
CS 217: Artificial Intelligence and Machine Learning Jan-Apr 2024

Lecture 12: Neural Networks Training Algorithm
Lecturer: Prof. Swaprava Nath Scribe(s): SG23, SG24

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

In this lecture, we study the algorithm used to train feed forward neural networks. It consists of two major
steps:

• Forward propagation and

• Backward propagation.

12.1 Forward Propagation

Forward Propagation, also known as forward feed, is a fundamental step in training neural networks, par-
ticularly in supervised learning tasks such as classification or regression. It involves the process of passing
input data through the network to obtain output predictions.

1 x1 x2 · · · xd

H1 H2 · · · Hk

b
(1)
1

b
(1)
2

w
(1)
11

w
(1)
21

w
(1)
12

w
(1)
22

w
(1)
1d

w
(1)
2d

w
(1)
kd

1

b(2)

w
(2)
1 w

(2)
2 w

(2)
k

f(x,w)

Figure 12.1: A two-layer Neural Network

In this diagram H1, H2,, Hk denote the hidden nodes, f(x, w) denotes the predicted probability for the
corresponding input x which is [x1, x2,, xd]

t.

12-1

Lecture 12: Neural Networks Training Algorithm 12-2

Neural Networks are a way to approximate functions1 given the presence of labelled data. Ultimately, our
purpose is to create a model that is nothing but our neural network that can predict the output of an unseen
input. So, basically. we represent the value in the ith node and the jth layer as xij . So the vector of values
for the jth layer is given as

Xj =

x1j

x2j

...
xij

...
xnj

where n is the number of nodes in the jth layer. We construct a list of such vectors for all layers of the
nodes:

Layer List = [X1, X2, . . . , Xm]

We know the edges in the neural network graph represent weights if the number of nodes in the ith and the
jth layer be ni andnj respectively, so we need ni weights to link the relationship between one node in the
jth layer to each node of the ith layer. With nj such sets of weights, we can represent the weights between
these two layers by a nj × ni matrix.

The weights between the ith and jth layers can be represented as a matrix:

Wij =

w11 w12 · · · w1ni

w21 w22 · · · w2ni

...
...

. . .
...

wnj1 wnj2 · · · wnjni

We can similarly construct a weights list for weights between the layers.

Weights List = [W12,W23, . . . ,Wm−1m]

What is forward pass now?

In the Layer List, we know X1, which is our input, and our job is to find Xm
2, our output.

So, to do this, we iteratively apply the relation:

Xj = Wij ·Xi

Forward Pass(Weights List,X1=Function Input):

1The statement that neural networks are universal function approximators is based on a mathematical result known as the
universal approximation theorem. This theorem states that certain types of neural networks can approximate any continuous
function on a compact subset of the input space to any desired degree of accuracy, given enough hidden units [hornik 1989
multilayer, cybenko 1989 approximation]. This implies that neural networks have the potential to learn any complex pattern
or relationship from data as long as the underlying function is continuous and bounded.

However, the universal approximation theorem does not guarantee that neural networks can always find the optimal weights
to achieve the desired approximation. It does not specify how many hidden units are required for a given problem. It also does
not account for the generalization ability of neural networks, which is how well they perform on unseen data. Therefore, the
statement should not be interpreted as a claim that neural networks can solve any problem perfectly but rather as a theoretical
possibility that motivates their use in various domains [goodfellow2016deep, schmidhuber2015deep, lecun2015deep].

2We define our loss function over this Xm

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Lecture 12: Neural Networks Training Algorithm 12-3

for i in range(2 to m) then
Xi = Wi−1i ·Xi−1

return Xm

Hidden Nodes:
Hi = g([w

(1)
i]tx+ b

(1)
i)

Predicted Probability:
f(x,w) = g([w(2)]tH + b(2))

Cross Entropy:
li = −yilog(f(xi, w))− (1− yi)log(1− f(xi, w))

12.1.1 Mini Batch Gradient Descent

Goal: To learn weights and biases (w, b) that minimize the loss

Algorithm 1 Mini Batch Gradient Descent

1: randomly initialize θ(w, b)
2: while stopping condition is not met do
3: Randomly pick a batch of examples (Xi, yi)i∈B where B ⊂ {1, 2, . . . , n} , and|B| = T < n
4: Compute the gradient of the loss function
5: Update θ ← θ - η∇θl, where η is the learning rate

6: return θ

12.1.2 Efficient Computation of Gradients

1) Compute ∂l
∂H

∣∣∣∣
θ

for every H in the NN.

