![]() |
Suyash P.
Awate Asha and Keshav Bhide Chair Professor Computer Science and Engineering Department, Indian Institute of Technology (IIT) Bombay Office: A-214, Kanwal Rekhi Building Email: my-first-name @cse.iitb.ac.in |
Research | Publications | Teaching | Students | CV | Personal |
Segmenting SPD-Tensor-Valued Images in Diffusion MRI |
Suyash P. Awate, Hui Zhang , James C. Gee A Fuzzy, Nonparametric Segmentation Framework for DTI and MRI Analysis: With Applications to DTI-Tract Extraction IEEE Trans. Med. Imaging 2007, 26(11):1525-1536 Suyash P. Awate, James C. Gee A Fuzzy, Nonparametric Segmentation Framework for DTI and MRI Analysis Proc. Information Processing in Medical Imaging 2007, Springer LNCS 4584 pp. 296-307 |
Challenges using Streamline Tractography
to Extract Cingulum dashed-line = ground truth (1) streamlines terminate before the bend ![]() (2) streamlines leak out of the cingulum ![]() |
Modeling Statistics of Tensors in Fiber
Bundles Tensors in fiber bundles can lie on arbitrary hyper-surfaces in the Riemannian space of diffusion tensors (i.e. SPD matrices). ![]() We infer the probability density function of the tensors via kernel density estimation in the Riemannian space. The density estimates can be shown to converge by combining results from the (i) Log-Euclidean framework [Arsigny et al.] and (ii) kernel density estimation [Pelletier et al.] |
Segmentation Results Initialize via (i) probabilistic atlas (3D) or (ii) manually (one slice suffices) ![]() ![]() |
Comparing Tractography and Segmentation (1) streamline tractography ![]() (2) segmentation ![]() |
Related Works |
Hui Zhang, Suyash P. Awate, Sandhitsu R. Das,
John H. Woo, Elias R. Melhem, James C. Gee, Paul A. Yushkevich A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features Medical Image Analysis 14(5): 666-673 (2010) Lenglet C, Campbell JS, Descoteaux M, Haro G, Savadjiev P, Wassermann D, Anwander A, Deriche R, Pike GB, Sapiro G, Siddiqi K, Thompson PM. Mathematical methods for diffusion MRI processing. NeuroImage 2008 A Goh, C Lenglet, PM Thompson, R Vidal A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry. NeuroImage 2011 Marc Niethammer, Christopher Zach, John Melonakos, Allen Tannenbaum Near-tubular fiber bundle segmentation for diffusion weighted imaging: Segmentation through frame reorientation NeuroImage 2009 Z. Wang, B. Vemuri DTI segmentation using an information-theoretic tensor dissimilarity measure IEEE Trans. Medical Imaging 2005, 24(10):1267-1277 B. Pelletier Kernel density estimation on Riemannian manifolds Stat. and Prob. Letters 2005, 73:297-304 V. Arsigny, P. Fillard, X. Pennec, N. Ayache Geometric means in a novel vector space structure on symmetric positive-definite matrices SIAM J. Matrix Analysis and Applications 2007, 29(1):328-347 |