
Prediction Intervals for Learned Cardinality
Estimation: An Experimental Evaluation

Saravanan Thirumuruganathan
QCRI, HBKU

sthirumuruganathan@hbku.edu.qa

Suraj Shetiya
UT Arlington

suraj.shetiya@mavs.uta.edu

Nick Koudas
University of Toronto
koudas@cs.toronto.edu

Gautam Das
UT Arlington

gdas@cse.uta.edu

Abstract—Cardinality estimation is a fundamental and chal-
lenging problem in query optimization. Recently, a number of
learned models have been proposed for this task. Often, these
models significantly outperform traditional approaches in terms
of accuracy. One of the stumbling blocks that prevents their
increased adoption is that the learned models do not quantify
the uncertainty of their estimates. It is desirable to associate
each cardinality estimate of the model with a prediction interval
that will contain the true cardinality with an user-specified
probability. The size of the prediction interval encodes the
uncertainty allowing the query optimizer to make an informed
decision. For example, knowing that the cardinality of a query q
lies between 1− 3% of the relation size with high probability is
more informative than a single point estimate of 2%. While there
has been some prior work on deriving bounds for traditional
methods (such as sampling or histograms), they are not directly
applicable for the learned models for cardinality estimation.

In this paper, we conduct a systematic investigation of potential
approaches for obtaining prediction intervals. We enumerate the
list of desirable properties such as the ability to wrap around
a learned model without significant internal modification and
providing bounds with theoretical guarantees in a distribution
agnostic manner among others. Based on an extensive literature
survey, we identify four practical and high quality approaches
for uncertainty quantification that satisfies these criteria. They
span a wide spectrum in terms of theoretical guarantees, width of
prediction interval and time taken for computing the prediction
intervals. We conduct extensive experimental analysis of the
efficacy of these approaches over three diverse and represen-
tative cardinality estimation algorithms. Our experiments covers
diverse workloads involving both point and range queries and
highlights the inherent trade-offs. Our results show that it is
possible to obtain accurate prediction intervals in an efficient
manner thereby opening up new avenues for future research.

I. INTRODUCTION

Cardinality estimation – the problem of estimating the

number of tuples that satisfy the predicates of a given query –

is an important and challenging problem in query optimization.

The cardinality estimates could be used in diverse applications

including query optimization, database tuning, approximate

query processing etc. Inaccurate cardinality estimates could

result in the selection of sub-optimal plans resulting in poor

performance [24]. Hence, there has been extensive work by

the database community using diverse traditional and machine

learning based techniques. Recently, there has been increasing

interest in replacing database components with learned models
that are often based on deep learning (DL). Several recent

works [34], [51], [16], [45] have shown that it is possible to

develop learned (DL) models that achieve significantly better

accuracy than traditional methods such as histograms.

The learned models for cardinality estimation could be

broadly partitioned into two categories – learned query mod-

els [22], [8], [53], [17], [21], [38], [54] and learned data
models [57], [17], [56], [19], [62]. Given a query q, the learned

query model seeks to learn a mapping between the features of

q and the cardinality of q. Typically, this is achieved by training

a supervised non-linear regression model over a training

workload of queries and their cardinalities. The learned data

models formulate cardinality estimation as the problem of joint

probability distribution estimation. Typically, these models are

directly trained over the data in an unsupervised manner using

appropriate architectures such as autoregressive models [57],

[17], [56], sum-product networks [19], [62] among others.

Limitations of Learned Models. Despite superior perfor-

mance over traditional methods, the learned models could

still produce sub-optimal results for queries with complex

predicates involving multiple tables. Recent work such as [51],

[33] have critically examined their promises and pitfalls. The

learned models are not a silver bullet and can be quite fallible.

They could have high estimation errors due to diverse reasons

including model capacity, quality/informativeness of query

featurization, quality of training data [33], and high inter-

column and inter-table correlations [27]. The performance is

also affected by dataset and workload characteristics such as

correlation, skewness, or domain size [51]. These limitations

affect both supervised and unsupervised learned models. The

supervised models are affected by the divergence between

training and testing workloads [51], [33]. The data-driven

unsupervised estimators are affected by skewed data [51], [27].

Furthermore, they often underestimate cardinalities for range

queries [61] as they rely on Monte-Carlo integration over the

learned distribution [57], [17]. These estimation errors are

extenuated by the black-box nature of the learned models that

makes analyzing their behavior much more challenging [51].

Quantifying Uncertainty of Cardinality Estimates. Tradi-

tional methods such as sampling, often provide some measure

of uncertainty through variance or confidence intervals [31].

In contrast, the learned models output a single scalar as the

cardinality estimate. The lack of uncertainty quantification

associated with the estimate makes the job of query optimizer

much more challenging as it has to select a specific plan

3051

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00274

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
02

74

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

based on the estimate that could turn out to be incorrect.

However, if the learned model could output some additional

information (such as an interval), then the query optimizer

could make an informed decision. For example, if the interval

is sufficiently tight, then the optimizer could choose the

plan with higher confidence. Uncertainty quantification could

improve the reliability of the cardinality estimates and increase

the adoption of learned components.

Prediction Intervals. Given a query q, the learned model

outputs an estimate Est(q). A prediction interval [lowq, highq]
ensures that

P (lowq ≤ Card(q) ≤ highq) ≥ (1− α)

for some user specified coverage level 1 − α. Here Card(q)
denotes the true cardinality of query q. We provide a formal

definition in Section III. To be useful, prediction intervals

should have some desirable properties such as providing tight

bounds with rigorous guarantees without making any strong

assumptions about the model or distribution of the data or

query workload. Furthermore, it is desirable that we should be

able to wrap any arbitrary black-box learned model without

requiring any internal modifications. Ideally, the prediction

interval would subsume the uncertainties caused by different

sources including data, model and workload.

Contributions. We conduct a systematic analysis of various

techniques that could provide accurate prediction intervals.

We identify four practical and high quality approaches for

uncertainty quantification that share a number of desirable

properties – (a) jackknife+ with cross validation [4], (b)

split conformal inference [35], [23], (c) locally weighted

conformal inference [23], [2] and (d) conformalized quantile

regression [40] Broadly, they can be partitioned into two

categories. Jackknife+ belongs to the class of resampling

based approaches that has been widely used to obtain bounds

for complex queries for sampling based approximate query

processing (AQP) [31] . Jackknife+ extends these traditional

approaches to provide prediction intervals for the learned mod-

els. The remainder are based on the framework on conformal

prediction [3], [50] that provides rigorous bounds in an distri-

bution free manner without making any strict assumptions.

These four approaches span a wide spectrum in terms of

theoretical guarantees, width of prediction interval and time

taken for training and estimating the prediction intervals.

We evaluate these methods for obtaining prediction intervals

on three diverse and representative cardinality estimation algo-

rithms – Naru [57], MSCN [22] and LW-NN [8], [51]. Naru

is an unsupervised approach while MSCN and LW-NN are

supervised. LW-NN is a lightweight model that is especially

optimized for range queries. We conduct extensive experi-

ments over diverse workloads involving both point and range

queries. Our results show that it is possible to obtain accurate

prediction intervals in an efficient manner. We also provide

some guidance about choosing an appropriate approach based

on the trade-offs between accuracy of prediction intervals and

the required inference time.

II. LEARNED MODELS FOR CARDINALITY ESTIMATION

Cardinality Estimation. Let R be a relation with N tuples

and M attributes A = {A1, A2, . . . , AM}. The domain of the

attribute Ai is given by Dom(Ai). If Ai is a numerical at-

tribute, then Dom(Ai) is specified by the range [mini,maxi].
If Ai is categorical, then Dom(Ai) is {ai,1, . . . , ai,|Dom(Ai)|}.
We denote the value of attribute Ai of an arbitrary tuple t as

t[Ai]. We consider conjunctive queries on R of the form

SELECT COUNT(*) FROM R
WHERE P1 AND P2 AND . . .

Pi could be either a point or range predicate. Point pred-

icates are of the form Ai = vi where vi ∈ Dom(Ai) while

range predicates are specified as an interval lbi ≤ Ai ≤ ubi.
The goal of cardinality estimation is to accurately estimate the

number of tuples Card(q) that satisfy the predicates of query

q. We use the normalized selectivity between [0, 1] obtained

by dividing Card(q) by the number of tuples, N .

Performance Measures. Given a query q, let the estimate

provided by selectivity estimation algorithm be Est(Q). We

use q-error which measures the quality of estimates that as

the factor by which the estimate differs from true cardinality.

