Input range is already fair
6: return [start, end]

7: LEP ← ts . LEP stands for Left End Point
8: while disparity > ε do
9: Push JP (D , Aj , LEP, ”left”, deficient) to LEP , update

disparity for [tLEP , te]

10: fair ← {}; sim← 0
11: WindowSweep(tLEP , te, “shrink”) . Shift window by

shrinking te
12: WindowSweep(tLEP , te,“expand”)
13: WindowSweep(ts, te,“shrink”) . Shift win. by shrinking te
14: WindowSweep(ts, te, “expand”)
15: return fair

Algorithm 2 WindowSweep algorithm
Input : Database D, Attribute: Aj , start end-point: ts, end end-

point: te, operation, input query Q(Aj : [start, end]), reference to
fair, sim

Output : Update fair based on most fair range found
1: disparity ← c[j, te]− c[j, ts − 1]
2: dColor ← disparity > 0
3: if ts < start then ts ← Pop(LEP)
4: else ts ← JP (D , Aj , ts, ”right”, !dColor) . Shrink ts
5: while disparity > ε do . Adjust te pointer
6: disparity ← c[j, te]− c[j, ts − 1]
7: dColor ← disparity > 0
8: if operation == ”expand” then
9: te ← JP (D Aj , te, ”right”, dColor) . Expand

10: else te ← JP (D Aj , te, ”left”, !dColor) . Shrink
11: if Jaccard([ts, te], Q) > sim then
12: sim← Jaccard([ts, te], Q); fair ← [ts, te]

13: WindowSweep(ts, te, operation)

pointers will point to oi+1. The goal of the algorithm is to
compute the other (non-trivial) right jump pointer.

In order to obtain the non-trivial right jump pointer, we need
to find the location that differs by 1 (in the opposite sign than
at location oi+1). For example, in Figure 3a, the cumulative
sum at location t12 is 0 and as the color at location t2 is blue,
the cumulative sum is 1. The non-trivial right jump pointer
points the closest location with cumulative sum of −1.

The algorithm to find the jump pointers is given in Algo-
rithm 4. The algorithm to find the jump pointers maintains
a balanced binary search tree (BST) for the cumulative sums,
which are used as keys for the BST. The indices which will be
resolved when the specific cumulative sum is seen are stored as
values within the BST. For example, when resolving the non-
trivial red right jump pointer for t12, closest location with a
cumulative sum of −1 needs to be found. Hence, −1 is used
as a key within the BST with the index t12 as a value.

The total time taken in the pre-processing step is
O(n log(n)), as proved in theorem below.

Algorithm 3 JP algorithm for left jump pointer
Input : Database D, Attribute: Aj , Database object oi,

color c, direction dir
Output : Database object oj pointed by jump pointer

1: if dir == ”left” then
2: if Aj [oi − 1] is of color c then
3: return oi − 1
4: else
5: return LJP [oi] . LJP stands for Left Jump

Pointer array
6: else
7: if Aj [oi + 1] is of color c then
8: return oi + 1
9: else

10: return RJP [oi] . RJP stands for Left Jump
Pointer array

Algorithm 4 (Preprocessing) Building left jump pointers
Input : Database D, attribute Aj
Output : jump pointers

1: Sort D along attribute Aj
2: BST ← {}
3: cumulative ← 0
4: for i← 0 to n do
5: cumulative ← cumulative + color(oi)
6: c[j, i]← cumulative . Cumulative sum is contained

in c
7: if cumulative present in BST then
8: for obj ∈ values of BST [cumulative] do
9: LJP [j, obj]← i . Left jump pointer

10: Insert i into BST [cumulative− 2 ∗ color(oi)]

Theorem 3. Given a database D with n tuples and an attribute
Ai pre-processing step takes O(n log(n)) time.

Proof. The sorting step of pre-processing takes O(n log(n))
time for the given attribute Ai. Establishing the right and left
jump pointers makes use of a balanced binary search tree
(BST). A total of n indexes need to be inserted/deleted into
the BST, which consumes O(n log(n)) time. Hence, the total
time taken for building the jump pointer structure for given
attribute Ai is in O(n log(n)).

Note that, while the initial pre-processing takes
O(n log (n)) time, query processing is sub-linear:
O(log(n) + d), where d is the disparity of input query.
Note on space complexity: During the pre-processing phase,
SPQA algorithm creates a linear space data structure to aid
in query processing. The query processing stores a total of
disparity jump pointers to find the the most similar fair range
which is small compared to the linear space data structure.
Thus the total space complexity is O(n).

D. Generalization to weighted fairness

So far, our attention has been on the unweighted fairness
model. In this section, we move to our general model of
fairness: weighted fairness. As explained in § II, the fairness

7

constraint for this model is in the form of |WrCr−WbCb| ≤ ε,
where Wr and Wb are the weights for the red and blue counts,
respectively. That is, the difference between the weighted sum
of the number of objects from the two demographic groups
should not be bounded by the threshold ε. Note that any
rational values for weights can be expressed as integer weights
by scaling these weights. For example, weights Wr = 1.1 and
Wb = 1.2 are equivalent to Wr = 11 and Wb = 12.

The fair range query problem in the generalized case would
refer to finding the most similar fair range to the input fair
range such that the disparity is within a value of ε. Note that
finding cases where the disparity is less than max(Wr,Wb)/2
would infer finding ranges with a level of precision less than
a single unit of disparity (less than a single weighted colored
object). For the sake of simplicity and practicality, we omit
such cases and assume that the value of ε ≥ max(Wr,Wb)/2.

The algorithm that deals with the weighted case uses similar
concepts like jump pointer and cumulative sum. In the general
case, a blue (resp. red) right jump pointer from location oi
points to the closest location right of oi, ji such that the range
[oi+1, ji] contains more blues than reds (resp. reds than blues)
by weight. A similar definition for left jump pointers can be
defined. Jump pointers for the sample dataset presented in
Table I is presented in Figure 3b using weights of 3 for blue
and 2 for red.

For the weighted case, the cumulative sum at a location oi
indicates the weighted difference of blues and reds.

Theorem 4. (Correctness) Given a database D, the dispar-
ity threshold ε, weights Wr and Wb, and a query Q(A :
[start, left]), algorithm 1 finds the the most similar fair range
to Q.

