Lea 15: Support Vector Machines (SVM)

margin-based classifier.

$$
m_{2}>m_{1}, m_{3}
$$

Two variants of SUMs:
(1) Hard margin SVMs: allows no misclassification.
(2) Soft mar gin SUMs:
misclassifications allowed but to a "limited" extent.

Formal description

$$
\frac{w}{m} \rightarrow w, \frac{b}{m} \rightarrow b
$$

Pick a point x on $D B: w^{\top} x+b=0$

$$
\Rightarrow \underbrace{w^{\top}\left(x+e \frac{w}{\|w\|}\right)+b=1}_{=0}=
$$

Convex optimization
$\max \frac{2}{\|w\|} \Rightarrow \min \frac{1}{2}\|w\|^{2}$
Constraints: sit. $y_{:}\left(w^{\top} x_{i}+b\right) \geqslant 1$

$$
\left.\begin{array}{l}
y_{i}=+1, \Rightarrow w^{\top} x_{i}+b \geqslant 1 \\
y_{j}=-1, \Rightarrow w^{\top} x_{j}+b \leqslant-1
\end{array}\right\}
$$

Remark: for $i \in$ support vectors

$$
y_{i}\left(w^{T} x_{i}+b\right)=1
$$

Soft margin SUMs
Data points are not linearly separable
Q: How to capture The degree of misc classification?
A: via a loss function.
Correct classification: $y_{i}\left(W^{\top} x_{i}+b\right) \geqslant 1$
$\min _{w, b} \frac{1}{n} \sum_{i=1}^{n} L_{i}(w, b)+\lambda_{M_{\text {hyperparameter }}}\|w\|^{2}$
Soft margin SVM
λ determines the trade off between misclassification and margin maximization.

Kernelization: a method to calculate the higher dimension trans. in a computationally efficient manner.
x^{2}

Background of Kernelization

Hard margin SV
$\min \frac{1}{2}\|w\|^{2}$
st. $y_{i}\left(w^{\top} x_{i}+b\right) \geqslant 1$
$\forall i=1, \ldots, n$

$$
\begin{aligned}
& \dot{\alpha}(w, b, \lambda) \\
& =\frac{1}{2}\|w\|^{2}-\sum \lambda_{i}\left(y_{i}\left(w^{\top} \lambda_{i}+b\right)\right. \\
& -1)
\end{aligned}
$$

In general
$\min f_{0}(x) \quad$ PRIMAL
st. $f_{i}(x) \leqslant 0, i=1, \ldots, m \leftarrow \lambda_{i}$

$$
h_{i}(x)=0, i=1, \ldots, p \longleftarrow \gamma_{i}
$$

domain D where The feasible x 's live

$$
D=\left\{x: f_{i}(x) \leqslant 0, \forall i, h_{j}(x)=0, \forall j\right\}
$$

Lagrangian

$$
\begin{gathered}
\mathcal{L}(x, \lambda, \gamma)=\underline{f_{0}(x)}+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \gamma_{j} \underline{h_{j}(x)} \\
\lambda_{i} \geqslant 0
\end{gathered}
$$

Consider the problem

$$
\begin{align*}
& g(\lambda)=\min _{w, b} \mathcal{L}(w, b, \lambda) \\
& \frac{\partial \mathcal{L}}{\partial w}=0 \Rightarrow w=\sum_{i=1}^{n} \lambda_{i} y_{i} x_{i} \tag{1}\\
& \frac{\partial \mathscr{L}}{\partial b}=0 \Rightarrow \sum_{i=1}^{n} \lambda_{i} y_{i}=0
\end{align*}
$$

Why dual?
(1) comp eff

$$
n d>n^{2}
$$

(2) Kernel) friendly.

$$
\begin{aligned}
& \max _{x_{i} \geqslant 0} g(\lambda)=\sum \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{i} x_{-i}^{\top} x_{j} \\
& \forall x_{i} \\
& \sum_{i} \lambda_{i} y_{i}=0 \quad x_{d} \gg n^{2}
\end{aligned}
$$

