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Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

4.1 Linear Regression

We have defined our error function for linear regression E(w,D) as ||Xw − y||2, this can be thought of as
the square of Euclidean distance between our predicted output Xw, and the actual output y.

Theorem 4.1 The vector function f(w) is a convex function if ∇2
wf(w) (called the Hessian matrix of f) is

positive semi-definite, i.e., the eigenvalues of this matrix are non-negative.

We found the minimum of E(w,D) by equating the gradient of E w.r.t w i.e. ▽w(E) = 0, and we get the

following equation: (XTX)w−XT y = 0. Solving for w, w∗ = (XTX)
−1

XT y (w∗ is the optimal value of w).
But the problem is that we do not know if XTX is invertible or not. If it is not invertible, we use something
known as the pseudo-inverse of XTX.

4.1.1 Geometrical Interpretation

Our equation (XTX)w−XT y = 0 can be factored as XT (Xw− y) = 0, let us just focus on Xw− y for now.
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The column picture of Xw = y can be represented as a linear combination of the columns of X:
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In other words, the above equation is trying to find a solution vector w whose components take a linear
combination of the columns of X. This equation has a solution only if the vector y is in the column space
of X, which might not be always the case. In case y does not belong to the column space and our objective
is to minimize ||Xw − y||2, i.e., the Euclidean distance between y and Xw, the geometric solution is to pick
that point Xw which lies in the column space of X which is perpendicular to this column space from y. This
is the geometric interpretation and also shown in Fig. 4.1.
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Case 1: y is in the column space of X

In this case, we can actually just find a w such that Xw = y, which makes ||Xw − y||2 = 0. And this solution
of w will obviously satisfy XT (Xw − y) = 0.

Case 2: y is not in the column space of X

Let’s take a simple example where columns of X are
(
2
1

)
and

(
4
2

)
, and y is

(
2.5
3

)
.
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Figure 4.1: Example of case where Xw = y has no solution

Here y isn’t in the span of columns of X, so we can’t have a solution for Xw = y. But in order to minimize
magnitude of Xw − y let us project y onto the column space of X, and call this projection y∗. We can now
choose w such that Xw = y∗, and Xw− y = y∗− y = y⊥. But y⊥ should be a vector which is orthogonal to
the column space of X i.e. its dot product with any vector in the column space should be 0. Now observe
the expression XT (Xw − y) = XT y⊥
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So, the w which satisfies Xw = y∗ is a solution of XT (Xw− y) = 0. Thus we always have an optimal value
for w.

4.2 Regression model with basis functions

Consider a simple linear regression model:

yi = w0 + w1xi + ϵi, (4.2)

where yi is the dependent variable, xi is the independent variable, w0 is the intercept, w1 is the slope, and
ϵi is the error term. When we have data points as described in Fig4.2 which fit into a curve i.e., when we
have higher powers of xi’s the expression for ŷi we deal with this using basis functions.
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Figure 4.2: Non Linear data

To incorporate basis functions, we can extend the model as follows:

yi = w0 + w1ϕ1(xi) + w2ϕ2(xi) + . . .+ wkϕk(xi) + ϵi, (4.3)

where ϕ1(xi), ϕ2(xi), . . . , ϕk(xi) are basis functions applied to the input variable xi.

This is now in the form of an m-dimensional regression model which can be done similarly to a d-dimensional
linear regression model as follows,

ŷi =

m∑
j=0

wj · ϕj(xi) (m >> d) (4.4)

For higher dimensional xis we usually consider the basis functions to be norms of respective powers.
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The error function E here will be, ∥Φ · w − y∥2 and we are to minimize this function with respect to w.

According to our previous results, the optimum solution would be

w∗ = (ΦTΦ)−1ΦT y.

This is non-linear regression but the analysis is similar to linear regression.

4.2.1 Common Basis Functions

Some standard basis functions include polynomial basis functions, Gaussian basis functions, and piecewise
linear basis functions. Each basis function introduces a different form of nonlinearity into the model.

Polynomial Basis Functions

Polynomial basis functions involve raising the input variable to different powers:

ϕj(x) = xj . (4.5)
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Gaussian Basis Functions

Gaussian basis functions are based on Gaussian distributions:

ϕj(x) = exp

(
− (x− µj)

2

2σ2

)
, (4.6)

where µj is the mean and σ is the standard deviation.