Time complexity: The total time taken by SPQA algorithm is
same as the unweighted case, O(log(n) + d), where d is the
disparity in the input range. The details of the time complexity
for the unweighted case which is mentioned in theorem 2 also
applies to the weighted case.
Note on space complexity: During the pre-processing phase,
SPQA algorithm creates a linear space data structure to aid
in query processing. The query processing stores a total of
disparity jump pointers to find the the most similar fair range
which is small compared to the linear space data structure.
Thus the total space complexity is O(n).
Preprocessing for the weighted fairness model In the
weighted case, a blue pointer points to a location that has
more blues than reds. We use the same notation as that of the
unweighted case and denote the cumulative sum at location oi
for the index of attribute Aj as c[j, i]. If the location next to
oi had a blue then the pointer would be trivial as it is pointing
to the immediate next location. Let us consider the case where
the immediate next location had a red instead. In such a
case we need to find the nearest location whose cumulative
sum is larger that the c[j, i]. In the opposite case where the
neighbour was a blue one would like to find the closest
location whose cumulative sum is smaller that the c[j, i]. Based
on this approach, two data structures can be maintained. One

for the locations whose pointers can be resolved if we found a
cumulative sum with a smaller value than in the data structure.
And the other data structure whose pointers can be resolved
if we found a cumulative sum with a larger value. We use a
balanced binary search tree for the two data structures. The
pseudo-code to find the jump pointers for the weighted single
predicate range query is in algorithm 5. The algorithm is an
extension of the unweighted jump pointers. The algorithm uses
a sort over the database as a the first step before adding and
removing n items from a balanced BST in order to find the
jump pointers, it takes O(n log n) time.
General positioning assumption: The algorithm and the
definitions in the current section have been designed with the
general positioning assumption. General positioning makes the
assumption that no two points are co-located for the given
attribute. In practice, with small modifications, our algorithms
can handle the case when multiple points are present at a
single location. Combining the co-located points into a single
point with the aggregate weight would help us in creating
a new dataset with no co-location. When the jump pointer
encounters the new point with a variable weight, it needs to
update the data structure with the variable weight value. Note
though that the similarity function needs to take the number of
points co-located into account while computing the similarity.

This algorithm holds until and unless we have too many
of the same demographic data point at the same location
so as to move a range from unfair because of lack of reds
to unfair because of excess of reds. Note that this case is
highly unlikely in practise. In such extreme cases, where the
unfairness suddenly switches from one the advantaged group
to the disadvantaged one, we choose two problems, one in
which the aggregate point does not belong thus limiting one
side of the search space or the second in which we try further
exploration.

IV. MULTI-PREDICATE RANGE QUERIES

Next, we study the queries that contain multiple range pred-
icates. Unfortunately, moving from single-predicate (SP) range
queries to multi-predicate (MP) range queries complicates the
problem significantly and the idea of jump pointers does not
carry over. The reason is that in MP queries, there are different
directions (along different angles) which a single jump can
occur, while in SP there is only one direction (along x-axis)
to make a jump. Moreover, while a SP query is identified by
its two end-points, a MP query with d range predicates forms
a hyper-cube with 2d sides. Hence, instead of the two end
points of an SP range, one may need to move all sides of
the hyper-cube to obtain the closest fair range, even when the
disparity is slightly above the allowed fairness threshold, ε.

An observation that helps us with the MP cases is that the
user may not be interested in fair ranges that are far away
from the input query. Hence, the fair range query should be
highly similar to the input range, otherwise it is not valuable
for the user. We use this observation to design a best-first
search (BFS) fair range query algorithm for the MP query.

8

Algorithm 5 (Preprocessing) Left jump pointers for weighted
case

Input : Database D, attribute Aj
Output : jump pointers

1: Sort D along attribute Aj
2: larger BST ← {}; smaller BST ← {}
3: cumulative ← 0
4: for i← 0 to n do
5: if color(oi) == ’blue’ then . Blue always has a

positive score
6: smaller BST [cumulative]← i
7: else
8: larger BST [cumulative]← i

9: cumulative ← cumulative + weight(color(oi))
10: iterator ←Find cumulative in larger BST
11: while iterator 6= ∅ do . Until end of larger BST
12: LJP [j, iterator]← i . Left jump pointer
13: Increment iterator
14: iterator ← smaller BST.begin() . Start of

smaller BST
15: while cumulative > iterator do
16: LJP [j, iterator]← i
17: Increment iterator

A. Best First Search algorithm

At a high level, the BFS algorithm can be viewed as a
“smart” traversal over a graph where every range is modeled
as a node and there is an edge between two nodes if the
outputs of their corresponding queries vary only in one tuple.
That is, a node Q2 is a neighbor of Q1 if the output of
query Q1 differs from the output of query Q2 by exactly
1 element. Mathematically, sets out(D, Q1) and out(D, Q1)
have a symmetric difference of size 1.

The unfair input range provided by the user serves as a
starting point in the graph traversal. This can be viewed as
starting from the node with Jaccard similarity of 1 (Jaccard
distance of 0), discovering its neighbors, deciding which node
to visit next, and pruning the blanket of nodes in the graph
that their corresponding ranges have similarity less than the
current best fair range discovered.

Starting from the node of the input query, the algorithm
first needs to discover its neighboring nodes in the graph. For
this, we rely on the existence of an oracle neighbors(Q) that
discovers the neighbors of a query Q. It turns out, due to the
frequency of calling this oracle, it can significantly impact the
performance of the BFS algorithm. We shall provide a careful
development of this oracle in § IV-B.

At any point of traversal, the algorithm selects the node that
has the maximum Jaccard similarity with the input query for
being visited next. The Jaccard similarity can be represented
as the ratio of the intersection of two sets to their union, and
the neighboring range to a given range can differ only by a
single element. Accordingly the neighboring ranges are the
ranges with the smallest Jaccard similarity.

Upon visiting a node, the algorithm checks if it satisfies the
fairness requirements. If so, the algorithm stops and returns

Algorithm 6 Best-First Search algorithm for MP : BFSMP
Input : Database D, attribute list A, input query Q
Output : most similar fair range

1: Heap← Q
2: while |Heap| 6= 0 do
3: top← Heap.pop()
4: if fair(top) then return top
5: for neighbor ∈ neighbors(top) do
6: Heap.push(neighbor)

7: return ∅

this range as the most similar fair range with query input.
Otherwise, it calls the neighbor oracle to discover the unseen
neighbors of this node to be considered for traversal. The
pseudocode of the BFS algorithm is provided in Algorithm 6.
It uses a max-heap for efficient traversal of the graph. Using
the heap data structure, adding the new nodes to the list of
discovered nodes and identifying the most similar node to the
input range is done in logarithmic time to the size of heap.

Lemma 3. (Correctness) Algorithm 6 finds the most similar
fair range to the input range.

Proof. The Jaccard similarity of the set being explored is I/U ,
and the sets being added can have a reduced Jaccard similarity
of (I − 1)/U or I/(U + 1). These are the smallest possible
decreases in Jaccard similarity possible by removing or adding
points.

Starting from the input range, let us now consider the
neighborhood path from the input range to the most similar fair
range. As at every stage of the algorithm all the neighborhood
ranges which account to the smallest possible decreases in
Jaccard similarity have been added to the heap, the fair output
range that the algorithm produces is the most similar one.

B. Neighboring range computation

Having explained the BFS algorithm, we now turn our
attention to developing the neighbors Oracle. Computing the
neighboring ranges is an important step of the BFS algorithm.
The challenge here is to make sure all neighbors of a range
have been discovered in an efficient manner.

To better explain the oracle, let us consider a sample dataset
as shown in Figure 5. Consider a sample range be as shown in
Figure 6. Suppose we want to expand the range outwards in
order to add a new point. One simple approach of expansion
that can be thought of is to move a side while maintaining
either the height or the width constant. Figure 7 shows
the expanded rectangle while moving the lower bound while
maintaining the width constant. A similar approach can be
performed on the left bound as seen in Figure 8. Note that
these are not the only possible expansions. These expanded
ranges will later be used to limit our search for finding the
other neighboring ranges along the diagonal direction. For
2D, there are 4 such expansions. As a generalization, one can
obtain 2d such expansions in d dimensions. Such points can
be found out in O(logd n+ k) using a range tree [44].

