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Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

2.1 Graphical Approach to Linear Optimization

The graphical approach to linear programming involves representing the constraints and objective functions
on a graph to find the optimal solution. By visually analyzing the graph, we can identify the maximum or
minimum values for the objective function within the constraints.

Mathematical Formulation: Our aim is to maximise c⊤x subject to the constraints Ax ≤ b and all xi’s
are positive, where

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 , x =


x1

x2

x3

...
xn

 , b =


b1
b2
b3
...
bn

 , c =


c1
c2
c3
...
cn

 .

First, we define a few terminologies.

• Feasible region - The common region determined by all the constraints including non-negative con-
straints x, y ≥ 0 of a linear programming problem is called the feasible region (or solution region) for
the problem. The region other than feasible region is called an infeasible region.

• Feasible solutions - Points within and on the boundary of the feasible region represent feasible
solutions of the constraints. Any point outside the feasible region is called an infeasible solution.

• Optimal (feasible) solution - Any point in the feasible region that gives the optimal value (maximum
or minimum) of the objective function is called an optimal solution.

Theorem 2.1 Let R be the feasible region (convex polygon) for a linear programming problem and let Z =
ax+by be the objective function. When Z has an optimal value (maximum or minimum), where the variables
x and y are subject to constraints described by linear inequalities, this optimal value must occur at a corner
point (vertex) of the feasible region. [1]

Theorem 2.2 Let R be the feasible region for a linear programming problem, and let Z = ax + by be the
objective function. If R is bounded, then the objective function Z has both a maximum and a minimum value
on R and each of these occurs at a corner point (vertex) of R. [1]

We consider an example. We want to maximize the objective function:

max 7x1 + 6x2
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subject to the constraints:

2x1 + 4x2 ≤ 16,

3x1 + 2x2 ≤ 12,

x1 ≥ 0,

x2 ≥ 0.

We draw a graph of the inequalities and find the feasible region as shown in the accompanying figure :
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In the feasible region, we draw the lines 7x1 + 6x2 = c where c ∈ R and increase c from 0. We stop at
particular value of c where on further increasing, there will be no common point on line and feasible region.
In above example we stop at 7x1 + 6x2 = 32, and 32 is optimal value with (2,3) as optimal solution.

The graphical method to solve linear programs suffers from two major disadvantages :

1. Unscalability : It is not possible to visualise the graph of the linear program when the number of
dimensions is more than 3, which is a likely scenario in the real world. It is evidently not scalable
beyond 3 dimensions.

2. Non algorithmic : By the very nature of the method it does not provide a step by step process to
optimise a given objective function. It relies on drawing the graphs of the inequalities and analysing
them.

2.2 Simplex method

Let us understand the steps involved in solving the following problem using simplex method.

Maximize 7x1 + 6x2 s.t,

2x1 + 4x2 ≤ 16

3x1 + 2x2 ≤ 12

x1, x2 ≥ 0
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• Step 1: Slack the constraints
We are adding slack variables on left hand side to bring equality

2x1 + 4x2 + s1 = 16

3x1 + 2x2 + s2 = 12

s1, s2 ≥ 0

Slack variables have no role in the objective function, so their coefficients in objective function are zero

• Step 2: Set basic(non-zero) and non-basic(zero) variables
We set slack variables to basic and actual variables to non-basic

x1, x2 = 0 (non-basic) and s1 = 16, s2 = 12 (basic)

Objective function is 7x1 + 6x2

To improve this we iteratively bring one basic variables to non-basic and non-basic to basic
Being greedy, x1 is brought to basic since

coefficient of x1 (7) > coefficient of x2 (6)

So, x2 is still 0, any of s1/s2 can become greater than zero

2x1 + 4x2 + s1 = 16 =⇒ 2x1 + 4(0) + 0 ≤ 16 =⇒ x1 ≤ 8

3x1 + 2x2 + s2 = 12 =⇒ 3x1 + 2(0) + 0 ≤ 12 =⇒ x1 ≤ 4

x1 can be maximum increased to 4 that is if x1 > 4, s2 becomes negative
so x1 is increased to 4

• Note:

– number of basic variables = number of slack variables or number of inequalities at start

– remaining variables are non-basic variables

• Now x1 = 4, s2 = 0, s1 = 8, x2 = 0
x1, s1 are basic variables and x2, s2 are non-basic variables

s1 = 16− 2x1 − 4x2

s2 = 12− 3x1 − 2x2

x1 = 4− 1

3
s2 −

2

3
x2

s1 = 8 +
2

3
s2 −

8

3
x2

Now Objective Function is 28 + 4
3x2 − 7

3s2
Now x2 and s2 are non-basic and one of them should be converted into basic
x2 becomes basic as it can give positive drift