Piecewise Linear Basis Functions

Piecewise linear basis functions create linear segments within specified intervals:

ϕj(x) =


0 if x < aj

(x− aj) if aj ≤ x < bj

0 if x ≥ bj

. (4.7)

4.3 Probabilistic model of Linear Regression

We need to know that almost no dataset exists without noise. To get a better approximation of the Dataset
without the noise, even when the noise is present, we use the Probabilistic Model of Linear Regression.
A probabilistic model of linear regression on the dataset D = {(xi, yi)}ni=1 can be given by:

yi = wTxi + ϵi.

Here, w is the parameter of the noisy linear model with noise ϵi where ϵi follows a standard normal distribution
ϵi ∼ N (0, σ2) with ϵi being independent and identically distributed (i.i.d.) and hence cov(ϵi, ϵj) = 0,∀i ̸= j.

Our goal here is to estimate the parameter of linear regression. Hence, we need to estimate w. We use a
method called Maximum Likelihood Estimation (MLE).

4.4 Maximum Likelihood Estimation (MLE)

A set of i.i.d. observations {y1, y2, . . . , yn} are generated by a probabilistic model parametrized by θ and is
represented as:

yi ∼ P(y|θ) or P(y; θ)

where P(y|θ) is called the Likelihood function, or simply the Likelihood, and our goal is to maximize this.

But, instead, something called the Log Likelihood, which is log of the Likelihood, is maximized, which
will therefore result in the maximization of P(y|θ), the Likelihood, as the log function is increasing.

The motivation behind maximizing the Log Likelihood instead of the Likelihood is that:

1. It is mathematically nicer and easy to deal with the logarithmic mathematics as the Guassians have
cumbersome exponents.

2. The log function increases monotonically.
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3. The most important one, log functions, transforms a product to a sum, which has a numerical advan-

tage. For instance, the standard Likelihood
n∏

i=1

P(yi|xi, w) for large numbers evaluates to a very small

number (negligibly smaller) and a finite precision computer may not recognize that and treats it as 0.

But with the log likelihood, mathematically it becomes
n∑

i=1

logP(yi|xi, w)) where many terms add up

to give a significantly reasonable number.

The Log Likelihood function is given by:

L(θ) =
n∑

i=1

logP(yi|θ)

and the Maximum Likelihood Estimator is given by:

θMLE = argmax
θ
L(θ) = argmax

θ

n∑
j=1

logP(yi|θ)

4.4.1 Example - Coin Toss

Tossing a coin n times, each is a binary RV with Bernoulli random distribution with parameter θ.

P(yj |θ) = θyj (1− θ)1−yj

L(θ) = logP(y|θ) = log

 n∏
j=1

P(yj |θ)

 =

n∑
j=1

log(P(yj |θ)

L(θ) =

n∑
j=1

yj log θ + (1− yj) log(1− θ)

(4.8)

Differentiating w.r.t θ and setting it to 0 we get
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n∑
j=1

yi ×
1

θ
+
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−1
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= 0
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n∑
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n∑
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n∑
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θ =

∑n
j=1 yj

n
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4.4.2 MLE for Regression

yi = wTxi + ϵi ∼ N (0, σ2)

yi ∼ N (wTxi, σ
2)

P(y1|xi, w) =
1√
2πσ2

exp
−(yi − wTxi)

2

2σ2

L(w) = constant−
n∑

i=1

(yi − wTxi)
2

2σ2
(4.9)

The w for which the above log-likelihood is maximized is given by

w∗ = argmax
w

L(w) = argmin
w

n∑
i=1

(yi − wTxi)
2

w∗ = argmin
w
||Xw − y||2

As we saw in the previous lecture, if XTX is non-singular, this gives

w∗ = (XTX)−1XTY

4.5 Gradient Descent

Gradient descent is an optimization algorithm that efficiently searches for the optimal parameter values.

Note: Gradient Descent will only be applicable when the error function E is Differentiable.

Initialize the parameter matrix w with a random matrix w0 or a zero matrix.

w ← w0

Choose a learning rate (η), which determines the step size in the parameter space. Avoid taking very large
or very small values for η, for taking a very large value of η will result in divergence rather than convergence
or may also result in oscillations about the minima. Taking a small value of η will result in an increased
number of steps, thus making the convergence slower.

Calculate the gradient of the error function ∇wE using the recently assumed value of w.

Update the parameter matrix w, inputting the gradient computed using the previous value of the w. This
step adjusts the parameters in the direction that reduces the Error function E.

w ← w − η · ∇wE

Update the value of the ∇wE using the new w and again update the value of the w using the new ∇wE and
the previous w.
Repeat this process until the ∇wE becomes insignificant or in other words the w converges.