One can think of adding an additional point by moving a
corner point along the diagonal direction. One such diagonal
expansion can be seen in Figure 9. The bottom left corner can

9

Fig. 5: Sample set of
points

Fig. 6: Sample input
range

Fig. 7: Expanding
the rectangle down-
wards

Fig. 8: Expanding
the rectangle to-
wards left

Fig. 9: Neighboring
ranges in diagonal

Fig. 10: Skyline
computation over a
range query

be expanded to add one more point along the diagonal. As one
may observe, such expansions are limited by the expansion
of the sides which border the corner. The expanded boundary
shown in Figures 7 shows the extent to which one may expand
the bottom boundary downwards until they find a point. If a
point laid in the diagonal beyond such a boundary, it would
not account to a neighborhood range as such an expansion
would contain two points instead of one.

Figure 10 shows the expanded vertical and horizontal ranges
that add a single point in solid green lines. The expanded
boundaries form the limits of the region containing the diago-
nal expansion end points. The problem of finding all possible
diagonal expansion points can be formulated as finding a
skyline within the range shown by the dotted green lines:
Given a corner point po for diagonal expansion1 in a d-
dimensional space, consider the bounding box specified by the
side expansion (e.g. the dashed rectangle in the bottom-left of
Figure 10). A point p1 inside the bounding box dominates
another point p2 in the bounding box if ∀0 < i ≤ d :
|p1[i]−po[i]| < |p2[i]−po[i]|. The skyline of the points in the
bounding box is the set of points not dominated by any other
point. Every skyline point is a valid diagonal expansion. As
a result, in order to find all neighbors of a given range, it is
enough to find (a) all neighbors by side expansion/shrinking
and (b) all diagonal expansion points in the skylines. A MP
query with d range predicates contains 2d corners. Each corner
can be expanded away from the center of the MP query
in order to find queries that differ by a single point, i.e. a
neighbouring range. There can be many neighbouring ranges
for each corner. A range skyline query can be constructed
for each corner using the intersection of the boundaries of
the side expansion as one of the end points of the range
query and the corner point’s coordinates itself as the other
end point. One naive approach is to obtain the points that
lie within the range using a R-tree and then apply a skyline
algorithm on the points obtained. This is not efficient. We use
studies that efficiently compute the skyline on range queries.
In particular, we use the the Range-Skyline-Query algorithm
by Janardan et. al. [45] for skyline discovery. This algorithm
has a complexity of O((k + 1) logd n), where k is size of
skyline. Note that k should generally be a small number. In
particular, as the number of dimensions increase, and as the
size of the range grows, the expected number of points that
occur within the corner ranges will decrease. That is because
with each dimension the number of ranges it must occur within
increases by one; and it will decrease with the size of the

1Shrinking a range is done similarly.

range, as more points that are potentially the nearest point
will equate to a decrease in the size of the corner.

C. Informed best first search

The BFS algorithm discussed so far searches for the fair
range by exploring the node with the maximum Jaccard
similarity first. Branching out from a node to explore for a
fair range requires discovering it neighbors, adding them to
the heap, and repeating the same process for its neighbors in
a recursive manner – which is time-consuming. On the other
hand, given the amount of disparity at a node, it may be clear
that its neighbor up to a certain number of hops cannot fill the
disparity gap. That simply is because every neighboring node
has a difference of exactly one element with the current node
and, hence, in the best case can drop the disparity by one unit.
In other words, if the current disparity is equal to δ and the
fairness threshold is ε < δ, at least δ − ε hops are needed to
fill the disparity gap.

Every hop in the path from the current node reduces the
similarity from the initial query to a certain degree. As a
result, combining the minimum number of hops to achieve
fairness with the similarity decay per hop, we can compute an
upper-bound threshold on the maximum similarity for a fair
range (referred as U-threshold) that one can hope to achieve
by branching out from the current node.

The above observation enables to design a more efficient
algorithm, Informed Best Frist Search algorithm for Multi-
Predicate (IBFSMP), with an early stop criteria, that delays
exploring the branches that their U-threshold is not the max-
imum. In other words, instead of selecting the most similar
node to be explored next, IBFS selects the node with maximum
U-threshold to be explored next. IBFSMP is inspired from
the A* algorithm [46] which utilizes the lower-bound on the
remaining distance to the destination to perform an efficient
search. However, IBFSMP differs from the A* in details and
the way the bounds are calculated. We still need to compute
the U-threshold of a node, which is done in Theorem 5.

Theorem 5. The U-threshold of a node Q is:

JU (Q) =

max
C′r≤d

δ−ε
Wr
e

I−d
max(δ−ε−Wr·C′r,0)

Wb
e

U+C′r
Wr > Wb; δ > ε

max
C′
b
≤d δ−ε

Wb
e

I−C′b

U+d
max(δ−ε−Wb·C

′
b
,0)

Wr
e

Wb > Wr; δ > ε

max
C′r≤d

δ−ε
Wr
e

I−C′r

U+d
max(−δ−ε−Wr·C′r,0)

Wb
e

Wr > Wb; δ < −ε

max
C′
b
≤d δ−ε

Wb
e

I−d
max(−δ−ε−Wb·C

′
b,0)

Wr
e

U+C′
b

Wb > Wr; δ < −ε

(3)

10

where δ = Wb · Cb −Wr · Cr.

Proof. Let the node Q have an intersection of I and union of
U with the input range. Let the disparity of the unfair range
Q be δ = Wb ·Cb−Wr ·Cr. As the range Q is unfair, |δ| > ε.

Let us consider the case that the range Q is unfair because
of the presence of too many blues in Q compared to the reds.

δ = Wb · Cb −Wr · Cr > ε

As we are trying to find the upper bound, we would like
to maximize the Jaccard similarity such that such a range can
potentially exist. In order to obtain a fair range, either blues
can be removed, reds can be added or both can be done. Let
B′ be the blues that are removed and R′ be the reds that are
added to Q to make it a fair range.

−ε ≤Wb(Cb − C ′b)−Wr(Cr + C ′r) ≤ ε
−ε ≤ δ −Wb · C ′b −Wr · C ′r ≤ ε

Moving around the terms, we get

δ − ε ≤Wb · C ′b +Wr · C ′r ≤ δ + ε (4)

In order to maximize the Jaccard similarity, various values
of B′ and R′ need to be checked which satisfy the equation 4.
Note that for a given value of B′(resp. R′), using the smallest
R′(resp. B′) that satisfies the equation 4 would provide a larger
Jaccard similarity. Thus, given B′ the smallest value of red
satisfying the equation would be,

C ′r = dδ − ε
Wr
e

The U-threshold thus can be expressed as a maximization
in terms of R′,

max
0≤C′r≤d

δ−ε
Wr
e

I − dmax(δ − ε−Wr · C ′r, 0)/Wbe
U + C ′r

(5)

Similarly, given R′ the U-threshold thus can be expressed
as a maximization in terms of B′ as,

max
0≤C′b≤d

δ−ε
Wb
e

I − C ′b
U + dmax(δ − ε−Wb · C ′b, 0)/Wre

(6)

The amount of time taken to compute the U-threshold using
the equation 5 is d δ−εWr

e. The amount of time taken to compute
the U-threshold using the equation 6 is d δ−εWb

e. In case Wr is
larger than Wb the complexity for exploring all the values
for reds using equation 5 is better. Equation 6 can be used
to explore all the values for blues when Wb is larger than
Wr. A similar approach can be applied when the range is
unfair because of excessive reds to obtain the final two cases
in equation 3.