2) Compute ∂l
∂w = ∂l

∂H .∂H∂w , where H = g(wz + ...) and z are previous nodes ⇒ ∂H
∂w = g1.z.

3) ∂l
∂H =

∑
v∈Γ(H)

∂l
∂v .

∂v
∂H , where Γ(H) = [v1, v2, ...] denotes the next layer of H and v = g(w̃H + ...).

12.2 Back Propagation

This is a two-stage algorithm. It consists of the following steps

1) Forward Pass

We calculate the value of each node given an input (xi, yi) and parameters θ. For the jth node of the kth

layer of the neural network, we use the following equation

uj = (w
(k)
j1 z1 + w

(k)
j2 z2 + · · ·+ b

(k)
j)

2) Backward Pass

Lecture 12: Neural Networks Training Algorithm 12-4

We use the following algorithm, with base case ∂l
∂l = 1

Algorithm 2 Backward Pass

1: for each u in a given layer do
2: for each v in Γ(u) do
3: Use already computed ∂l

∂v (assumed to be known by induction)

4: Compute ∂v
∂u |xi,yi,θ

5: Compute ∂l
∂v ·

∂v
∂u

6: Get ∂l
∂u , compute ∂l

∂w = ∂l
∂u ·

∂u
∂w and ∂l

∂b

The forward and backward pass together make up one iteration of gradient descent. We update the param-
eters θ and move on to the next iteration.

12.2.1 Example

Let us illustrate back propagation with an example. Consider the following neural network with the indicated
initial weights, biases and training inputs with the true outputs.

i1

0.05

i2

0.10

h1

h2

o1

0.01

o2

0.99

b1 0.35 b2 0.60

w1 = 0.15

w
2 =

0.20

w3
=
0.2

0

w4 = 0.30

w5 = 0.40

w
6 =

0.45

w7
=
0.4

5

w8 = 0.55

We will now use back propagation to optimize the weights so that the neural network can make correct
predictions. We will consider a training dataset of only the two points shown in the figure.

1) Forward Pass

Let us first see what our neural network currently predicts (with the randomly chosen weights and bi-
ases shown above). We do this using the sigmoid activation function in both the hidden layer nodes and the
output layer nodes.

neth1 = w1 ∗ i1 + w3 ∗ i2 + b1 ∗ 1

Lecture 12: Neural Networks Training Algorithm 12-5

neth1 = 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1 = 0.3775

Applying the sigmoid function,
outh1 = σ(neth1) = 0.593269992

Repeating the same process for h2 we get

outh2 = 0.596884378

Using the same method for the output layer nodes with the output from the hidden layer neurons as inputs,

net01 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1

neto1 = 0.4 ∗ 0.593269992 + 0.45 ∗ 0.596884378 + 0.6 ∗ 1 = 1.105905967

outo1 = σ(1.105905967) = 0.75136507

outo2 = 0.772928465

Calculating the total error

We now calculate the error for each output neuron using the squared error function and sum them to
get the total error.

Etotal = Σ
1

2
(target− output)2

Using this formula,
Eo1 = 0.274811083, Eo2 = 0.023560026

Etotal = E1 + E2 = 0.298371109

2) Backward Pass

Our goal with backpropagation is to update each of the weights in the network so that they cause the
actual output to be closer the target output, thereby minimizing the error for each output neuron and the
network as a whole.

