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Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

3.1 Introduction

Regression analysis finds a practical application in everyday life through the Air Quality Index (AQI), a tool
designed to quantify air pollution. Given the challenges of directly measuring and calculating the percentages
of each air component like SO2 and CO, regression comes into play
Instead of individually measuring all components, a subset is measured, and the remaining components are
estimated using regression analysis. This statistical technique enables the establishment of relationships
between measured and unmeasured components, offering a more efficient means of interpreting air quality
by inferring the percentages of various pollutants without the need for exhaustive measurements.

AQI = max{f1(x1), f2(x2), . . . fn(xn)}

Where fi(xi) is an unique function for each pollutant

(a) AQI vs CO (b) AQI vs SO2 and CO

Figure 3.1: function of various pollutant concentration

In this case device might find only 1 or 2 functions and based on that guess the AQI i.e. to fit the perfect
AQI data with limited observations and estimate AQI value.

3.2 Linear Regression

We use Linear Regression for estimating an unknown data from a know data as

3-1
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1. It is a simple and powerful tool

2. It is interpretable

3. It’s works on transformations of raw data

How do we best fit the given data?
We need a measurement criteria to calculate goodness of our estimation function. So we use an error function
also called as loss function, lost function, energy function. It has two parameters estimation function and
data points

Error function = E(f,D)

f is the estimation function

D = {(x1, y1), (x2, y2), . . . (xn, yn)} where (xi, yi) is a data point from the data

3.2.1 Possible Error functions

n∑
i=1

(f(xi)− yi) (3.1)

• 3.1 is not a good error function as it is signed.

n∑
i=1

|f(xi)− yi| (3.2)

• 3.2 is a better error function than 3.1 as it is unsigned.

n∑
i=1

(f(xi)− yi)
2 (3.3)

• 3.3 is squared cost function, most used error function

n∑
i=1

(f(xi)− yi)
3 (3.4)

• 3.4 is not a good error function as it is signed
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3.2.2 Squared loss function

n∑
i=1

(f(xi)− yi)
2

1. It is a continuous function and in particular differentiable.

2. Easy to visualize in Euclidean space.

3. Mathematical analysis become easier.

Let DS be the data set

DS = {(x1, y1), (x2, y2), . . . (xn, yn)}

Where xi is the input and yi is the output for the ith training example. The number n = number of data
samples or more usually called training instances. xi ∈ Rd and yi ∈ R. Here Rd is the d-dimensional space.

Let PM 2.5, SO2, CO be the components of xi then,

xi =

xi1

xi2

xi3


xi1 represents the concentration of PM 2.5
xi2 represents the concentration of CO
xi3 represents the concentration of SO2

Let us define a X matrix containing xi

X =


x11 x12 x13 . . . x1d

x21 x22 x23 . . . x2d

x31 x32 x33 . . . x3d

...
...

...
...

...
xn1 xn2 xn3 . . . xnd

 =


xT
1

xT
2

xT
3
...
xT
n


nxd

y =


y1
y2
y3
...
yn


nx1

3.2.3 General Regression

The goal of this is to find a function f∗(x) such that it is the first prediction of y (output data) w.r.t. D.

f∗ ∈ arg minE(f,D)

subject to f ∈ F , where F is the set of all functions
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3.2.4 Parameterized Regression

In this f is a function of the form f(x,w), where w are the parameters of regression.

e.g. f(x, (α, λ)) = αeλ
T x

e.g. f(x,w) =
∑

wixi i.e., f(x,w) = w0 + w1x+ w2x
2 + ....+ wkx

k

We can use parameterized regression to reduce the solution space we needed to search from in case of a
general regression. Let us take an example of parameterized function:

• f(x, (α, λ)) = αe−λT x

In parameterized regression we need to minimize the parameterized function w.r.t the given parameters i.e.,

f ≡ f(x,w)

argmin
w

E(f(x,w), D)