Replacing the selection criteria for traversing the graph with
U-threshold, the only component of Algorithm 6 that needs to

change is the max-heap and the rest remains unchanged, i.e.,
instead of structuring the heap according to similarity, IBFS
builds the heap according to U-threshold (Equation 3).
Note that the IBFS algorithm is agnostic to the heuristic and
similarity measure satisfying two important properties. (1) The
similarity measure being used must be a set based similarity
measure based on the points in the output range. (2) As can
be seen from U-threshold, the heuristic must provide a upper-
bound threshold on the maximum similarity for a fair range.
Note on space complexity: BFSMP algorithm explores neigh-
bouring ranges to reach the fair range query that is nearest to
the input query. Along the process a large number of ranges are
explored and stored in memory in a heap. The space consumed
by the algorithm depends on the number of neighboring ranges
explored. Thus the space complexity for BFSMP algorithm is
O(number of explored ranges).

D. Using MP algorithms for SP

Before concluding this section, we would like to note that
MP algorithms also work for SP. However, SPQA has a
provably better time complexity than BFS, in all instances.
This is because SPQA takes advantage of pre-computed jump
pointers which is only available when the possible changes
in the bounds of the range are restricted to one degree of
freedom. As explained in § III-B, SPQA has a worst-case time
complexity of O(log(n)+disparity). One can easily establish
a best case complexity for BFS algorithms that is at least as
slow as this. First, in order to reach it’s destination, BFS can
adjust its range with each step by adding or removing a point.
In the best case, it visits only points which monotonically
decrease the disparity, and stops after disparity more steps.
Additionally, BFS constructs a one dimensional range tree
(which is equivalent to a balanced binary search tree) as
pre-processing to find the closest point. This requires an
initial setup time of n log(n). Therefore, the best case time-
complexity of BFSs is Ω(n log(n) + disparity). This demon-
strates that the time-complexity of SPQA is comprehensively
better, and accordingly, we favor it for SP queries.

V. EXPERIMENTS
A. Experimental setup

Datasets: We used both real and synthetic datasets for our
experiments. For the real world datasets we use TexasTribune
and UrbanGB datasets. Along with the real world datasets, a
synthetic dataset Uniform was generated for the experiments.
Below we provide a brief description of these datasets.
Dataset name Items d Sens. attribute Weights
Texas Tribune [47]149,481 21 gender,race gen. (1:1) race (4:5)
COMPASS [48] 60,842 12 race 2:1
UrbanGB [49] 1,600,00033 #vehicles in accident2:1
(Synthetic)Uniform10,000 4 Synthetic 1:1

• (Real dataset) TexasTribune2: Texas Tribune dataset consists
of 149,481 records with the salary/compensation informa-
tion for Texas state employees. The dataset has 21 attributes
with gender and race being the main sensitive attributes and
salary/compensation being numeric.

2https://salaries.texastribune.org/

11

Overall Input query Fair query
Distributions

0

20

40

60

P
er

ce
n

ta
g

e
o

f
p

eo
p

le
Male Female

Fig. 11: Demographic dis-
tributions in dataset, input
query, and similar fair query.

0 0.5 1 1.5 2
Disparity 104

0

2000

4000

6000

D
u

ra
ti

o
n

(
 s

ec
s)

Fig. 12: Time taken by
SPQA v.s. disparity -
Texas Tribune with gen-
der as SA

0 2 4 6
Disparity 104

0

5000

10000

15000

D
u

ra
ti

o
n

(
 s

ec
s)

Fig. 13: Amount of time
taken by SPQA against
disparity - Texas Tri-
bune with race as SA

0 500 1000 1500
Disparity

0

200

400

600

800

1000

D
u

ra
ti

o
n

 (
 s

ec
o

n
d

s)

Fig. 14: Amount of time
taken by SPQA against
disparity - COMPASS
dataset

200-400 400-600 600-800
Buckets

0

200

400

600

800

T
im

e(
se

c)

Fig. 15: Amount of time
taken by IBFSMP - Uni-
form dataset 3 range predi-
cates

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

200

400

600

800

1000

1200

D
u

ra
ti

o
n

 (
se

co
n

d
s)

Fig. 16: Average amount of
time taken by IBFSMP algo-
rithm for different bucket sizes
- UrbanGB dataset

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

200

400

600

800

1000

1200

1400

D
u

ra
ti

o
n

 (
se

co
n

d
s)

Fig. 17: Average amount of
time taken by IBFSMP algo-
rithm for different bucket sizes
- Uniform dataset

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

2

4

6

8

10

12

14

R
ec

ta
n

g
es

 e
xp

lo
re

d

106

Fig. 18: Rectangles explored
by IBFSMP algorithm for dif-
ferent bucket sizes - Urban GB
dataset

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

2

4

6

8

10

12

14

16

18

R
ec

ta
n

g
es

 e
xp

lo
re

d

106

Fig. 19: Rectangles explored
by IBFSMP algorithm for dif-
ferent bucket sizes - Uniform
dataset

• (Real dataset) COMPASS [48]: COMPASS dataset (un-
processed) consists of 60,842 data points collected with
12 attributes with race as sensitive attribute and one real
numbered attribute(raw score). The dataset has around 21K
Caucasian (blue) and 39K non-Caucasian (red) warranting
a ratio of 2:1.

• (Real dataset) UrbanGB3: UrbanGB dataset consists of 1.6
million records of accidents over a period 2000 and 2016.
The dataset has 33 attributes, including latitude, longitude,
accident severity, number of vehicles involved in the acci-
dent, date and time of accident. For the experiments, 10, 000
records from the UrbanGB dataset have been used. As
UrbanGB dataset does not have a sensitive attribute inherent
to it, we use the number of vehicles that were involved
in the accident to create a sensitive attribute. There are
3,088 records where a single vehicle was involved in an
accident and 6,912 records where more than one vehicle
was involved. Hence, we use a weight of 2 for the 3,088
records and 1 for the 6,912 records.

• (Synthetic dataset) Uniform: The dataset consists of 10,000
points sampled uniformly from a cube which has a side
of length 1,000 and a uniformly sampled binary sensitive
attribute. The dataset has 4,967 blues and 5,033 reds.
The Texas Tribune and COMPASS datasets consist of one

numerical attribute, a few other categorical attributes and
sensitive attribute. Hence, the two datasets have been used with
SPQA. As Uniform and UrbanGB datasets consist of multiple
numeric attributes it is used for MPQA queries.