Output Layer

Consider w5. We want to know how much a change in w5 affects the total error, aka ∂Etotal

∂w5
.By apply-

ing the chain rule we know that:

∂Etotal

∂w5
=

∂Etotal

∂outo1
∗ ∂outo1
∂neto1

∗ ∂neto1
∂w5

To compute the total error change with respect to the output, we have the formulas

Etotal =
1

2
(targeto1 − outo1)

2 +
1

2
(targeto2 − outo2)

2

∂Etotal

∂outo1
= 2 ∗ 1

2
(targeto1 − outo1)

2−1 ∗ −1 + 0

∂Etotal

∂outo1
= −(targeto1 − outo1) = −(0.01− 0.75136507) = 0.74136507

The partial derivative of the logistic function is the output multiplied by 1 minus the output.

outo1 =
1

1 + e−neto1

Lecture 12: Neural Networks Training Algorithm 12-6

∂outo1
∂neto1

= outo1(1− outo1) = 0.75136507(1− 0.75136507) = 0.186815602

To calculate how much the total net input of o1 changes with respect to w5,

neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1
∂neto1
∂w5

= 1 ∗ outh1 ∗ w(1−1)
5 + 0 + 0 = outh1 = 0.593269992

To decrease the error, we then subtract this value from the current weight (optionally multiplied by some
learning rate, η, which we’ll set to 0.5).

w+
5 = w5 − η ∗ ∂Etotal

∂w5
= 0.4− 0.5 ∗ 0.082167041 = 0.35891648

We can repeat this process to get the new weights w6, w7, and w8:

w+
6 = 0.408666186

w+
7 = 0.511301270

w+
8 = 0.561370121

We perform the actual updates in the neural network after we have the new weights leading into the hidden
layer neurons (ie, we use the original weights, not the updated weights, when we continue the back propa-
gation algorithm below).

Hidden Layer

Next, we continue the backwards pass by calculating new values for w1, w2, w3, and w4. We need to compute

∂Etotal

∂w1
=

∂Etotal

∂outh1
∗ ∂outh1
∂neth1

∗ ∂neth1
∂w1

We use a similar process as we did for the output layer, but slightly different to account for the fact that the
output of each hidden layer neuron contributes to the output (and therefore error) of multiple output neurons.
We know that outh1 affects both outo1 and outo2 therefore the ∂Etotal

∂outh1
needs to take into consideration its

effect on the both output neurons.
∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1

Starting with ∂Eo1

∂outh1

∂Eo1

∂outh1
=

∂Eo1

∂neto1
∗ ∂neto1
∂outh1

We can calculate ∂Eo1

∂neto1
using values we calculated earlier.

∂Eo1

∂neto1
=

∂Eo1

∂outo1
∗ ∂outo1
∂neto1

= 0.74136507 ∗ 0.186815602 = 0.138498562

And ∂neto1
∂outh1

is equal to w5:
neto1 = w5 ∗ outh1 + w6 ∗ outh2 + b2 ∗ 1

∂neto1
∂outh1

= w5 = 0.40

Lecture 12: Neural Networks Training Algorithm 12-7

Plugging them in,

∂Eo1

∂outh1
=

∂Eo1

∂neto1
∗ ∂neto1
∂outh1

= 0.138498562 ∗ 0.40 = 0.055399425

Following the same process for ∂Eo2

∂outh1
, we get:

∂Eo2

∂outh1
= −0.019049119

Therefore
∂Etotal

∂outh1
=

∂Eo1

∂outh1
+

∂Eo2

∂outh1
= 0.055399425 +−0.019049119 = 0.036350306

Now that we have ∂Etotal

∂outh1
, we need to figure out ∂outh1

∂neth1
and then ∂neth1

∂w for each weight.

outh1 =
1

1 + e−neth1

∂outh1
∂neth1

= outh1(1− outh1) = 0.59326999(1− 0.59326999) = 0.241300709

We calculate the partial derivative of the total net input to h1 with respect to w1 the same as we did for the
output neuron.

neth1 = w1 ∗ i1 + w3 ∗ i2 + b1 ∗ 1
∂neth1
∂w1

= i1 = 0.05

Putting it all together,
∂Etotal

∂w1
=

∂Etotal

∂outh1
∗ ∂outh1
∂neth1

∗ ∂neth1
∂w1

∂Etotal

∂w1
= 0.036350306 ∗ 0.241300709 ∗ 0.05 = 0.000438568

We now have the updated weights. Repeating this process for several iterations further reduces the error (for
example, 10, 000 iterations of this process results in an error of 0.000351085). This completes our illustration
of back propagation.