This metric is widely used for evaluating cardinality estimation

approaches [22], [53], [21], [17], [42].

q-error = max

(
Est(Q)

Card(Q)
,
Card(Q)

Est(Q)

)
(1)

Taxonomy of Learned Models. Recently, a number of papers

have successfully applied deep learning (or machine learning

in general) for cardinality estimation. Broadly, they could

be partitioned into two major categories. The query-driven
approaches are often based on supervised learning and are

trained on a workload of queries and their true cardinalities.

Typically, this involves three stages [51]. The query featuriza-
tion stage represents each query as a set of features through

diverse techniques such as one-hot encoding [21], [17], binary

encoding [17], basic statistics [8], data samples [21] and even

heuristic estimators [8]. In the training stage, a (non-linear)

regression model is trained over the workload to estimate

the cardinality of a query given its features. In the inference
stage, the regression model is applied on the features of the

input query. In contrast, the data-driven approaches formulate

cardinality estimation as the problem of joint probability

distribution (i.e. P (A1, A2, . . . , Am)) estimation. Typically,

this approach consists of two stages – training and inference.

The training is conducted on the data without the need for

training data such as the query workload. In the inference

phase, the data-driven models estimate the cardinality of a

query q through diverse techniques including Monte-Carlo

integration over the learned distribution [57], [17].

We evaluate the performance of the algorithms by selecting

three learned cardinality estimation models – MSCN [21],

Naru [57] and LW-NN [8]. Independent evaluation such

as [51], [16], [45] have found that these approaches achieve

competitive performance over various datasets and workloads.

3052

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

III. PREDICTION INTERVALS FOR CARDINALITY

ESTIMATION

In this section, we describe four techniques that could be

used for quantifying the error of the cardinality estimates

produced by the learned models.

Problem Setup. Consider the query-driven approaches that

train a regression model for estimating cardinalities. Let D =
{(X1, y1), . . . , (Xn, yn)} be a labeled dataset drawn i.i.d. from

an unknown distribution that was used to train the model. Here,

Xi is the featurized version of query qi while yi is the correct

cardinality of qi. Suppose that Xn+1 is the feature of a new
query qn+1 drawn i.i.d. from the same distribution. Let the

true (but unknown) and estimated cardinalities for Xn+1 be

yn+1 and ŷn+1 respectively. We desire an interval, denoted as

C(Xn+1) = [lown+1, highn+1], such that

P (yn+1 ∈ C(Xn+1)) ≥ (1− α) (2)

for some user specified coverage level 1−α. α is also referred

to as miscoverage level.

A. Quantifying Errors of Learned Models

As mentioned in Section I, the learned models could have

large estimation errors due to various reasons. For example,

the data could be skewed or the workload used for training

the supervised models is not representative of the workloads

used for inference. Alternatively, the learned model might not

have sufficient capacity to learn the relevant characteristics of

the data or workload. Hence, it is important to holistically

incorporate these uncertainties in data, model and workload

when quantifying the estimation error. For tasks like query

optimization, aggregate metrics such as average test accu-

racy are insufficient. Instead, it is desirable to quantify the

uncertainty in the cardinality estimation for each query by

providing a range for prediction with some guarantee that the

true cardinality estimate will fall within the bounds with high

probability such as 0.95. This additional information could

enable the query optimizer to make more informed decisions.

Uncertainty Framework. Typically, cardinality estimation is

formulated as a regression problem by assuming that there

exists an underlying data generation function f(X) that gen-

erates the target values y as

y = f(X) + ε

In the cardinality estimation context, X is the feature for a

query q while y is the true cardinality. ε corresponds to the

data noise. The supervised learned models seek to learn a non-

linear function f̂ (such as through deep learning) that can map

the features to an estimate. Specifically, given the feature X
for query q, the regression generates a point estimate f̂(X).
In order to generate the interval, we should have a mechanism

to quantify the uncertainty.

Intuitively, there are two sources of uncertainty [20] – model

and data. The aleatoric uncertainty that captures the inherent

noise in the data while the epistemic uncertainty captures the

uncertainty in the model parameters. Aleatoric uncertainties

are data dependent and could be improved by improving the

data. In contrast, epistemic uncertainties can be improved with

better models and could become negligible in the presence of

infinite data. We can measure the overall uncertainty as

σ2
y = σ2

model + σ2
noise

σ2
model quantifies the model uncertainty that could arise from

various sources [39] such as model misspecification (bias),

uncertainty in training data/workload (variance) and parameter

uncertainty. Additional discussion can be found in [39], [20].

Confidence and Prediction Intervals. There are two ap-

proaches that are widely used to quantify the uncertainty.

Suppose that we are given an input X and a desired coverage

level 1 − α. The confidence interval (CI) focuses on the

distribution P (f(X)|f̂(X)). In the context of regression, CIs

provide a bound that contains the estimated conditional mean

value E[y|X] with confidence 1 − α. In contrast, prediction

intervals (PI) focus on the distribution P (y|f̂(X)) = P (y|ŷ).
We can see that PIs are necessarily wider than CIs as the

former only needs to handle the model uncertainty while the

latter also has to tackle the data uncertainty [18], [39], [47].

In this paper, we focus on prediction intervals.

Desiderata for Prediction Intervals. We enumerate a list of

desirable properties for identifying a promising set of tech-

niques for computing prediction intervals for learned models.

• Coverage Validity: The prediction intervals should pro-

vide rigorous theoretical guarantees.

• Interval Efficiency: We require that the width of interval

be as tight as possible. Otherwise, it is possible to provide

trivial bounds such as [0, 1] for the normalized cardinality.

• Minimal Assumptions: The approach should not make any

assumptions about the data or workload distributions.

• Generality: The approach should work for arbitrary

learned models and arbitrary data and workload distribu-

tions. The PIs should subsume the uncertainties caused

by different sources including data, model and workload.

• Minimal to No Changes to Underlying Model. There has

been a wide variety of learned models for cardinality esti-

mation. The approach for PIs should be able to accept any

blackbox method without requiring any internal changes.

In other words, it should be possible to wrap an arbitrary

model and produce meaningful error estimates.

Computing Quantiles. We describe four practical approaches

that satisfy the desiderata. Each of them relies on com-

puting quantiles. Suppose we are given a set of values

{v1, v2, . . . , vn}. Then, we denote the (1− α) quantile as

qn,1−α{vi} = �(1−α)(n+1)�-th smallest value of v1, . . . , vn

B. JackKnife+ based Prediction Intervals

Jackknife [4] is a resampling based technique that has been

used for estimating metrics such as bias and variance of an

estimator without making any parameteric assumptions. This

method could be extended to obtain prediction intervals for

learned models. Recall that D = {(X1, y1), . . . , (Xn, yn)}

3053

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

is the labeled dataset containing query features and true

cardinalities. The goal is to obtain a prediction interval for a

new query Xn+1. Jackknife tackles this through leave-one-out

approach. Instead of building a single model f̂ for D, we build

n models. Let f̂−i be the model trained over D \ {(Xi, yi)}
by removing the i-th data point. The leave-one-out residual

for that model is computed as ri = |yi − f̂−i(Xi)|. Let

r = {r1, r2, . . . , rn} be the set of residuals computed for

models f̂−1, . . . , f̂−n. Finally, we train the model f̂ over the

entire dataset D. Given a new query Xn+1, the prediction

interval is computed as the 1 − α-th quantile over the set of

leave-one-out residuals r. Specifically,

CJK(Xn+1) =
[
qn,1−α{f̂(Xn+1)− ri}, qn,α{f̂(Xn+1) + ri}

]
(3)

While this approach often works well empirically in prac-

tice, this suffers from two key limitations. First, it requires

training of n models that is infeasible in our setting where n is

large and training even a single learned model takes significant

amount of time. More seriously, it does not provide any

universal theoretical guarantees [4]. Instead, it only provides

guarantees under an asymptotic setting when the learned model

is stable [43]. Stability requires that f̂ and each of the leave-

one-out models f̂−i provides similar predictions for Xn+1. In

our experiments, we found that learned models do not always

satisfy this property.