Our experiments were conducted on a Intel(R) Core(TM) i7-
6850K CPU @ 3.60GHz with 64GB of main memory using
Linux operating system (Ubuntu 18.04.5 LTS).
Algorithms implemented: Along with SPQA, weighted SPQA
and IBFSMP algorithms, to evaluate multi-predicate range

3kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/
data

queries, we implemented a local search baseline algorithm.
• Baseline: The baseline approach for the multi-predicate

range queries is based on limiting the search space to obtain
a bounding box within which to search for fair queries.
The maximum number of elements that can be added to
the input range without violating the Jaccard similarity
criteria is first computed. The boundaries of the expanded
box are found by finding the smallest expansion along each
of the directions/dimensions without violating the similarity
criteria. This expansion limits the search space while still
providing a valid box to search for the most similar fair
range. This expanded range is then searched in a brute-
force manner to obtain the closest fair range.

• Coverage based algorithm [35], [36]: We have used the
code from [35], [36] to compare against our methods for
multi-predicate range queries. The different techniques in
the papers [35], [36] modify the input range to produce a
range which covers at least a given threshold number from
each demographic group.

All the algorithms in the paper are implemented using C++.
The implemented code can be found at the github location4.
Experimental parameters: The value for ε plays an important
role in simulating a real scenario. Satisfying perfect parity may
not always be possible in practice and may require significant
changes in the initial setting. In particular, in our problem
setting, the ranges that are not similar enough to the user input
may not be valuable. In our experiments, we allow a disparity
of 5% between demographic groups. The corresponding value
of ε is then computed as:

ε =
0.05 (|B Wb|+ |R Wr|)|out(Q)|

2(B +R)
where B and R are the total number of blues and reds in

the universe respectively. Wb (resp. Wr) refer to the weight of
each blue (resp. red). The entity (|B Wb|+ |R Wr|)/(B+R)

4https://github.com/surajshetiya/fairness-range-queries-icde-2022

12

gives us the expected magnitude of the weight each point
carries. The scaled weight for the given query Q with an
allowed disparity of 5% thus turns out to be 0.05(|B Wb| +
|R Wr|)|out(Q)|/(B +R).
Choosing an appropriate value of ε: Our system enables re-
sponsible data selection through exploration. While the choice
of ε varies based on the application, an exploration based
approach helps the application owner to choose an appropriate
value of ε. That is, after the user specifies a range query and a
value of ε, we return the most similar query, satisfying it. The
user then has the choice to accept our recommendation, or to
adjust the value of ε and/or the range and continue exploring
until a satisfactory range is identified.
B. Proof of Concept - TEXAS TRIBUNE

For a proof of concept, we use the Texas Tribune dataset.
The dataset consists of 149,481 records of compensation for
Texas state employees. We use gender as the sensitive
attribute. As the representation of males and females in the
dataset is similar (64,153 men and 85,328 female), the weights
for male and female in the query are considered to be the same.
The distribution of male and female employees in the overall
dataset can be seen in Figure 11. Following Example 1 on this
dataset, we assume the business office is interested in finding
the employees who earn a salary of more than $65,000. There
are a total of 14,803 men and 12,182 women earning more than
$65,000, with a difference of 2,621 (around 10%). Considering
the ethical considerations, the business management office
would like to find a query whose output is similar to the initial
query and within which there are at most 1000 (around 5%)
males more than females.

Using SPQA, a fair query which is most similar to the
input input query is determined. The output of the fair query
(60562 ≤ salary ≤ 152000) consists of 32,064 employees
with 16,532 male and 15,532 female. The Jaccard similarity
of the fair query with the input query is around 75% (76.23%).
Figure 11 shows the distribution of male and female employees
in input query and the most similar fair query.
Extended PoC: A function F (x) which for which data-
points with the same x values but from different demographic
groups have different results will underperform on a given
demographic group if that demographic group is unfairly
represented in designing the function. In the TexasTribune
dataset, there is a function that meets this requirement where
F (x) predicts the salary and the parameters x are their level (or
lack of level) of employment and the part of the state for which
of they are employed. We trained an auto-sklearn regressor on
this task, using two datasets: the result of the original query in
Example 1, and the result of the modified fair query. We then
analyzed the dataset using R2 scores over male and female
data points. We observed that with the initial dataset there
was a fractional difference of 0.088, while with the unbiased
data, that fractional difference was reduced to 0.022, where
a lower fractional difference represents a regressor predicting
the salary for men and women more consistently.
Systems Integration PoC: As an integration with a DBMS
system, we create a thin web based interface based on postgres.

For this PoC, we use the TexasTribune dataset. The postgres
database is created with index on the numeric attribute - salary.
For the PoC, we compare the O(n2) naive algorithm with the
jump pointer algorithm.

For the naive algorithm, the time is computed for processing
the query. For the jump pointer algorithm, there is a pre-
processing phase where we calculate the cumulative sum and
jump pointers and populate a separate table with these details.
We measure the time taken for naive query, pre-processing to
create jump pointers and SPQA query processing. Average
time taken by the pre-processing algorithm taken by SPQA
0.043 second. We run around 500 randomly sampled queries
and measured the time taken by each of these queries. While
average time taken by SPQA algorithm is 0.0054 seconds,
average time taken by naive algorithm is 6.938 seconds. This
shows the efficienly of SPQA when integrated with DBMS.
C. Performance of SPQA and weighted SPQA

The performance of SPQA depends on the disparity of the
input query. For these series of experiments, we measure the
amount of time taken by the SPQA algorithm when provided
with an input query. The experiment were averaged over five
runs of SPQA algorithm for more reliable time measurements.
For these experiments, theTexasTribune dataset was used.
As TexasTribune has 149,481 records with almost the same
number of male as female we use gender as the sensitive
attribute for the unweighted case. For the weighted case,
we use race as the sensitive attribute while using white
(majority) and non-white (minority) as the demographic
groups. There are a total of 67, 142 white records and 82, 339
non-white records. As the ratio of white to non-white
is very near to 4 : 5 (0.815), we use weights of 4 and 5 for
the weighted SPQA. For the SP queries, we use salary as the
attribute for range predicates. A large part of the records of the
database (95.6%) have a salary less than 100, 000. Hence, to
set the range query boundary, we pick all points in multiples
of 5, 000 between 5, 000 and 100, 000 as start and end points.
For every query, time taken by SPQA algorithm is measured
along with the input query’s disparity. For both the weighted
and unweighted case, the ε value was set to 500 for this set
of experiments.

For the COMPASS dataset, the risk score varied between
−4.79 − 51.0. Starting of the input range was generated
between −4.79 and 51.0 with multiples of 3.0. Ending of the
input range varied from the starting in multiples of 3.0. The
COMPASS dataset has around 21K Caucasian (blue) and 39K
non-Caucasian (red) warranting a ratio of 2:1.

Figures 12 and 13 show the scatter plot for amount of
time for SPQA against the input query’s disparity value for
the Texas Tribune dataset and figure 14 shows the scatter
plot for the weighted SPQA queries run on the COMPASS
dataset. As a baseline, we ran IBFS for single range predicate
(weighted and unweighted). On average, IBFS ran about 3
orders of magnitude slower than the jump pointer algorithm.
The plots show a linear scaling of time with the input query’s
disparity. This empirically validates the running time of both
the unweighted and weighted SPQA algorithms.

