
CS 217: Artificial Intelligence and Machine Learning Jan-Apr 2024

Lecture 13: Recurrent Neural Networks
Lecturer: Swaprava Nath Scribe(s): SG25, SG26

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

13.1 Introduction to Recurrent Neural Networks (RNNs)

In our earlier lectures, we delved into the workings of regular feedforward Neural Networks. These networks
take a d-dimensional input and calculate an output based on specified dimensions. They update weights and
biases between layers without considering the order of input training data. This framework is particularly
useful for classification tasks, such as predicting whether a student will pass or fail a test by taking attendance,
background and several other factors as input.

However, applications like predicting the next word in autofill sentences or identifying grammatical errors
and spelling corrections demand consideration of the order of input elements. In such scenarios, Recurrent
Neural Networks (RNNs) play a vital role.

Sequential data, as encountered in these applications, is characterized by two key aspects: the order of inputs
matters, and the length of input is variable. RNNs are specifically designed to handle such sequential data.

13.2 Basic RNN structure

RNNs are designed to handle sequences. This can be used to analyze video (sequences of images),
writing/speech (sequences of words), etc. LSTMs are designed to let important information persist over time.
RNNs will often ”forget” over time. FFNNs are memoryless systems; after processing some input, they
forget everything about that input. The essential difference between the two is the self loop within the
hidden layer which is useful in capturing the unseen temporal relationship that might exist in the training
data.
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Figure 13.1: Architecture of an RNN

s(t) = g(Ws(t−1) + Ux(t) + b)

o(t) = V s(t) + b′

ŷ(t) = softmax(o(t))

Where g can be any activation function like sigmoid, tanh, ReLU(Rectilinear Linear Unit).

Named Entity Recognition: Named Entity Recognition (NER) using Recurrent Neural Networks
(RNNs) is a popular approach for extracting entities such as names of people, organizations, locations, dates,
etc., from text data. Example : Somesh worked at Cisco in Banglore.
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Figure 13.2: Named Entity Recognition
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13.3 RNN Possible structures

Each cell of RNN can be represented as:
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In the realm of word representation, we encounter two primary methodologies:

1. One-Hot Encoding: This approach represents each word as a sparse vector, where the length of the
vector equals the total vocabulary size. Each word is denoted by a vector with all elements set to 0,
except for the element corresponding to the word, which is set to 1. Despite its simplicity, this method
is deemed inefficient due to the high dimensionality of the resulting vectors.

2. Word Embeddings:In contrast, word embeddings offer a more efficient representation. Here, words
are encoded as dense vectors of lower dimensionality compared to one-hot encoding. These vectors,
trained using techniques like Word2Vec or GloVe, capture semantic relationships between words based
on their contextual usage, which will be studied in later courses. This dense representation not only
conserves memory but also enhances the model’s ability to capture nuanced semantic meanings.



13-4 Lecture 13: Recurrent Neural Networks

x
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(a) FFNN(RNN without dependencies)

x

(b) One-Many(multiple outputs,single input).
A common application is Image Captioning.

Words From Review Phrases

Rating Inferred(ŷ)

(c) Many-One. This type is characterized by
having single output and multiple inputs. A
common application is predicting ratings by
taking reviews written by users as input.

TextOriginal

Translated Text

(d) Many-Many Staggered(Length of input(x)
and output(ŷ) not the same). In this type of
RNN, both input and output are many but the
length of input and output need not be equal.
A common example being text translation into
some other language where the output gener-
ated starts at a farther cell rather than the in-
put started due to some processing time.

s

(e) Many-Many Synchronous(prediction for ev-
ery step of the sequence), used in Named-Entity
Recognition(NER),each cell taking one input
and giving one output by considering the effect
of previous inputs.

Figure 13.3: Various architectures
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There are multiple possible structures for a Recurring Neural Network. Some of which are described in the
above figure.

13.4 Training RNN’s

During RNN training, humans label each word with its corresponding entity type, such as person, place,
organisation...etc then use these as training data. The purpose of training an RNN is to determine the
weights that we need to use within the cell. If we were to use different weights for each cell, as we do in a
normal feedforward neural network with different weights at each layer, we would face two main problems
that we must overcome when training the RNN:

• Variable length of the dataset: Let’s consider a scenario where the longest number of parameters
for input variable x during training is 15. This means that we have a framework with 15 cells while
training. If the neural network encounters a parametric x with 16 parameters, we need to retrain it
to deal with 16 cells. This involves creating new weights to connect the 15 existing cells to the 16th
cell. Unfortunately, this is a significant issue as we can never predict the size of x. To overcome this
challenge, we prefer to use the same weights across all cells.

• Overfitting of the model: Say we are using n rounds in our framework. Using different weights in
cells in different rounds will just increase the complexity of the neural network. This results in the
overfitting of training data.

So we use the same weight vectors at each round as it is optimal for both overfitting and length problems.

13.4.1 Forward Pass

The standard functions we use are:

g = Softmax

S = tanh

using the categorical cross-entropy function as a loss function

Loss(y, ŷ) = −
∑

yk log ŷk

softmax = −
K∑

k=1

I {y = k} log (ŷk)

where ŷk is of the form ew1x∑
i e

wix

Forward Pass is computing s(1), s(2), ....s(t) and ŷ

s(t) = tanh
(
Ws(t−1) + Ux(t) + b

)
ŷ = softmax

(
V s(t) + b

′
)
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13.4.2 Backpropagation Through Time (BPTT)

To find: ∂L
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Hence for the case with three cells in RNN:
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In the above summation, terms in the brackets are of the form ∂ŷ
∂s(i)

So for the case with T cells in RNN:
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13.5 Vanishing Gradient Problem

In simpler terms, the vanishing gradient problem happens when the gradients become smaller and smaller
as they move through the layers of a neural network during training. This makes it difficult to update the
weights in the network, which can cause the learning process to be slow or even stop altogether.

One of the reasons why this happens is because of the use of certain functions, like tanh and sigmoid, which
tend to saturate at certain values.

In the case of RNN, the problem is further complicated because the partial derivative of weights for each
time step depends on the effect of all the previous time steps. As the sequence of time steps increases, the
gradient terms from earlier time steps decrease exponentially as they are multiplied by gradient terms whose
values are less than one at each later time step up to the tth time step, which means that their influence
on tth time step diminishes rapidly as t increases. This results in the decrease of the influence of earlier
time steps as the sequence length increases. This can make it difficult for the network to learn from longer
sequences of data, which can be a problem in certain applications.

Figure 13.4: Saturating functions:tanh and sigmoid

Consider the statement,

Isha went for a walk, . . .He was overjoyed

In traditional RNNs, the grammar checker won’t be able to detect this change from Isha to He and the error
will remain. To mitigate this a modification to the cell structure is Long Short Term Memory Networks, we
modify the cell structure in the following way:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Where c(i) are memory cell states and h(i) are hidden cell states.
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