We rely upon a recent approach dubbed Jackknife+ [4]

that extends Jackknife to provide non asymptotic coverage

guarantees. By default, Jackknife+ proceeds in the same

manner as Jackknife by training n models and computing their

corresponding leave-one-out residuals ri. The key difference is

in how the prediction interval is computed as CJK+(Xn+1) =[
qn,1−α{f̂−i(Xn+1)− ri}, qn,α{f̂−i(Xn+1) + ri}

]
(4)

Often, Jackknife and Jackknife+ provide very similar pred-

ication intervals in practice [4]. This is especially true when

the learned model for the entire data and the corresponding

leave-one-out model produces similar outputs for an arbitrary

query. However, while Jackknife might not provide a rigorous

PI under certain circumstances, Jackknife+ always provides

a bound of 1 − 2α [4]. While this solves the problem of

guarantees, the problem of efficiency still remains. However,

it is possible to achieve a trade-off between number of trained

models and the theoretical guarantees. Specifically, we can

reduce the number of models trained by using K-fold cross

validation for a user specified K (such as 10). We partition D
into K disjoint subsets S1, S2, . . . , SK of equal size. Next, we

train K models where the model f̂−i is trained by excluding

subset Si. We next compute the K-fold residual as

ri = |yi − f̂Sk(i)
(Xi)|

k(i) ∈ {1, . . . ,K} denotes the subset containing Xi. We

can compute the PI as CCV+(Xn+1) =[
qn,1−α{f̂−Sk(i)

(Xn+1)− ri}, qn,α{f̂−Sk(i)
(Xn+1) + ri}

]
(5)

Note that we now only train K models instead of n
models as in Jackknife+. Each of the models are trained

using n
(
1− 1

K

)
instead of n − 1 data points. The increased

efficiency comes at the cost of wider prediction intervals. It

also results in reduced coverage guarantee[4] that is at least

1− 2α−min

{
2(1− 1/K)

n/K + 1
,
1−K/n

K + 1

}

Algorithm 1 JackKnife+ with Cross Validation [4], [23]

Input: D, K, α
Split D into K disjoint partitions S1, . . . , SK

for i = 1 to K do
Train model f̂−i using data D \ Si

for i = 1 to n do
Compute residual ri = |yi − f̂Sk(i)

(Xi)|
δ = �(n+1)(1−α)�-th smallest value in r = {r1, . . . , rn}
Train model f̂ over entire dataset D
return [f̂(X)− δ, f̂(X) + δ] for any query feature X

C. Conformal Prediction based Approaches

Conformal Prediction (CP) is a powerful and flexible ap-

proach for outputting prediction intervals. CP falls under the

paradigm of distribution free uncertainty quantification [50],

[2], [58], [3] where the goal is to create prediction intervals

with rigorous statistical guarantees. The prediction intervals

(PI) produced by CP are valid – i.e. they are guaranteed to

contain the correct cardinality with the user specified coverage

level. An appealing property of CP is that it produces the

PI using a finite number of data points without making any

assumptions about the model or the data. We first provide a

high level overview of CP while the next three subsections

describe concrete instantiations with differing trade-offs.

Assumptions of CP. CP can be used whenever the data

are independent and identically distributed (i.i.d.). This is a

standard assumption widely used in ML for both regression

and classification. In fact, CP can work even with the weaker

assumption of exchangeability, where the ordering of data

points does not affect their joint distributions. A sequence

Z = (z1, z2, . . . , zn) is exchangeable if the joint probabil-

ity distribution of the permuted sequence Z ′ is the same

as that of the original sequence, i.e. P (z1, z2, . . . , zn) =
P (π(z1, z2, . . . , zn)) where π(·) is the permutation opera-

tor [58]. We can see that exchangeability is a weaker assump-

tion than i.i.d. Every i.i.d. data is exchangeable but the vice

versa need not be true. CP do not make any assumption about

the ML model and can work for arbitrary models. Hence, CP

could be used for supervised DL models such as MSCN [22],

unsupervised autogressive models [57], [17] and even models

not based on deep learning.

Conformal Prediction. Next, we provide a simplified exposi-

tion tailored for the task of cardinality estimation. Additional

details can be found in [2], [23], [36], [58], [3]. Intuitively, CP

consists of three key steps: fitting, calibration and inference.

3054

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

Given a labeled dataset D, we split it into two parts: DT

and DC . First, we fit a model f̂(·) using the training dataset

DT . Second, we calibrate the output of the model using DC .

The calibration is done through a scoring function s(X, y)
that produces a conformal score. For example, the scoring

function could be |y− f̂(X)| that computes the residual error.

Intuitively, the score is a proxy for the quality of the prediction

with a smaller value indicating a relatively accurate prediction.

We compute the scoring function for each X ∈ DC . We cannot

directly use the conformal scores to produce a prediction

interval. The goal of CP is to calibrate the conformal scores

so that they could be used for computing prediction intervals.

It achieves this by computing the δ = �(n + 1)(1 − α)�-th
smallest value of the conformal scores. Suppose α = 0.1.

Then, at least 90% of the conformal scores in the calibration

set are less than δ. Intuitively, by the exchangeability (or the

i.i.d.) assumption, we would expect this fact to hold for any

new X with probability of at least 1− α. Please refer to [2],

[23] for a formal proof. Finally, the inference step produces

a valid interval for a new point X ′ using f̂(X ′) and δ. For

example, the prediction interval could contain all y such that

score s(X, y) ≤ δ for all (X, y) ∈ DC .

Importance of Scoring Functions. CP does not make any

model or distributional assumptions as the scoring function

abstracts the classifier performance allowing it to be used for

arbitrary classifiers. The prediction interval is valid as long as

exchangeability assumption holds. It is important to note that

the validity of the prediction interval holds for arbitrary scoring

functions. If the scoring function is informative – giving low

scores for accurate estimates and large scores for inaccurate

ones – then the prediction interval will provide meaningful

and non-trivial bound. The use of different scoring functions

could potentially produce different prediction intervals.

D. Split Conformal Prediction
Split conformal prediction (S-CP) is one of the simplest

and widely used variant of conformal prediction. It broadly

follows the three steps described in Section III-C. It begins

by partitioning the labeled dataset D into two equal and

disjoint subsets: a training dataset (DT) and a calibration

dataset (DC). This partitioning is analogous to that of training

and validation datasets used for training DL models where the

validation dataset is used for tasks such as tuning the model

hyper-parameters. Hence, we can use the validation dataset

for calibration purposes. Next, we apply the scoring function

for each (Xi, yi) ∈ DC producing a set of conformal scores

r = {ri}. Given a coverage 1−α, we compute the appropriate

quantile and use it to compute the prediction intervals for any

new data point.
Split-CP is computationally efficient as only a single model

need to be trained over DC instead of n models (in Jackknife+)

or K models (in CV-Jackknife+). However, this efficiency

comes at a cost. Suppose we did a 50-50 split of D to get

DT and DC . Then, the model f̂ is only trained on n/2 data

points in contrast to n − 1 and n − n/K in the Jackknife+

variants. Reducing the size of DT could potentially result in an

Algorithm 2 Split Conformal Prediction [35], [23]

Input: D, α
Split D to two disjoint subsets DT and DC .

Train model f̂ using DT

r = {|yi − f̂(Xi)|} ∀(Xi, yi) ∈ DC

δ = �(n1 + 1)(1 − α)�-th smallest value in r where n1 =
|DC |.
return [f̂(X)− δ, f̂(X) + δ] for any query feature X

inaccurate model. However, while increasing the size of DT

increases the accuracy of f̂ , it also increases the variability of

the prediction interval. We study this tradeoff in the experi-

ments and show that typical sizes of validation datasets in DL

training provides sufficiently accurate prediction intervals.

E. Locally Weighted Split Conformal Prediction

While Split-CP works well in practice, it suffers from a

subtle issue. From Algorithm 2, we can see that the size of the

prediction interval is a fixed constant δ for all queries. This

property is useful if the residual error of the learned model

does not vary significantly with X . However, an empirical

analysis shows that this assumption does not hold for most

learned models for cardinality estimation. For example, the

errors for queries with predicates containing highly correlated

attributes is often higher than that of non correlated attributes.

Hence, it is desirable for the prediction interval to take this

non-uniformity of residual errors into account. There are

many different ways to formulate the heterogeneous prediction

intervals [23], [2]. We focus on normalized non-conformity

scores. Intuitively, the idea is to require a prediction interval

proportional to the ‘difficulty’ of the query – narrower PIs for

easy queries and wider PIs for challenging ones.

As mentioned above, the key insight is that it is pos-

sible to alter the scoring function S(X, y) without losing

the coverage guarantees as long as the new scoring function

has the exchangeability property. We leverage this flexibility

by replacing the residual error based scoring function (i.e.