13

D. Performance evaluation of MP algorithms
For the multi-predicate range query evaluation, we use

UrbanGB and Uniform datasets. For the experiments, 10, 000
records from the UrbanGB dataset have been used. There a
total of 3,088 blues and 6,912 reds. Hence, we use a weight of
2 for the blue records and 1 for the red records. Latitude and
longitude attributes from the database were used to form the
range queries. The latitude values in the 10K records varied
from −0.507015 to 0.297345 and the longitude values varied
from 51.306584 to 51.660974. Uniform dataset consists of
10K records uniformly sampled from within a square of length
1, 000. The sensitive attribute is made of an almost equal
number of blues and reds and hence we use a weight of 1 for
both these colors. For all sets of experiments, a disparity of 5%
between demographic groups is allowed which is indicated by
the value of ε used. The baseline algorithm restricts the search
to a bounding box and performs a thorough search of all the
ranges in this rectangle. In this section we compare the run
times of IBFSMP and baseline algorithms.

1) Effect of input query size on the run time: Query size
is an important measure as it impacts the performance of
our algorithms. It impacts the number of points that are
being added or removed to find a fair range. While there
are many other factors which may impact the performance of
the query, we choose many queries in each bucket and repeat
our experiments with each of these and aggregate our results
to reduce the impact of other factors. For our experiments,
query sizes vary from 200 to 1400 that are bucketized with
intervals of 200. That is, if for example a query result contains
558 points, it fall in the query size bucket of 400-600. Each
bucket has 20 range queries sampled for the experiment using
rejection sampling. The input queries are chosen from different
buckets using rejection sampling based on the points which
satisfy the query. In each bucket, we execute 30 queries
each and aggregate the results for comparison. The average
run-time is measured for both the algorithms under different
bucket sizes. For the queries in each bucket, the mean time
taken during the run of the IBFSMP algorithm for UrbanGB
and Uniform datasets is shown in Figure 16 and Figure 17,
respectively. In case of the baseline algorithm which restricts
the search space, experimental results for the bucket 200-400
show a mean of 697.4 seconds and 557.1 seconds for the
UrbanGB and Uniform datasets respectively. The cases for the
larger bucket sizes did not complete even after 3 hours and
thus are not tabulated. The aggregated values of mean show
that IBFSMP outperforms the baseline algorithm by orders
of magnitude. For each individual query, the IBFSMP outper-
forms the baseline algorithm. But, due to space constraints,
the details of each query executed is not included.

IBFSMP shows similar trend when run in higher dimen-
sions. The experiments with 3 range predicates show that the
time taken grows with input range size as seen in figure 15.
One difference we observed was that the larger part of the
computation was spent in computing skylines than in lower
dimensions. One can observe the increase in run times between
the two and dimension charts even for small input sizes.

2) Effect of input query size on the number of ranges
explored: For the next set of experiments, we evaluate the
effect of input query size on the ranges explored. As the
algorithm has a dependence on many factors, we choose input
query arbitrarily to analyse the impact of input query size,
Jaccard similarity from the input range on running time.
The number of ranges explored by the IBFSMP algorithm is
measured as a parameter along with the time taken. We use
the same set of queries with different sizes, bucketized with
intervals of 200, as in our previous experiment.

The number of ranges explored by IBFSMP for UrbanGB
and Uniform datasets are shown in Figure 18 and Figure 19
respectively. As can be seen in the figures, the number of
ranges explored grows significantly with increase in query
size. As the amount of time taken is proportional to the number
of ranges, the mean time taken grows with the number of
ranges explored as can be seen in the both the figures.

We did not include the performance of BFSMP in the table
as IBFSMP significantly outperformed it in all cases. For
example, while IBFSMP on average required only 1.1 seconds
for the 200-400 bucket in Uniform dataset, BFSMP on average
took 11.1 seconds. That is because, on average, it explored
145K ranges (SD=394K) while this number was 15K for
IBFSMP. Similarly, for UrbanGB dataset, BFSMP on average
took 15.3 seconds while IBFSMP took 3.6 seconds for this
experiment. The reason was that BFSMP on average explored
199K ranges , while this number was 51K for IBFSMP. In all
cases, IBFSMP outperformed BFSMP for every query.

E. Comparison with coverage based algorithms
Coverage based algorithms [36], [35] output a range query

by modifying the given query such that at least a given number
of items from each sensitive group are present. Note that
coverage based CRBase makes use of a threshold value for
each demographic group. On the other hand demographic
parity measure is based on the notion of weighted difference
between the demographic groups. As a range expands by
addition of the minority group, items from the majority group
are also added which may increase the disparity. To find ranges
which satisfy demographic parity measure, we make use of
numerous values of threshold to find different ranges that
satisfy demographic parity fairness measure. Among these fair
ranges, we record the ones which have the most similarity.

We have run these experiments with the uniform and Ur-
ban GB datasets. We measure the fair ranges from CRBase
algorithm and record the one which has the most similarity.
CRBase algorithm was run with 4, 8, 16 and 32 bins. CRBase
algorithm produces a fair range 33.9% of the time with
the Uniform dataset. We measure the error by computing
1−CRSim/Optimal, where CRSim is the similarity of the
CRBase algorithm where as the Optimal is the similarity
of the optimal range. For the ranges where CRBase algorithm
does not satisfy the fairness or similarity criteria we mark
CRSim as 0. An average error measure of 0 means that
optimal range is always obtained, while an error of 1 means
that the range produced never satisfies the criteria. The error

14

produced by CRBase is 0.682 on average. For the UrbanGB
dataset, we used a weighted fairness measure. CRBase was
able to produce a fair range for only 3 out of 120 sample
ranges. The experiment shows that the two optimization prob-
lems and hence, the solutions are different in nature.
F. Summary of experimental results

At a high level, the experiments verify the efficiency and
efficacy of our methods. Firstly, we empirically show the
efficiency of the unweighted and weighted SPQA algorithm.
Secondly, for a wide spectrum of range queries, we show that
BFS algorithms outperform the baseline algorithm by orders of
magnitude. Moreover, IBFSMP outperformed BFSMP since it
explored far less number of ranges before it found the optimal
solution. Finally, we also show the effect of input range size
on IBFSMP, the larger the set size the more the time taken by
IBFSMP to find the most similar fair range.

VI. RELATED WORK

Query answering: Efficiency is critical requirement in query
answering. A large amount of research has focused on different
aspects of query answering over the past few decades. One
of the popular methods that has been explored is the query
answering using views [50], [51], [52], [53], where the goal
is to efficiently answer a query using a set of previously
materialized views on the database. Srivastava et. al. [52]
answer SQL queries with grouping and aggregation in the
presence of multiset tables by detecting when the information
existing in a view is sufficient to answer a query. Chaudhuri et.
al. [53] solve the problem of optimizing queries in the presence
of materialized views. Approximately answering queries has
also been studied extensively in many works [54], [55], [56],
[57], [58]. While there have been many works in the area
of query answering, none of these works can be modified to
incorporate fairness into them.
Fairness: Reducing racial disparities has recently been a key
research [3], [59], [60], [61], [62], [63], [11], [25]. Feldman
et. al. [59] propose methods to make make data unbiased by
modifying the fields/attributes. Hajian et. al. [60] propose a
data transformation that can consider combination of attributes
to perform data transformation. While [59], [60] perform data
modification, we do not modify any data point to remove bias
from data instead we provide the nearest fair data points to
work with. While [61], [62] propose methods that learn to
produce fair machine learning models from the given data they
do not eliminate bias from the data itself.
Query reformulation: Salimi et. al. [64] created a system for
detecting statistical dependencies which impact the result of
the original query. In their work, they reformulate queries by
modifying the attributes queried to account for these statistical
anomalies. In other works [34], [35], [36], a system has been
proposed which minimally relaxes a query to provide coverage
for sensitive groups. The objective of [35], [36] is to modify
the original query satisfying demographic coverage constraints
(minimum number of items from a each group). Coverage
constraint satisfaction involves only relaxing the constraints,
which may not help in reducing disparity. Note that, trying to

satisfy coverage can further increase the disparity between the
groups. Similar to these works [34], [35], [36], our algorithms
also modify the original query. However, unlike existing work,
our objective is to find queries (i) similar to the initial query
that (ii) satisfy a disparity (unfairness) threshold on counts
from different demographic groups.