Figure 3.2: Diagram Representation

3.2.5 Linear Regression

In this f is a function of the form f(x,w) = wTx+ w0 = w̄Tx here w ∈ Rd
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3.3 Least Square Optimisation for Linear Regression

W ∗ ∈ argmin
w

 n∑
i=1

 d∑
j=0

wjxij − yi

2


For d = 1

E(w,D) =

n∑
i=1

(yi − w0 − w1xi)
2

∂E

∂w0
=⇒ − 2

(
n∑

i=1

(yi − w0 − w1xi) = 0

)
=⇒

∑
yi − nw0 − w

∑
xi = 0

∂E

∂w1
=⇒ − 2

(
n∑

i=1

xi(yi − w0 − w1xi) = 0

)
=⇒

∑
xiyi − w0

∑
xi − w1

∑
x2
i = 0

Note that the 2 equations above are a linear equations in variables w0 and w1. Solving for these we get,

w1 =
n ∗
∑

xiyi −
∑

xi

∑
yi

n
∑

x2
i − (

∑
xi)2

w0 =

∑
yi
∑

x2
i −

∑
xi

∑
xiyi

n
∑

x2
i − (

∑
xi)2

3.3.1 Case 1: d=1

E(w, d) =

n∑
i=1

(yi − w0 − w1xi)
2

Find w0 w1 such that
∂E

∂w0
= 0 (3.5)

∂E

∂w1
= 0 (3.6)

From equation 3.5

w0 =

∑
yi − w1

∑
xi

n
(3.7)

From equation 3.6

w1 =

∑
xiyi − w0

∑
xi∑

xi
2

(3.8)
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Take α =
∑

xiyi∑
xi

2 and β =
∑

xi
2

n

let x̄ be
∑

xi

n and ȳ be
∑

yi

n

w1 = α− w0 ∗
x̄ ∗ n
n ∗ β

(3.9)

w1 = α− (ȳ − w1x̄)
x̄ ∗ n
nβ

From 3.7 (3.10)

w1 ∗ (1−
x̄2

β
) = α− ȳx̄

β
(3.11)

w1 =
α ∗ β − x̄ ∗ ȳ

β − x̄2
(3.12)

Exercise: Find
∑

(xi−x̄)(yi−ȳ)∑
(xi−x̄)2

in terms of α and β (It turns out to be w1)

3.3.2 Case 2: For d-dimensional data

xi =


xi1

xi2

...
xid

 X =


xT
1

xT
2
...
xT
n

 y =


y1
y2
...
yn


Let zi = yi − wTxi

w∗ ∈ argmin
w

n∑
i=1

(yi − wTxi)
2 =

n∑
i=n

z2i = ∥z∥2

z =


z1
z2
...
zn

 =


y1 − xT

1 w
y2 − xT

2 w
...

yn − xT
nw

 = y −Xw

∥z∥2 = ∥y −Xw∥2

w∗ ∈ argmin
w

∥y −Xw∥2

∥y −Xw∥2 = (Xw − y)T (Xw − y)

argmin
w

(Xw − y)T (Xw − y) = (wTXT − yT )(Xw − y)

E(w,D) = wTXTXw − wTXT y − yTXw + yT y

(wTXT y = yTXw)
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E(w,D) = wTXTXw − 2yTXw + yT y

We can find w by doing ∇wE = 0

So ∂(2yTXw)
∂w = (2yTX)T = 2XT y

∂(wTXTXw)
∂w = XTXw + (XTX)Tw = XTXw +XTXw = 2XTXw

∂(yT y)
w = 0

∇wE = 0 =⇒ 2XTXw − 2XT y = 0

=⇒ 2XTXw = 2XT y

=⇒ w = (XTX)−1XT y

(w∗)Tx = ŷ

If XTX is not invertible then it means that the closed form expression cannot be used to find the optimal
w∗. A possible such scenario is when there are less data points than the dimension of the data.