S(X, y) = |y − f̂(X)|) with a normalized scoring function

based on the difficulty of the query thereby enabling adaptive
PIs. Let U(X) be a function that quantifies the difficulty (or

in general uncertainty) associated with X . Hence, a smaller

value indicates an easier example. Then, we can replace the

absolute residuals with scaled residuals as

r̂i =
|yi − f̂(Xi)|

U(Xi)
=

ri
U(Xi)

Then, the PI for a new query X is computed as

C(Xi) = [f̂(Xi)− δ U(Xi), f̂(Xi) + δ U(Xi)] (6)

where δ is the prediction interval for the original scoring

function (see Algorithm 2). The adaptiveness of the PI now

relies on appropriate design of the normalization function.

There are many ways to design U(X). For example U(X)
could measure the conditional mean absolute deviation (MAD)

3055

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

of |Y − f̂(X)| for a given X . We can see that the deviation

will be higher for harder X while it will be narrow for

easier X . Other approaches include setting U(X) as the

variance of f̂(X) for an ensemble of learned models all

initiated with different random seeds or hyper-parameters.

Alternatively, we could generate various ‘perturbations’ of X
such as X1, X2, . . . and measure the variance in predictions

i.e. V ar({f̂(X1), f̂(X2), . . .}).
Instantiating U(X). For concreteness, let U(X) be the condi-

tional mean absolute deviation (MAD) of |Y − f̂(X)|. Locally

weighted S-CP (LW-S-CP) proceeds as follows. As before,

we split D to DT and DC . We train f̂ on DT and compute

the residual absolute deviation ri = |yi − f̂(Xi)| for each

(Xi, yi) ∈ DT (not the calibration set). Next we train a model

ĝ based on the labeled dataset {Xi, ri} for each Xi ∈ DT . In

other words, we train a second model ĝ to predict the residual

for X produced by f̂ . Next, we compute the scaled residuals

for each Xi ∈ DC and use it compute the quantiles. Finally, we

apply the modified formula for computing prediction interval

provided by Equation 6.

Algorithm 3 Locally Weighted Split Conformal Predic-

tion [23], [2]

Input: D, α
Split D to two disjoint subsets DT and DC .

Train model f̂ using DT

Train model ĝ using {Xi, |yi−f̂(Xi)|} ∀(Xi, yi) ∈ DT

r = {|yi − f̂(Xi)|} ∀(Xi, yi) ∈ DC

r̂ = { ri
U(Xi)

} ∀Xi ∈ DC

δ = �(n1 + 1)(1 − α)�-th smallest value in r where n1 =
|DC |.
return [f̂(X)− δ U(X), f̂(X) + δ U(X)] for any X

F. Conformalized Quantile Regression

The locally weighted variant of S-CP (LW-S-CP) works well

in practice and has appealing properties. It provides adaptive

PIs instead of the fixed ones from S-CP. Both S-CP and LW-S-

CP can provide valid PI for arbitrary 1−α by recomputing the

appropriate δ. Finally, they can be used as a wrapper for any

pretrained model without requiring any major modification.

However, it is possible to obtain even tighter PIs. By default,

the supervised learned regression models often rely on deep

neural networks to estimate the conditional mean. It is well-

known [40] that over-parameterized models could overfit to

the training data. This could result in very low residuals for

the training data that is an under-estimate of errors in test set.

The use of normalized residuals r̂ ameliorates this issue but

also results in the loss of some adaptivity.

In this subsection, we describe conditional quantile regres-

sion (CQR) [40] that allows us to obtain tighter bounds under

two additional restrictions. First, the miscoverage level α has

to be known and fixed (alternatively, we have to train a

different CQR model for each α). Second, we must be able

to modify the loss function of the learned model. Specifically,

we will train an additional uncertainty quantification model

that is identical to learned model except for the loss function

where it uses a quantile loss function.

The goal of a traditional regression models is to learn the

conditional mean of Y |X . In contrast, an τ -quantile regression

function seeks to learn the τ -quantile of Y |X which makes

it robust to outliers. For example, τ = 0.5 estimates the

conditional median of Y |X . Suppose we require a coverage of

0.9. We train two quantile regression models with τ = 0.05
and τ = 0.95 dubbed as Q̂l and Q̂u respectively. Then for

a new X , the true value y is likely to be in the interval

[Q̂l(X), Q̂u(X)]. Intuitively, this is due to the fact that the

model Q̂l strives to ensure that Y |X falls below the estimate

Q̂l(X) with 5% probability. Similarly, Q̂u seeks that Y |X
has a value above Q̂u(X) with 5% probability. Hence, this

provides a nominal coverage of 0.9 as desired. Of course,

the intervals provided by quantile regression does not provide

any validity guarantees. Hence, it is necessary to confor-
malize the quantile regression outputs as originally proposed

in [40]. Note that quantile regression is naturally adaptive to

the data and typically provides an asymmetric interval i.e.

|f̂(X)− Q̂l(X)| �= |f̂(X)− Q̂u(X)|. In contrast, the interval

is symmetric and fixed to δ for both S-CP and LW-S-CP.

The goal of CQR is to convert the heuristic uncertainty

estimate provided by quantile regression into a rigorous uncer-

tainty estimate through the conformal inference framework [2],

[40]. For a given α, we train two quantile regression models

Q̂l and Q̂u using the training dataset DT . Specifically, Q̂l and

Q̂u are trained with τ = α/2 and τ = 1 − α/2 respectively.

We define the scoring function as

S(X,Y) = max{Q̂l(X)− y, Q̂u(X)− y}
and compute it for all (X, y) in the calibration set DC . We

then use this set to compute δ as the �(n1 + 1)(1 − α)�-th
smallest value. The prediction interval is now provided by

[Q̂l(X)− δ, Q̂u(X) + δ]

Note that we do not directly use f̂(X) and instead used the

quantile functions Q̂l(X) and Q̂u(X) that is guaranteed to

cover f̂(X). To achieve this, we replace the loss function of

f̂(X) (such as MSE or average q-error) with the quantile loss
function. The remainder of the learned model architecture does

not require any modification.

Algorithm 4 Conformalized Quantile Regression [40]

Input: D, α
Split D to two disjoint subsets DT and DC .

Train model f̂ using DT

Train Q̂l with τ = α/2 and Q̂u with τ = 1− α/2 on DT

r = {max{Q̂l(Xi) − yi, Q̂u(Xi) − yi}} ∀(Xi, yi) ∈
DC

δ = �(n1 + 1)(1 − α)�-th smallest value in r where n1 =
|DC |.
return [Q̂l(X)− δ, Q̂u(X) + δ] for any query feature X

3056

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

IV. DISCUSSION

Incorporating Workload Information. So far, we have

discussed the use of PI techniques in an abstract setting. In a

production setting, it is often possible to achieve better results

for each of four algorithms described in the paper by leverag-

ing additional workload information. In general, the width of

PI is dependent on the 1−α-th quantile of the residual error. If

the queries in the training/calibration dataset are representative

of the workload, then the learned model would have smaller

residual errors. This in turn results in smaller δ and thereby

tighter prediction interval. It is possible to further improve

the prediction intervals for the conformal prediction based

variants. Let DC = {(X1, y1), (X2, y2), . . . , (Xl, yl)} be the

calibration set. By default, the PI are obtained by computing

the residual error over the queries in the conformal set. How-

ever, conformal prediction has a natural ‘online’ property [50],

[58] whereby one could augment DC at runtime. Consider a

scenario where we get a query Xl+1 and we compute the

prediction interval using DC . After the query is executed,

we would have the correct selectivity yl+1. We can now

augment the calibration set as DC = DC ∪ {(Xl+1, yl+1)}.
Since the queries are exchangeable, this does not violate the

assumptions of conformal prediction. As the system processes

more and more queries, the calibration set becomes more

attuned to the latest workload. One could also use a ‘window’

approach where the calibration set consists of the queries for

a given time interval (such as the last 24 hours). Each of these

approaches transparently encode the workload information into

the calibration set resulting in tighter intervals.

Overhead for Prediction Intervals. Each of the algorithms

has two phases – preprocessing phase and an inference phase.

The preprocessing phase consists of two key steps: model

building and estimating relevant parameters such as δ. Let us

consider the model building step. JackKnife+ with cross vali-

dation (JK-CV+) requires the training of K learned cardinality

models. While split conformal prediction (S-CP) does not

require training of any additional model, the locally weighted

variant (LW-S-CP) requires the training of a model ĝ that can

estimate the difficulty of predicting denoted as U(X) = ĝ(X).
Typically, ĝ is simpler and more lightweight than the learned

model f̂ . In our experiments, we used xgboost for instantiating

ĝ. Finally, conformalized quantile regression (CQR) requires

the training of two models Q̂l, Q̂u for obtaining the upper and

lower quantile estimates. These are identical to the learned

model f̂ except that they use the quantile loss. Once the

relevant models have been trained, they can be used to obtain

the set of residuals r for the entire training dataset (JK-CV+)

or the calibration set (S-CP, LW-S-CP and CQR). Additionally,

LW-S-CP also requires the scaling of residuals using ĝ. Once

the (scaled) residuals r are computed, we can compute δ as

the 1 − α-th quantile of r. Note that δ is pre-computed and

need not be estimated for each query.