VII. DISCUSSION AND FUTURE WORK

Fairness model: There are many fairness models which one
can consider when the data contains demographic sensitive
attributes. In this paper, we have used the fairness model in
which objects from different demographic groups have equal
chances of being selected in the output set. There are other
fairness models like the demographic parity based on ratio
which we consider for future work. Such a fairness model has
the form, δ ≥ Cr/Cb ≥ δ−1.
Operators: In our current work, we have considered a con-
junctive operator to join different predicates. Query models
like SQL support operators like NOT and OR. Note that the
subset of operations (OR and AND) would allow the output
queries to allow for union of ranges. We consider the addition
of these different operators to the query model as an extension
of the paper for future work.
All nearest fair ranges: The declarative query in 2 can have
multiple range queries which are equally near while satisfying
fairness constraints. An interesting area of research would be
to enumerate all these nearest fair ranges.
Demographic group based extensions: Fairness problems
based on binary demographic groups have been well stud-
ied [65], [66], [67], [68] for various applications like clus-
tering, PCA and other optimization problems. We note that
a significant portion of existing literature fairness and its
definitions consider binary cases, as there usually is an
advantaged/majority v.s. disadvantaged/minority group(e.g.
COMPAS dataset(black vs non-black), adult and salary
dataset(female vs male)). While binary case for fairness is an
important case, extensions to these problems are valuable in
many scenarios. We consider extending the fair range queries
to non-binary demographic groups and demographic parity
constraints on multiple sensitive attributes as future work.

VIII. FINAL REMARKS

In this paper, we initiated research on integrating fairness
into data management systems. As our first attempt, we fo-
cused on selection bias in range queries, and proposed efficient
algorithms. In particular, we proposed a sub-linear algorithm
for single-predicate range queries and two algorithms based
modeling the problem as graph traversal for multi-predicate
range queries. Besides theoretical analysis, comprehensive ex-
periments verified efficiency and effectiveness of our proposal.

We consider the extensive research required for the full
integration of fairness, including a comprehensive database
and query model with a broad coverage of bias, fairness
notions, and a broad range of SQL operators as well as
designing more efficient algorithms, for our future work.

15

REFERENCES

[1] Soumya Sen. How data, analytics, and technology are helping us fight
covid-19. minnpost, 2020.

[2] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif.
L. Rev., 104:671, 2016.

[3] Abolfazl Asudeh and HV Jagadish. Fairly evaluating and scoring items
in a data set. Proceedings of the VLDB Endowment, 13(12):3445–3448,
2020.

[4] Cathy O’neil. Weapons of math destruction: How big data increases
inequality and threatens democracy. Broadway Books, 2016.

[5] Alexandra Chouldechova. Fair prediction with disparate impact: A study
of bias in recidivism prediction instruments. Big data, 5(2):153–163,
2017.

[6] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent
trade-offs in the fair determination of risk scores. arXiv preprint
arXiv:1609.05807, 2016.

[7] Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
On the (im) possibility of fairness. arXiv preprint arXiv:1609.07236,
2016.

[8] Francine D Blau and Lawrence M Kahn. The gender pay gap. The
Economists’ Voice, 4(4), 2007.

[9] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Inter-
ventional fairness: Causal database repair for algorithmic fairness. In
SIGMOD, pages 793–810, 2019.

[10] Babak Salimi, Bill Howe, and Dan Suciu. Database repair meets
algorithmic fairness. ACM SIGMOD Record, 49(1):34–41, 2020.

[11] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. Tailoring
data source distributions for fairness-aware data integration. PVLDB,
14(11):2519–2532, 2021.

[12] An Yan and Bill Howe. Equitensors: Learning fair integrations of
heterogeneous urban data. In Proceedings of the 2021 International
Conference on Management of Data, pages 2338–2347, 2021.

[13] Zhongjun Jin, Mengjing Xu, Chenkai Sun, Abolfazl Asudeh, and HV Ja-
gadish. Mithracoverage: A system for investigating population bias for
intersectional fairness. In SIGMOD, 2020.

[14] Abolfazl Asudeh, Zhongjun Jin, and HV Jagadish. Assessing and
remedying coverage for a given dataset. In ICDE, pages 554–565. IEEE,
2019.

[15] Yin Lin, Yifan Guan, Abolfazl Asudeh, and HV Jagadish. Identifying
insufficient data coverage in databases with multiple relations. PVLDB,
13(12):2229–2242, 2020.

[16] Abolfazl Asudeh, Nima Shahbazi, Zhongjun Jin, and HV Jagadish.
Identifying insufficient data coverage for ordinal continuous-valued
attributes. In Proceedings of the 2021 International Conference on
Management of Data, pages 129–141, 2021.

[17] Ki Hyun Tae and Steven Euijong Whang. Slice tuner: A selective data
acquisition framework for accurate and fair machine learning models.
In Proceedings of the 2021 International Conference on Management
of Data, pages 1771–1783, 2021.

[18] Eliana Pastor, Luca de Alfaro, and Elena Baralis. Looking for trouble:
Analyzing classifier behavior via pattern divergence. In Proceedings
of the 2021 International Conference on Management of Data, pages
1400–1412, 2021.

[19] Yuval Moskovitch and HV Jagadish. Countata: dataset labeling using
pattern counts. Proceedings of the VLDB Endowment, 13(12):2829–
2832, 2020.

[20] Chenkai Sun, Abolfazl Asudeh, HV Jagadish, Bill Howe, and Julia Stoy-
anovich. Mithralabel: Flexible dataset nutritional labels for responsible
data science. In CIKM, pages 2893–2896, 2019.

[21] Ke Yang, Julia Stoyanovich, Abolfazl Asudeh, Bill Howe, HV Jagadish,
and Gerome Miklau. A nutritional label for rankings. In SIGMOD, pages
1773–1776, 2018.

[22] Hantian Zhang, Xu Chu, Abolfazl Asudeh, and Shamkant B Navathe.
Omnifair: A declarative system for model-agnostic group fairness in
machine learning. In Proceedings of the 2021 International Conference
on Management of Data, pages 2076–2088, 2021.

[23] Hantian Zhang, Nima Shahbazi, Xu Chu, and Abolfazl Asudeh. Fair-
rover: explorative model building for fair and responsible machine
learning. In Proceedings of the Fifth Workshop on Data Management
for End-To-End Machine Learning, pages 1–10, 2021.