Lecture 12: Neural Networks Training Algorithm 12-8

12.3 Computational Graph

1 x1 x2 · · · xd

H1 H2 · · · Hk

b
(1)
1

b
(1)
2

w
(1)
11

w
(1)
21

w
(1)
12

w
(1)
22

w
(1)
1d

w
(1)
2d

w
(1)
kd

1

b(2)

w
(2)
1 w

(2)
2 w

(2)
k

f(x,w)

Figure 12.2: A two-layer Neural Network

(e)

x

w(1)
b(1)

z1 = w(1)x+ b(1)

g(.) (d)

a

(c)
w(2)
b(2)

z(2) = w(2)T · a+ b(2)

g(.) (b)

ŷ

-[ylogŷ+(1-y)log(1-ŷ)] (a)

l

y

The representation shown on the left here is the computational
graph of the above two-layer Neural Network, with the loss
function as y · log(ŷ) + (1− y) · log(1− ŷ).

∂l

∂ŷ
= −∂y · log(ŷ) + (1− y) · log(1− ŷ)

∂ŷ
= −y

ŷ
+

1− y

1− ŷ
(a)

δŷ =
∂l

∂ŷ

∣∣∣∣
x,y,θ

∂ŷ

∂z(2)
= g′(z(2)) (b)

δz(2) =
∂l

∂z(2)
=

∂l

∂ŷ
· ∂ŷ

∂z(2)
= δŷ · ∂ŷ

∂z(2)

∂z(2)

∂w(2)
=

∂(w(2)T a+ b(2))

∂w(2)
= a (c)

δw(2) = δz(2) · ∂z
(2)

∂w(2)

∂a(1)

∂z(1)
= g′(z(1)) (d)

∂z(1)

∂w(1)
=

∂(w(1)x+ b(1))

∂w(1)
= x =⇒ δw(1) = x · δz(1) (e)

Lecture 12: Neural Networks Training Algorithm 12-9

12.4 Regularization

12.4.1 L2 Regularization

lReg = lce + λ∥w∥22

Here lce is the Cross-Entropy loss and ∥w∥22 = Σi,j,k(w
(k)
ij)2. This is the same L2 regularization we have seen

so far.

12.4.2 Dropout Regularization

x1

x2

x3

u1

u2

u3

u4

v1

v2

v3

v4

g1

Figure 12.3: A fully connected NN with 2 hidden layers before dropout

During training, keep a neuron active with some probability p (hyperparameter), delete otherwise. For each
node we do this process independently. We get a much sparser NN then where Back-Propagation calculations
become simpler and model complexity is lowered. At test time, we use the entire network with the expected
weights.

Lecture 12: Neural Networks Training Algorithm 12-10

x1

x3

u1

u2

u3

u4

v1

v2

v3

v4

g1

Figure 12.4: The same NN after dropping some nodes for a specific (xi, yi)

12.4.3 Early Stopping

Stopping when performance on validation set stops improving.

Figure 12.5: Caption

Lecture 12: Neural Networks Training Algorithm 12-11

no. of layers

n
o.

o
f
n
o
d
es

p
er

la
ye
r

Each point in the grid has a value corresponding to performance for that no. of layers and nodes. We choose
the point which gives best performance, i.e. minimizes test error.

References

[Back Propagation example] https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

	Forward Propagation
	Mini Batch Gradient Descent
	Efficient Computation of Gradients

	Back Propagation
	Example

	Computational Graph
	Regularization
	L2 Regularization
	Dropout Regularization
	Early Stopping