During the inference phase, we have to estimate the pre-

diction interval for a given query X . Given the output of

learned model f̂(X), the prediction interval for JK-CV+ and

S-CP can be computed by just performing a single addition

and subtraction as [f̂(X) − δ, f̂(X) + δ]. For LW-S-CP,

we calculate U(X) and compute the prediction interval as

[f̂(X)− δU(X), f̂(X)+ δU(X)]. Here, the cost is dependent

on the ML model ĝ that produces U(X). Using a lightweight

model such as xgboost for ĝ requires less than 0.1 milliseconds

in CPU for producing U(X). Finally, CQR requires the

invocation of two models Q̂l, Q̂u. Since Q̂l, Q̂u are identical

to the learned model f̂ except for the loss function, the cost is

exactly twice that of obtaining the selectivity f̂(X) from the

learned model. The PI is produced as [Q̂l(X)−δ, Q̂u(X)+δ].
One can invoke f̂(X), Q̂l(X) and Q̂u(X) in parallel so that

the PI is available immediately after f̂(X) is computed.

Obtaining Calibration Set. A practical issue in applying con-

formal prediction based approaches is the need for calibration

set. As we shall demonstrate later, these approaches work best

when they satisfy the exchangeabilty property. Every learned

selectivity model (and in general, almost all ML models) make

the i.i.d. assumption. Furthermore, if the labeled dataset D
has the i.i.d. property than any arbitrary partition of them into

training (DT) and calibration (DC) data sets still satisfies the

i.i.d. property. Hence, a typical setup of the learned model

already ensures that the calibration set is representative (i.e.

exchangeable and i.i.d.) with the test set. When this assump-

tion is violated (such as due to covariate shift), then the perfor-

mance of BOTH the ML and the prediction interval algorithm

deteriorates. There are some prior theoretical research for

testing whether the dataset has the exchangeability property.

A common approach is through martingales [9]. Almost all

of the prior work on learned selectivity models produce the

queries using a generator. These methods often already have

the i.i.d. and thereby exchangeability property. We empirically

confirmed that workload of common benchmarks such as

LeCard [51], TPC-DS and JOB benchmark datasets have the

exchangeability property. Another practical heuristic would be

to augment the calibration set with queries from the test set

so that it becomes eventually representative of the test set.

V. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evaluate

the performance of the uncertainty quantification algorithms

described in Section III.

A. Experimental Setup

Hardware and Platform. All our experiments were per-

formed on a NVidia V100 GPU. The CPU is a quad-core

2.2 GHz machine with 32 GB of RAM. We implemented the

algorithms for uncertainty quantification in Python.

Datasets. All of our experiments are conducted on the DMV

dataset that has been widely used for evaluating learned cardi-

nality estimation models. DMV consists of 11.6M tuples and

11 columns of which 10 are categorical. We also conducted

experiments on other datasets such as Census, Forest and

Power that were recently used in [51] for a rigorous evaluation

of learned models.

3057

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
el
ec
ti
v
it
y

Selectivity

S-CP

JK-CV+

LW-S-CP

CQR

(a) MSCN

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

S-CP

JK-CV+

LW-S-CP

(b) Naru

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
el
ec
ti
v
it
y

Selectivity

S-CP

JK-CV+

LW-S-CP

CQR

(c) LW-NN

Fig. 1: Prediction Intervals for Residual Error as Scoring Function.

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

(a) Census

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

(b) Forest

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

(c) Power

Fig. 2: Prediction Intervals for three single table datasets with residual error as scoring function (MSCN).

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

Fig. 3: Join queries in TPC-DS (MSCN)

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

Fig. 4: Join queries in JOB (MSCN)

0 200 400 600 800 1000
Queries

0.0

0.2

0.4

0.6

0.8

1.0

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

Fig. 5: PI for queries with larger selec-

tivities (MSCN)

Performance Metric. We used q-error defined in Section II for

measuring the estimation quality. Recall that q-error of 1 cor-

responds to perfect estimate. This metric has been extensively

used in the design of learned cardinality estimation models. If

the estimated or true cardinality is 0, then we modify it to 1.

Cardinality Estimation Algorithms. Our experiments are

conducted over three representative approaches – MSCN, Naru

and LW-NN. MSCN is an exemplar of supervised query-

driven approaches while Naru is a data-driven unsupervised

method. LW-NN is a lightweight model targeted towards range

predicates. It uses heuristic features such as estimates from

simpler models achieving good performance. Each of these

methods obtain competitive results in recent and independent

experimental evaluations [51], [16], [45]. Please refer to Sec-

tion II for further details. For each of these models, we reuse

the best hyper-parameters found in a recent work [51].

Uncertainty Quantification Algorithms. We use the four

approaches described in Section III for computing the pre-

diction intervals. They are Jackknife+ with cross validation

(JK-CV+), split conformal prediction (S-CP), locally weighted

split conformal prediction (LW-S-CP) and conformal quantile

regression (CQR). We used K=10 for Jackknife+ – ie we

3058

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

Fig. 6: PI for Q-Error as Scoring Func-

tion.

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

LW-S-CP

CQR

Fig. 7: PI for Relative Error as Scoring

Function.

0 20000 40000 60000 80000 100000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

P
I
W

id
th

S-CP

JK-CV+

LW-S-CP

CQR

Fig. 8: PI Reduction with increasing cal-

ibration set (MSCN)

train 10 models by splitting the dataset into 10 disjoint

partitions. For the conformal methods, we used a 50-50 split

of training and calibration datasets consisting of 10K queries

each. We evaluate the prediction intervals on another workload

consisting of 10K queries. We evaluate the impact of the

training-calibration split later. Unsupervised approaches such

as Naru does not require a training workload. Here, we just

use the 10K queries for calibration alone. We modified the

supervised approaches MSCN and LW-NN for CQR based

prediction intervals. This is achieved by training two quantile

regression models Q̂l and Q̂u by altering the loss function

(mean q-error for MSCN and MSE for LW-NN) with pinball

quantile loss function. However, this approach does not work

for unsupervised approaches such as Naru. Hence, we compute

CQR PI only for supervised models. By default, we use the

residual error as the scoring function. The default coverage

level is set to 0.9. We do a common sense post-processing of

the prediction interval by clipping it to 0 and N respectively

which corresponds to the minimum and maximum possible

values for cardinality of a query.

Query Workload. We use the unified workload generator

from [51] that subsumes all the workload settings of prior

work on learned cardinality estimation. The generator is a

principled approach for obtaining a wide variety of queries

including point and range queries. In our plots, we focus

on queries with low selectivity (less than 0.1). Queries with

higher selectivity are often answered accurately by almost

all learned models. In fact, even a simple sampling based

approach would provide acceptable answer in this setting.

Illustrating the low cardinality queries allow us to showcase

the key trends of prediction intervals without cluttering the

plot with high selectivity queries that obfuscate them.

B. Experimental Analysis

Feasibility of Prediction Intervals. In our first set of exper-

iments, we investigate the feasibility of prediction intervals –

whether it is possible to compute tight prediction intervals

with rigorous theoretical guarantees in an efficient manner

without requiring extensive modifications to the model. Our

experimental results from Figure 1 for the DMV dataset shows

that it is indeed feasible! We compute prediction interval

for three learned models – MSCN, Naru and LW-NN –

using the residual error as scoring function. We plot the

normalized cardinality along with the prediction intervals from

the algorithms.

We can make the following observations. First, each of

the algorithms for computing PIs comfortably satisfied the

coverage requirements. Empirically, the prediction interval

contained the true cardinality estimate for more than 90%

of the queries in the test set. Second, roughly speaking, the

four algorithms demonstrate a consistent ranking based on the

tightness of the prediction interval. S-CP is the widest followed

by Jackknife+, localized S-CP and CQR. While S-CP and JK-

CV+ provide a constant PI, the PI of localized S-CP and CQR

could vary based on the query. This explains the comparatively

higher level of noise in the PI of localized S-CP and CQR.