• We will continue this process until the coefficients of non-basic variables are non-positive, as we can’t
increase objective function
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2.3 Simplex Tableau

This is a more organized form of Simplex method. We write the coefficients of variables and slack variables
present in the constraint and objective equations in the form of table. We denote the RHS values of constraint
equations in the b column of the table.
As mentioned above, slack variables will be initially basic and variables already present in the objective
function will be non-basic. Variables represented in the row of the table are basic variables (non-zero value).
Steps to be followed :

• step 1: Find the variable that has the highest positive coefficient in the objective function say xi.
Row-wise divide b column with that xi column to obtain a fraction column.

• step 2: Find the basic row variable whose fraction comes out to be lowest positive. The intersection
of that row and column is the pivot and should be made 1 by dividing the whole row by it’s value.

• step 3: We need to do the gaussian elimination of that xi column i.e. except the pivot which is made
1 rest of the column values should be made 0 using row operations.

• step 4: Make a new table in which the selected row variable will be moved out (basic to non-basic)
and the selected column variable xi will be moved in replacing it (non-basic to basic).

• step 5: Repeat the steps till we get all the values of last row ( i.e. P) non-positive.

Let’s solve the previous problem using Tableau method

x1 x2 s1 s2 b Fraction

s1 2 4 1 0 16 16/2 = 8
s2 3 2 0 1 12 12/3 = 4
P 7 6 0 0

s1 = 16 s2 = 12 x1 = 0 x2 = 0

In the above table, 7 is the largest so we will divide b column with the x1 column to get the fractions. In
the fraction column 4 is the smallest positive value for s2 row. Here, the intersection of the s2 row and x1

column i.e. the value 3 is the pivot.So, x1 column will undergo gaussian elimination and s2 will be moved
out and x1 will be moved in.

x1 x2 s1 s2 b Fraction

s1 0 8/3 1 -1/3 8 3
x1 1 2/3 0 1/3 4 6
P 0 4/3 0 -7/3

s1 = 8 s2 = 0 x1 = 4 x2 = 0

We got 4/3 as the largest positive value in P row, so we will repeat the steps again.In this case x2 column
will undergo gaussian elimination . According to the fraction column obtained after repetition of previous
steps, s1 will be moved out as 3 is the lowest positive value in the fraction column and x2 will be moved in.
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x1 x2 s1 s2 b Fraction

x2 0 1 1 3/8 -1/4 3
x1 1 0 0 -1/4 1/2 2
P 0 0 -1/2 -2

s1 = 0 s2 = 0 x1 = 2 x2 = 3

As we got all the values in P row as non-positive, so we should stop the process.Above are the final values
of all the variables.
Point to Note:
Simplex always goes from one corner point to another in the feasible region as (x1, x2) changes from
(0,0) to (4,0) to (2,3) after every iteration

Hence the maximum value of the objective function is 7× 2 + 6× 3 = 32

2.4 Convex optimization

Before learning about convex optimization we need to define Convex functions and Convex sets

• Convex Functions :

A function f:Rn → R is said to be a convex function if

∀x, y ∈ Rn ∀λ ∈ [0, 1] f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) (2.1)

Examples for convex functions in 1 variable is f(x) = x2 and in 2 variables f(x1, x2) = x1x2

(a) Convex curve (b) Non-convex curve

Figure 2.1: Convex and non-convex curves.

• Convex Sets :

A set C ⊆ Rn is a convex set if ∀ x,y ∈ C , ∀ λ ∈ [0,1]
(
λx+ (1− λ)y

)
∈ C

Clearly in figure 2.2(b) some points on the line joining points x and y are outside the set, so the set is
not convex.
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(a) convex set

x

y

(b) non-convex set

Figure 2.2: Convex and non-convex sets

Intuition: We have learnt in one-variable calculus that a convex function is one which has a positive second
derivative. Let us see how that applies to multivariable functions.

However, convexity depends on the comparison of values in the range, which is not defined for multivariable
points. There is simply no such thing as ‘less than’ over in a domain of two or more variables (two or more
dimensions). For us to extend the definition, we need the range to be of one variable. In other words, we
speak only of functions of the form f : Rn → R.

An example with n = 2 would be f(x1, x2) = x1 · x2. However, this is not a convex function.