[24] Agathe Balayn, Christoph Lofi, and Geert-Jan Houben. Managing
bias and unfairness in data for decision support: a survey of machine
learning and data engineering approaches to identify and mitigate bias

and unfairness within data management and analytics systems. The
VLDB Journal, pages 1–30, 2021.

[25] Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das.
Designing fair ranking schemes. In SIGMOD, pages 1259–1276, 2019.

[26] Caitlin Kuhlman and Elke Rundensteiner. Rank aggregation algorithms
for fair consensus. PVLDB, 13(12):2706–2719, 2020.

[27] Abolfazl Asudeh, HV Jagadish, Gerome Miklau, and Julia Stoyanovich.
On obtaining stable rankings. PVLDB, 12(3), 2019.

[28] Yifan Guan, Abolfazl Asudeh, Pranav Mayuram, HV Jagadish, Julia
Stoyanovich, Gerome Miklau, and Gautam Das. Mithraranking: A
system for responsible ranking design. In SIGMOD, pages 1913–1916,
2019.

[29] Yan Zhao, Kai Zheng, Jiannan Guo, Bin Yang, Torben Bach Pedersen,
and Christian S Jensen. Fairness-aware task assignment in spatial crowd-
sourcing: Game-theoretic approaches. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 265–276. IEEE, 2021.

[30] Lise Getoor. Responsible data science. In SIGMOD, 2019.
[31] Julia Stoyanovich, Bill Howe, and HV Jagadish. Responsible data

management. PVLDB, 13(12):3474–3488, 2020.
[32] Nihar B Shah and Zachary Lipton. Sigmod 2020 tutorial on fairness

and bias in peer review and other sociotechnical intelligent systems. In
SIGMOD, pages 2637–2640, 2020.

[33] Suresh Venkatasubramanian. Algorithmic fairness: Measures, methods
and representations. In PODS, pages 481–481, 2019.

[34] Chiara Accinelli, Barbara Catania, Giovanna Guerrini, and Simone
Minisi. covrew: a python toolkit for pre-processing pipeline rewriting
ensuring coverage constraint satisfaction demonstration paper. 2021.

[35] Chiara Accinelli, Barbara Catania, Giovanna Guerrini, and Simone
Minisi. The impact of rewriting on coverage constraint satisfaction.
In EDBT/ICDT Workshops, 2021.

[36] Chiara Accinelli, Simone Minisi, and Barbara Catania. Coverage-based
rewriting for data preparation. In EDBT/ICDT Workshops, 2020.

[37] Michael J Zimmer. Slicing & dicing of individual disparate treatment
law. La. L. Rev., 61:577, 2000.

[38] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and
Krishna P Gummadi. Fairness beyond disparate treatment & disparate
impact: Learning classification without disparate mistreatment. In
Proceedings of the 26th international conference on world wide web,
pages 1171–1180, 2017.

[39] Abolfazl Asudeh. Enabling responsible data science in practice. ACM
SIGMOD Blog, January 2021.

[40] Arvind Narayanan. Translation tutorial: 21 fairness definitions and their
politics. In FAT*, 2018.

[41] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and
machine learning: Limitations and opportunities. fairmlbook.org, 2019.

[42] Indrė Žliobaitė. Measuring discrimination in algorithmic decision
making. DATA MIN KNOWL DISC, 31(4):1060–1089, 2017.

[43] Faisal Kamiran and Toon Calders. Data preprocessing techniques
for classification without discrimination. Knowledge and Information
Systems, 33(1):1–33, 2012.

[44] Jon Louis Bentley. Decomposable searching problems. Technical
report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF
COMPUTER SCIENCE, 1978.

[45] Saladi Rahul and Ravi Janardan. Algorithms for range-skyline queries.
In Proceedings of the 20th International Conference on Advances in
Geographic Information Systems, pages 526–529, 2012.

[46] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[47] Texas tribune dataset. https://salaries.texastribune.org/, visited: 2021.
[48] John Monahan and Jennifer L Skeem. Risk assessment in criminal

sentencing. Annual review of clinical psychology, 12:489–513, 2016.
[49] Urbangb dataset. kaggle.com/daveianhickey/

2000-16-traffic-flow-england-scotland-wales/data, visited: 2021.
[50] Alon Y Halevy. Answering queries using views: A survey. The VLDB

Journal, 10(4):270–294, 2001.
[51] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris

Tsirogiannis. Answering top-k queries using views. In Proceedings
of the 32nd international conference on Very large data bases, pages
451–462, 2006.

[52] Divesh Srivastava, Shaul Dar, Hosagrahar V Jagadish, and Alon Y Levy.
Answering queries with aggregation using views. In VLDB, volume 96,
pages 318–329, 1996.

16

[53] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and
Kyuseok Shim. Optimizing queries with materialized views. In Pro-
ceedings of the Eleventh International Conference on Data Engineering,
pages 190–200. IEEE, 1995.

[54] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized
stratified sampling for approximate query processing. ACM Transactions
on Database Systems (TODS), 32(2):9–es, 2007.

[55] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar
Ramaswamy. The aqua approximate query answering system. In
Proceedings of the 1999 ACM SIGMOD international conference on
Management of data, pages 574–576, 1999.

[56] Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, and
Gautam Das. Approximate query processing for data exploration using
deep generative models. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pages 1309–1320. IEEE, 2020.

[57] Qingzhi Ma and Peter Triantafillou. Dbest: Revisiting approximate query
processing engines with machine learning models. In Proceedings of the
2019 International Conference on Management of Data, pages 1553–
1570, 2019.

[58] Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and Gautam
Das. Astrid: Accurate selectivity estimation for string predicates using
deep learning.

[59] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger,
and Suresh Venkatasubramanian. Certifying and removing disparate
impact. In proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pages 259–268,
2015.

[60] Sara Hajian, Josep Domingo-Ferrer, and Antoni Martinez-Balleste. Dis-

crimination prevention in data mining for intrusion and crime detection.
In 2011 IEEE Symposium on Computational Intelligence in Cyber
Security (CICS), pages 47–54. IEEE, 2011.

[61] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity
in supervised learning. In Advances in neural information processing
systems, pages 3315–3323, 2016.

[62] Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern,
and Aaron Roth. Fair learning in markovian environments. arXiv
preprint arXiv:1611.03071, 2016.

[63] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron
Roth. Fairness in learning: Classic and contextual bandits. In Advances
in Neural Information Processing Systems, pages 325–333, 2016.

[64] Babak Salimi, Corey Cole, Peter Li, Johannes Gehrke, and Dan Suciu.
Hypdb: a demonstration of detecting, explaining and resolving bias in
olap queries. Proceedings of the VLDB Endowment, 11(12):2062–2065,
2018.

[65] Julia Dressel and Hany Farid. The accuracy, fairness, and limits of
predicting recidivism. Science advances, 4(1):eaao5580, 2018.

[66] Vladimiro Zelaya, Paolo Missier, and Dennis Prangle. Parametrised data
sampling for fairness optimisation. KDD XAI, 2019.

[67] Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali
Vakilian, and Tal Wagner. Scalable fair clustering. In International
Conference on Machine Learning, pages 405–413. PMLR, 2019.

[68] Matt Olfat and Anil Aswani. Convex formulations for fair principal
component analysis. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 663–670, 2019.

17