Finally, the width of PI is dependent on the accuracy of the

cardinality estimation algorithm. Naru is one of the most-

accurate learned models and hence also benefits from tighter

PIs. LW-NN is comparatively less accurate resulting in wider

PIs. The results of the feasibility experiments over three other

datasets – Census, Forest and Power can be found in Figure 2.

We can see that the major trends and relative ranking between

the methods are similar to the DMV dataset. In order to reduce

the visual clutter, we only show the results of LW-S-CP and

CQR in the remaining plots.

We do not plot the PI for high selectivity queries as

the learned models are usually accurate and to avoid visual

clutter. Empirically, we found that it is easier to discern the

relative performance of PI algorithms for queries with smaller

selectivities. For example, the width of prediction interval δ for

S-CP is the same for all queries. Hence, a prediction interval

of say width 500 is more notable when the selectivity of a

query is 100 or 1000 than when it is 100K or 1 million. As

can be seen from Figure 5, the prediction intervals of all the

algorithms in the paper become indistinguishable.

Multi-Table Datasets. The prediction interval algorithms are

agnostic to single/multi table setting. Recall from Algorithms 1

to 4 that they operate on the list of residual errors. These errors

could have been obtained from a workload containing diverse

types of queries such as point/range, single-table/multi-table.

3059

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

0.9

0.95

0.99

Fig. 9: Varying Coverage Level for CQR

and MSCN

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

S-CP

JK-CV+

LW-S-CP

CQR

Fig. 10: PI when the calibration and test

sets are exchangeable (MSCN)

0 200 400 600 800 1000
Queries

0.2

0.4

0.6

0.8

1.0

S
el
ec
ti
v
it
y

Selectivity

S-CP

JK-CV+

LW-S-CP

CQR

Fig. 11: PI when the calibration and test

sets are non-exchangeable (MSCN)

As long as underlying learned model can handle the query

type (such as joins), the PI wrapper can transparently provide

interval estimates with coverage guarantees. We demonstrate

this property by conducting the experiments using the MSCN

model for two benchmark datasets – DSB (TPC-DS) and JOB.

We conducted experiments on the TPC-DS dataset where the

query workload was generated based on the default settings

of DSB. Specifically, DSB has 15 templates for SPJ queries

and we generated 1000 queries for each template. We also

ensured that there were no duplicate queries. We split the

query workload into training calibration and testing set in the

proportion 50:25:25. We used the JOB dataset and the work-

load from [22]. We trained the MSCN model and estimated

the prediction interval for each query in the testing set. The

results can be seen in Figures 3 and 4. We can see that the

overall trends and relative rankings of the PI algorithms are

consistent with that of the single-table scenario.

Integrating Prediction Intervals in Postgres. We conducted

a feasibility experiment based on a setting from [5] where

the authors modified the query optimizer of Postgres 9.6.6

to obtain upper bounds of join query selectivity from an

external module. No other changes were made to the rest of

the execution engine. We conducted our experiment in three

steps. First, we partitioned the queries from JOB benchmark

into equally sized calibration and testing set. There is no need

for training data as we used the default Postgres selectivity

estimator instead of any learned model. The estimator uses

multidimensional histograms, hand-written rules and assump-

tions on the underlying data [5]. Next, we issued the queries

from calibration set and obtained the selectivity estimates of

the default Postgres optimizer (with no modifications). We

calculated the residual error for each query in the calibration

set using their respective correct and estimated selectivites. We

estimated the parameter δ as per the split conformal algorithm

of Algorithm 2. Finally, each query from the testing set in in-

voked on a modified version of Postgres from [5]. Specifically,

we replaced the Postgres’ default estimate Est(Q) by the

upper bound of the prediction interval (i.e. Est(Q)+δ). Even

this simple approach of injecting prediction intervals into the

optimizer results in 11% reduction in the cumulative running

time of executing all queries in the testing set. We report

the average results after repeating the experiment 5 times

by randomly partitioning JOB benchmark into calibration and

testing set. Our analysis shows that the modified upper bound

especially benefits queries involving correlated columns that

are often underestimated by Postgres. A rigorous investigation

of other algorithms is a promising future work. Table I shows

the descriptive statistics of the Q-error for both the approaches.

We can see that our proposed approach achieves a meaningful

reduction of Q-error and also reduces the running time through

the selection of better execution plans.

Q-Error (Percentile)
90 95 99

Postgres 5.89 143 1822
Postgres with PI 4.62 102 1686

TABLE I: Performance of Postgres with and without Predic-

tion Intervals.

C. Factors Impacting Efficacy of Prediction Intervals

Impact of other scoring functions. By default, we use resid-

ual error as the scoring function for obtaining the PI. However,

the algorithms described in the paper, are agnostic to the

specific scoring function used. Intuitively, the scoring function

S(X, y) seeks to incorporate information about the model

performance. Hence, it returns smaller values for relatively

accurate estimates and larger values otherwise. While relative

error function |y−f̂(X)| follows this philosophy, it is possible

to do better. For example, consider two queries q1 and q2 with

cardinalities 100 and 1000 respectively. We get a residual error

of 1000 if the learned model predicts Est(q1) = 1100 and

Est(q2) = 2000. However, the error for q1 is much more

serious than that of q2. For example, the q-error for q1 and

q2 will be 10 and 2 respectively. This motivates us to study

the impact of other scoring functions. Specifically, we focus

on two of them – q-error and relative error. Relative error

is defined as |Card(q) − Est(q)|/Card(q). Both have been

widely used for evaluating the quality of cardinality estimators.

Figure 6 shows the PI when q-error is used as the scoring

function. We can immediately see that the PIs are much tighter

than the one in Figure 1 for residual error. Even though it is not

3060

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

clearly visible in the plot, the coverage guarantees still hold

empirically and theoretically for q-error (and relative error).

Figure 7 presents the PI when relative error is used as the

scoring function. We can see that the PIs are tighter than that of

Figure 1 but wider than that of Figure 6. We can conclude that

among the three popular metrics for estimating the cardinality

estimation quality, q-error provides the best PIs. Of course,

it is possible to obtain better intervals through other custom

scoring functions which is orthogonal to our work.

Impact of Coverage Level. In the next set of experiments, we

study how varying the coverage level 1 − α impacts the PIs.

We consider three commonly used coverage levels of 0.9, 0.95
and 0.99. Figure 9 depict the results for the MSCN classifier

with CQR. The results for other classifiers and PI algorithms

were quite similar. As expected, increasing the coverage level

also increases the size of the prediction interval. However, the

relative increase in width of PI is dependent on the uncertainty

quantification algorithm and the accuracy of the learned model.

If the model is relatively accurate, then the increase in PI

is relatively small. For example, changing the coverage level

from 0.9 to 0.95 results in minimal change for MSCN and

Naru but a relatively higher change for LW-NN which is a

noisier model. This is due to the fact that the 90-th percentile

q-error for MSCN and Naru are very close to that of 95-th

percentile q-error. However, when we increase the coverage

level from 0.95 to 0.99, we then observe a large PI for MSCN

while the relative impact for Naru is minimal. For example,

an independent work [51] found that for DMV dataset, the

95-th and 99-th percentile q-error for Naru are 1.09 and 1.35.

Whereas, the corresponding values for MSCN and LW-NN

are (5.3, 25.0) and (3.29, 22.1) respectively. This is reflected

in the proportional increase in PI for these classifiers at the

coverage levels 0.99 vis-a-vis 0.95 and 0.9.

Impact of Calibration Set. All of the four algorithms for

uncertainty quantification rely on a separate calibration set

for obtaining the quantile. In the next set of experiments, we

study how varying the calibration set impacts the prediction

interval. Specifically, we consider two extreme cases – when

the calibration set is representative of the testing dataset and

when it is not. The former scenario can occur when the

system has a good idea about the testing query workload

and used queries similar to the workload in the calibration

set resulting in exchangeable sets. In the other extreme, the

test queries could be arbitrarily different from that of the

calibration set. Figures 10 and 11 illustrate the PI for these two

scenarios. When the calibration and test sets are very similar,

one obtains tight PI for each of the four algorithms. When

they are dissimilar, the exchangeability assumption is violated

resulting in inaccurate prediction intervals. In fact, this even

results in the loss of coverage guarantees as seen in Figure 11

where the ground truth (black solid line) is not covered by the

PIs for significant number of queries. Admittedly, Figure 11

happens only under an extreme situation and a cherry picked

set of queries where the true cardinality does not fall into the

estimated prediction intervals.