For one dimension or linear function, the constraint would be would be

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ 0, 1 ∀(x, y) ∈ R

We extend it to multiple dimensions. A set or region C ∈ Rn is said to be convex iff

∀(x⃗, y⃗) ∈ C ∀λ ∈ 0, 1 λx⃗+ (1− λ)y⃗ ∈ C

For convex regions in n dimensions, the domain D ⊆ Rn should be convex and secondly,

(λx⃗+ (1− λ)y⃗) ≤ λf(x⃗) + (1− λ)f(y⃗) ∀λ ∈ 0, 1 ∀(x⃗, y⃗) ∈ D

2.4.1 Analysis of Convexity of Functions and domains

C1 ∩ C2 and C1Ĉ2, where C1 and C2 are convex domains

C1 ∩ C2 is not a convex domain. A very simple counterexample would be two disjoint convex domains.

On the other hand, C1Ĉ2 is definitely convex. If any points x⃗ and vecy lie both in C1 and C2, so does
λx⃗+ (1− λ)y⃗ lie in both and therefore in C1Ĉ2, regardless of choice of λ, x⃗, y⃗ within constraints.
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Set S = {x|x ∈ R2
>=0, x1, x2 ≥ 1}

This is exactly one of the four quadrants, shifted one unit right and one unit upward.

Clearly, this is convex. If it is not obvious, just consider x⃗ − (1, 1) and y⃗ − (1, 1). All choices within this
region have resultant point vectors with both coordinates positive. Any linear combination of those two with
positive coefficients must necessarily follow this property.

Function f : R2
≥0 → R; f(x⃗) = x1 · x2

Clearly, this is not convex. A simple counterexample would be x⃗ = (1,−1) and y⃗ = (−1, 1) and λ = 0.5.
This means that the point in between the two points would be the origin itself.

It is obvious that f(x⃗) = f(y⃗) = −1 and that f (⃗0) = 0. This blatantly violates the condition of convexity.

Moreover, it has no global minima (think of the second and fourth quadrants in the domains), which is a
must for any convex function. We shall look into the reason as to why this is so late.

Function f : R2 → R; f(x⃗) = x2
1 + x2

2 + x1 · x2

We can rewrite this as f(x⃗) = (x1+x2)
2

2 +
x2
1+x2

2

2 = T (x⃗)2

2 +
∥x∥2

2

2 .

The second term is a very standard convex function i.e. the square of the distance from the origin. It is as
convex as a parabola is, except we express it as the sum of two independent parabolas on two independent
variables.

Regarding the first, again, the term T that is squared is a linear transformation of the vector onto one
variable i.e. T (λx⃗+ µy⃗) = λT (x⃗) + µT (y⃗). Here we just place µ− 1− λ and add constraints for λ. It is as
convex as a parabola is.

2.4.2 Convex Optimization Problem

Given that the objective function of a linear programming problem is convex, we are supposed to minimize
the function. Obviously, the exact opposite of convex functions can be defined with the inequality reversed,
where we maximize the value of a concave objective function.

2.4.3 Examples of Convex Functions

f(x) = eax

f(x) = −ln(x)

f(x⃗) = x⃗T x⃗ = ∥x⃗∥22 =

n∑
i=1

x2
i

f(x⃗) = ∥x⃗∥1 =

n∑
i=1

∥xi∥
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2.4.4 Some Important Definitions

Global optimal point

A point x⃗ is said to be globally optimal if x⃗ is feasible and there does not exist any other y⃗ with the objective
function f(y⃗) ≤ f(x⃗).

Local optimal point

A point x⃗ is said to be locally optimal if x⃗ is feasible and there exists a constant R1 such that for all feasible
y⃗ with ∥y⃗ − x⃗∥2 ≤ R1, the objective function f(y⃗) ≤ f(x⃗)

Theorem 2.3 For a convex optimization problem all locally optimal points are globally optimal points

Proof: A high level idea of proof will be discussed without mathematical rigour
The proof is by contradiction, Let ∃ a local optimum (x) which is not global optimum (y)

=⇒ f(y) < f(x) (2.2)

Let C be the region of radius R such that ∀ feasible k with ∥k − x∥2 < R,

f(x) ≤ f(k)

Now let us find a point z = λx+ (1− λ)y such that λ ∈ [0, 1] and z ∈ C

x

R

y
z

=⇒ f(z) = f(λx+ (1− λ)y)

=⇒ f(z) ≤ λf(x) + (1− λ)f(y)

From equation 2.2 we can say
=⇒ f(z) < λf(x) + (1− λ)f(x)

=⇒ f(z) < f(x)

This violates the definition of local optimality.
Therefore, contradiction.
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