Impact of Training-Calibration Split. Each of the uncer-

tainty quantification algorithm described in the paper relies

on the calibration set to choose an appropriate δ based

on the desired coverage level. This is especially important

for over-parameterized deep neural networks that often have

negligible error on the data points in the training dataset

due to overfitting. Hence, calibration set provides a better

estimate of the performance of the classifier over unseen

queries. Almost all of the prior work on conformal inference

use a 50-50 split of the dataset D into training DT and

calibration DC datasets. However, this results in a tradeoff. It

might seem that increasing the size of the calibration set could

potentially result in tighter prediction intervals. However, the

corresponding reduction in the size of the training dataset

results in a less accurate classifier. The lack of accuracy of

the classifier in turn makes the prediction intervals larger. On

the other hand, increasing the size of the training set makes the

classifier more accurate. However, using too little calibration

set results in reduced calibration accuracy resulting in tighter

prediction intervals and a higher variance. Note that as long

as the exchangeability assumption holds, the calibration set

still provides the coverage guarantees. However, the variance

of the prediction intervals (specifically δ) will be higher based

on which queries fall in the smaller calibration set.

In order to reduce the clutter in the plots, we consider three

discrete settings where the training dataset DT is set to 25%,

50% and 75% of the labeled dataset D. The remaining is

allocated to calibration set DC . Figure 12 depict the result of

this experiment for MSCN classifier for LW-S-CP algorithm.

We can observe that using a smaller training dataset results in a

larger prediction interval. Furthermore, increasing the training

dataset size to 75% results in the tightest prediction interval

among the three splits. We empirically found that using a

calibration set between 20-33% of the labeled dataset provides

a good balance between classifier accuracy and calibration

accuracy. This is also in line with the typical sizes of the

split between training and validation datasets. This finding is

corroborated by a prior work [25] that noted that unequal splits

could potentially achieve better performance than equal splits.

Impact of Classifier Accuracy. In the previous set of ex-

periments, the size of training dataset indirectly impacts the

classifier accuracy and thereby the prediction intervals. In

the final set of experiments, we study how the accuracy of

the classifier impacts each of the uncertainty quantification

algorithms. We conduct an experiment where we fix all the

hyper-parameters that provided the best results for MSCN

and Naru except for the number of epochs. Let EM be the

number of epochs that provided best results for MSCN. Then

we train three variants of MSCN where the model is trained for

0.5EM , 0.75EM and EM epochs respectively. Then we apply

the prediction interval algorithms over these classifier variants.

The training and calibration set are fixed for each of these

settings. We repeat this process for Naru classifier. Figures 13

and 14 illustrate the behavior for MSCN and Naru classifiers

for the split conformal prediction algorithm. As expected,

3061

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

S
el
ec
ti
v
it
y

Selectivity

Tr75-Ca25

Tr50-Ca50

Tr25-Ca75

Fig. 12: Varying Training-Calibration

Split (MSCN and LW-S-CP)

0 200 400 600 800 1000
Queries

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

S
el
ec
ti
v
it
y

Selectivity

100%

75%

50%

Fig. 13: Impact of Classifier Accuracy

(MSCN, S-CP)

0 200 400 600 800 1000
Queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

S
el
ec
ti
v
it
y

Selectivity

100%

75%

50%

Fig. 14: Impact of Classifier Accuracy

(Naru, S-CP)

we can see that S-CP provides valid coverage guarantees

regardless of the accuracy of the classifier. However, the

tightness of the bounds is influenced by the accuracy of the

classifier. Hence, the MSCN/Naru variant that was trained for

the entirety has a tighter PI than the variants that were trained

for lesser number of epochs. This phenomenon holds across

classifiers too with the PI for a Naru variant being tighter than

that of the corresponding MSCN variant.

Online Conformal Prediction. Recall from Section IV that

one could improve upon the PI by augmenting calibration set.

We conduct an experiment over the DMV dataset and MSCN

classifier. We begin with a calibration set of size 1000 and

100K queries in the testing dataset. After the PI for each

query qj is obtained, we augment the calibration set using

(qj , Sel(qj)). The PI estimation for every future query qk
will include qj in the calibration set. Figure 8 shows that

the prediction intervals become progressively tighter as the

calibration set becomes reflective of the workload.

D. Guidance for Practitioners.

S-CP is a simple and efficient algorithm that can be used

to compute the PI. While it provides the widest PI among

the four algorithms, it also requires almost no additional steps

other than computing the quantile of the residual errors. In

contrast, JK-CV+ requires the training of K models, localized

S-CP requires the training of another model for estimating the

uncertainty U(X) and CQR requires altering the loss function.

JK-CV+ provides a tighter PI than S-CP but at the cost of

training and maintaining K models. We found that the PI

of JK-CV+ were on average 83%-96% that of S-CP. If the

accuracy of PI is paramount then JK-CV+ is a viable approach

though it imposes a large computational cost. However, it

is possible to do much better through LW-S-CP and CQR.

LW-S-CP uses a normalization function U(X) (such as the

residual error) as the normalization function to provide tighter

PI than either S-CP or JK-CV+. However, the best PI is

obtained through CQR that requires the most intrusive changes

in terms of training two separate quantile regression models by

modifying the loss function. This may not always be possible.

To summarize, LW-S-CP is an appropriate first choice as it

balances efficacy of PI and the inference time. However, if the

efficacy is paramount and the learned model allows modifying

the loss function, then CQR is appropriate.

Promising approaches for improving PI. There are a

number of intriguing open research problems. While we

evaluated a simple heuristic of augmenting calibration set,

it is possible to design better mechanisms to incorporate

workload information. An emerging area of research is that

of localized conformal prediction (LCP) [10], [15] where a

subset of ‘local’ queries from the calibration set are used for

estimating the PI instead of the entire set. It is possible that

using such ‘local’ queries could provide a tighter interval.

If a query is representative of a given workload, it will

find sufficient ‘local’ queries from the workload allowing

for tighter prediction interval. A related problem is to detect

potential shift in workload so that we could take preventive

steps before losing the coverage guarantees. While there are

some work on exchangeability tests such as [9], identifying an

optimal one that is effective and efficient is important. Finally,

there is a need for more research on the design of appropriate

scoring and normalization function for S-CP and LW-S-CP

respectively. While we used residual, Q- and relative error

with promising results, it might be possible to do better.

VI. CONCLUSION

While learned models for cardinality estimation have

achieved tremendous successes in the recent years, accurate

cardinality estimation remains a challenging task. In this paper,

we investigated an orthogonal problem – how can we quantify

the uncertainty associated with the cardinality estimate of a

learned model through prediction intervals. We enumerated a

series of desiderata and identify four promising approaches

for this problem. We provided a self-contained introduction to

these ideas and conducted extensive experiments to understand

their tradeoffs. The experiments show that it is possible to

obtain accurate prediction intervals in an efficient manner

without intrusive changes to the learned model.

VII. ACKNOWLEDGMENTS

The research of Nick Koudas is supported by NSERC

COHESA. The research of Gautam Das is supported in part

by grants 1261007500 and 1261007210 from NSF.

3062

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya, et al.
A review of uncertainty quantification in deep learning: Techniques,
applications and challenges. Information Fusion, 2021.

[2] A. N. Angelopoulos and S. Bates. A gentle introduction to conformal
prediction and distribution-free uncertainty quantification. arXiv preprint
arXiv:2107.07511, 2021.

[3] V. Balasubramanian, S.-S. Ho, and V. Vovk. Conformal prediction
for reliable machine learning: theory, adaptations and applications.
Newnes, 2014.

[4] R. F. Barber, E. J. Candes, A. Ramdas, and R. J. Tibshirani. Predictive
inference with the jackknife+. The Annals of Statistics, 49(1):486–507,
2021.

[5] W. Cai, M. Balazinska, and D. Suciu. Pessimistic cardinality estimation:
Tighter upper bounds for intermediate join cardinalities. In Proceedings
of the 2019 International Conference on Management of Data, pages
18–35, 2019.

[6] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing:
No silver bullet. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 511–519, 2017.

[7] B. Ding, S. Chaudhuri, J. Gehrke, and V. Narasayya. Dsb: a decision
support benchmark for workload-driven and traditional database sys-
tems. Proceedings of the VLDB Endowment, 14(13):3376–3388, 2021.

[8] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri.
Selectivity estimation for range predicates using lightweight models.
Proceedings of the VLDB Endowment, 12(9):1044–1057, 2019.

[9] V. Fedorova, A. J. Gammerman, I. Nouretdinov, and V. Vovk. Plug-in
martingales for testing exchangeability on-line. In ICML, 2012.

[10] R. Foygel Barber, E. J. Candes, A. Ramdas, and R. J. Tibshirani. The
limits of distribution-free conditional predictive inference. Information
and Inference: A Journal of the IMA, 10(2):455–482, 2021.

[11] M. N. Garofalakis and P. B. Gibbons. Approximate query processing:
Taming the terabytes. In VLDB, volume 10, pages 645927–672356,
2001.

[12] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng,
A. Kruspe, R. Triebel, P. Jung, R. Roscher, et al. A survey of uncertainty
in deep neural networks. arXiv preprint arXiv:2107.03342, 2021.

[13] M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made: Masked
autoencoder for distribution estimation. In International Conference on
Machine Learning, pages 881–889. PMLR, 2015.

[14] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using
probabilistic models. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 461–472, 2001.

[15] L. Guan. Localized conformal prediction: A generalized inference
framework for conformal prediction. arXiv preprint arXiv:2106.08460,
2021.

[16] Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. W. Tan, K. Zeng,
G. Cong, Y. Qin, A. Pfadler, et al. Cardinality estimation in dbms: A
comprehensive benchmark evaluation. arXiv preprint arXiv:2109.05877,
2021.

[17] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das.
Deep learning models for selectivity estimation of multi-attribute
queries. In SIGMOD, pages 1035–1050, 2020.

[18] T. Heskes. Practical confidence and prediction intervals. NIPS, pages
128–135, 1997.

[19] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and
C. Binnig. Deepdb: Learn from data, not from queries! arXiv preprint
arXiv:1909.00607, 2019.

[20] A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep
learning for computer vision? In NIPS, 2017.

[21] A. Kipf, M. Freitag, D. Vorona, P. Boncz, T. Neumann, and A. Kemper.
Estimating filtered group-by queries is hard: Deep learning to the rescue.
In 1st International Workshop on Applied AI for Database Systems and
Applications, 2019.

[22] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. arXiv
preprint arXiv:1809.00677, 2018.

[23] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman.
Distribution-free predictive inference for regression. Journal of the
American Statistical Association, 113(523):1094–1111, 2018.

[24] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neu-
mann. How good are query optimizers, really? Proceedings of the VLDB
Endowment, 9(3):204–215, 2015.

[25] H. Linusson, U. Johansson, H. Boström, and T. Löfström. Efficiency
comparison of unstable transductive and inductive conformal classifiers.
In IFIP International Conference on Artificial Intelligence Applications
and Innovations, pages 261–270. Springer, 2014.

[26] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity
estimation through adaptive sampling. In Proceedings of the 1990 ACM
SIGMOD international conference on Management of data, pages 1–11,
1990.

[27] J. Liu, W. Dong, Q. Zhou, and D. Li. Fauce: Fast and accurate deep
ensembles with uncertainty for cardinality estimation. PVLDB, 2021.

[28] Q. Ma, A. M. Shanghooshabad, M. Almasi, M. Kurmanji, and P. Tri-
antafillou. Learned approximate query processing: Make it light,
accurate and fast. In CIDR, 2021.

[29] Q. Ma and P. Triantafillou. Dbest: Revisiting approximate query
processing engines with machine learning models. In Proceedings of the
2019 International Conference on Management of Data, pages 1553–
1570, 2019.

[30] B. Mozafari. Approximate query engines: Commercial challenges and
research opportunities. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 521–524, 2017.

[31] B. Mozafari and N. Niu. A handbook for building an approximate query
engine. IEEE Data Eng. Bull., 38(3):3–29, 2015.

[32] R. M. Neal. Bayesian learning for neural networks, volume 118.
Springer Science & Business Media, 2012.

[33] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and
M. Alizadeh. Flow-loss: Learning cardinality estimates that matter.
PVLDB, 2021.

[34] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. An empirical
analysis of deep learning for cardinality estimation. arXiv preprint
arXiv:1905.06425, 2019.

[35] H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. Induc-
tive confidence machines for regression. In European Conference on
Machine Learning, pages 345–356. Springer, 2002.

[36] H. Papadopoulos, V. Vovk, and A. Gammerman. Regression conformal
prediction with nearest neighbours. Journal of Artificial Intelligence
Research, 40:815–840, 2011.

[37] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Univer-
salizing approximate query processing. In Proceedings of the 2018
International Conference on Management of Data, pages 1461–1476,
2018.

[38] Y. Park, S. Zhong, and B. Mozafari. Quicksel: Quick selectivity learning
with mixture models. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 1017–1033,
2020.

[39] T. Pearce, A. Brintrup, M. Zaki, and A. Neely. High-quality prediction
intervals for deep learning: A distribution-free, ensembled approach.
In International Conference on Machine Learning, pages 4075–4084.
PMLR, 2018.

[40] Y. Romano, E. Patterson, and E. Candes. Conformalized quantile re-
gression. Advances in Neural Information Processing Systems, 32:3543–
3553, 2019.

[41] F. Savva, C. Anagnostopoulos, and P. Triantafillou. Ml-aqp: Query-
driven approximate query processing based on machine learning. arXiv
preprint arXiv:2003.06613, 2020.

[42] S. Shetiya, S. Thirumuruganathan, N. Koudas, and G. Das. Astrid:
accurate selectivity estimation for string predicates using deep learning.
Proceedings of the VLDB Endowment, 14(4):471–484, 2020.

[43] L. Steinberger and H. Leeb. Conditional predictive inference for high-
dimensional stable algorithms. arXiv preprint arXiv:1809.01412, 2018.

[44] H. Su, M. Zait, V. Barrière, J. Torres, and A. Menck. Approximate
aggregates in oracle 12c. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management, pages
1603–1612, 2016.

[45] J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang. Learned cardinality
estimation: A design space exploration and a comparative evaluation.
2022.

[46] S. Thirumuruganathan, S. Hasan, N. Koudas, and G. Das. Approximate
query processing for data exploration using deep generative models. In
2020 IEEE 36th International Conference on Data Engineering (ICDE),
pages 1309–1320. IEEE, 2020.

[47] R. Tibshirani. A comparison of some error estimates for neural network
models. Neural Computation, 8(1):152–163, 1996.

3063

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

[48] K. Tzoumas, A. Deshpande, and C. S. Jensen. Lightweight graphical
models for selectivity estimation without independence assumptions.
Proceedings of the VLDB Endowment, 4(11):852–863, 2011.

[49] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[50] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a
random world. Springer Science & Business Media, 2005.

[51] X. Wang, C. Qu, W. Wu, J. Wang, and Q. Zhou. Are we ready for
learned cardinality estimation? PVLDB, 2021.

[52] Z. Wang, D. Cashman, M. Li, J. Li, M. Berger, J. A. Levine, R. Chang,
and C. Scheidegger. Neuralcubes: Deep representations for visual data
exploration. arXiv preprint arXiv:1808.08983, 2018.

[53] L. Woltmann, C. Hartmann, M. Thiele, D. Habich, and W. Lehner.
Cardinality estimation with local deep learning models. In Proceedings
of the second international workshop on exploiting artificial intelligence
techniques for data management, pages 1–8, 2019.

[54] P. Wu and G. Cong. A unified deep model of learning from both
data and queries for cardinality estimation. In Proceedings of the 2021
International Conference on Management of Data, pages 2009–2022,
2021.

[55] Z. Wu and A. Shaikhha. Bayescard: A unified bayesian framework for

cardinality estimation. arXiv e-prints, pages arXiv–2012, 2020.
[56] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and

I. Stoica. Neurocard: one cardinality estimator for all tables. arXiv
preprint arXiv:2006.08109, 2020.

[57] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica. Deep unsupervised cardi-
nality estimation. Proceedings of the VLDB Endowment, 13(3):279–292,
2019.

[58] G. Zeni, M. Fontana, and S. Vantini. Conformal prediction: a unified
review of theory and new challenges. arXiv preprint arXiv:2005.07972,
2020.

[59] M. Zhang and H. Wang. Approximate query processing for group-
by queries based on conditional generative models. arXiv preprint
arXiv:2101.02914, 2021.

[60] M. Zhang and H. Wang. Laqp: Learning-based approximate query
processing. Information Sciences, 546:1113–1134, 2021.

[61] K. Zhao, J. X. Yu, Z. He, and H. Zhang. Uncertainty-aware cardinality
estimation by neural network gaussian process. SIGMOD, 2022.

[62] R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou, and B. Cui.
Flat: Fast, lightweight and accurate method for cardinality estimation.
arXiv preprint arXiv:2011.09022, 2020.

3064

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 04,2023 at 02:46:53 UTC from IEEE Xplore. Restrictions apply.

