
CS 217: Artificial Intelligence and Machine Learning Jan-Apr 2024

Lecture 16: Unsupervised Learning through Clustering
Lecturer: Swaprava Nath Scribe(s): SG31 & SG32

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

16.1 Support Vector Machines (Recap)

Positive class

Negative class

x

y

wTx+ b

Figure 16.1: Linear SVM separating two classes

We had discussed in the previous lecture about SVM’s and saw that the optimization problem can be
represented in two forms:

Primal Form:

Minimize:
1

2
∥w∥2

subject to: yi(w
Txi + b) ≥ 1, for all i = 1, 2, . . . , n

Dual Form:

Maximize: max
λ≥0

n∑
i=1

λi −
1

2

∑∑
λiλjyiyj

(
x⊤
i xj

)
subject to:

∑
λiyi = 0

has solution: w∗ =
∑

λ∗
i yixi

16-1

16-2 Lecture 16: Unsupervised Learning through Clustering

Figure 16.2: Separating non-linearly separable data points. Image taken from [Medium]

Turns out that a dual problem is easier to solve because:

• Less costly computation as less number of variables and less number of constraints.

• Kernelisation to treat points that are linearly non-separable.

In Figure 16.2 we have non-linearly separable data points. In this case, even the soft margin classifier is not
very good, so to classify the points using SVM we can do basis transformation i.e we can project the data
to a high dimensional space and then we can pass a linear classifier on the transform space.
But here the problem is xi itself is a high dimensional vector and doing a transformation would result in an
even more high dimensional vector due to which first doing transformation and then doing the inner product(
ϕ(xi)

⊤ϕ(xj)
)
in the dual-problem optimization equation would be very computationally expensive. Hence

we use the method of kernelisation.

16.2 Kernelisation

Kernelisation is used for points which are not linearly separable.

Given : Linearly inseparable data

Goal : Project this data to a high dimensional space and then solve using SVM. (Find w,h in the higher
dimension)

Step 1 :

[
x
(1)
i

x
(2)
i

]
transform−−−−−−→

1

x
(1)
i

x
(2)
i

x
(1)
i x

(2)
i

(x
(1)
i)2

(x
(2)
i)2

= ϕ(xi)

Lecture 16: Unsupervised Learning through Clustering 16-3

Step 2 : Dual of SVM

max
λ≥0

n∑
i=1

λi −
1

2

∑
j

∑
i

λiλjyiyj(ϕ(xi))
Tϕ(xj) such that

n∑
i=1

λiyi = 0

The objective function has an inner product of the data in the higher dimension.

Original Data

xi

Size : n× d

ϕ−→

Transformed data

ϕ(xi)

Size : n×m

−→

Inner Product of
Transformed

points

Size : n× n

Now, is the first transformation (ϕ) really necessary ?

Do there exist functions that calculate the inner product in the transform space without explicitly computing
the transformed data ?

The answer turns out to be YES in some cases, and it is possible through Kernel Functions

Example : Consider the previous case,
[
1, x1

ix
1
j , x

2
ix

2
j , (x

1
i)

2(x1
j)

2, (x2
i)

2(x2
j)

2
]
and (1 + xT

i xj)
2, They have

the same terms, Hence we have computed the inner product without calculating the transformation.

Kernel trick : Transformations are equivalent as long as we are calculating dual of SVM

Different Kernel Functions :

1. Linear K(x,z) = xT z

2. Polynomial K(x,z,d) = (1 + xT z)d

3. Gaussian K(x,z) = e
−||x−z||2

2σ2

4. Laplacian / Radial K(x,z) = e
−||x−z||

2σ2

Some uses of SVM : Handwriting recognition, Protein Structure, Medical Image Classification.

A set of necessary and sufficient conditions govern the kernel functions, like which kernel function to pick
(decided by grid search), is defined by Mercer’s Theorem

Limitations of SVM :

1. Only Binary Classification is possible [One vs. Rest Classifier]

2. No probabilistic interpretation exists

3. It doesn’t work well with noisy data

16.3 Unsupervised Learning

Until now, everything we have done comes under supervised learning, where training data is labelled, that
is, D = {(xi, yi)}i∈[n] where xi is the data and yi is its label. However, in many situations, we may need to
find relations with unlabelled data. This may be due to reasons like-

16-4 Lecture 16: Unsupervised Learning through Clustering

1. High cost of labelling data: While it is easy to find data for just about any situation, it is costly
and time consuming to label such data with the output as this requires human intervention.

2. It may also be irrelevant to classify data by labels and make better sense to look at properties of
unlabelled data.

For this purpose we introduce the methods of Unsupervised Learning where our data is of the form
D = {(xi)}i∈[n] where xi is a d-dimensional vector. Among unsupervised learning methods, we shall now
look at clustering.

16.3.1 Clustering

Clustering is the partitioning of data into proper subsets based on a function of their location in d-dimensional
space.
Let our data be of the form D = {x1, x2, . . . , xn}, xi ∈ Rd.
Goal: Find a ”well separated” partition of the data

D = D1 ∪D2 ∪D3 ∪ · · · ∪Dk

where 1 ≤ k ≤ n is a hyperparameter. We also define the condition for hard clustering as-

Di ∩Dj = Φ ∀i ∀j, i ̸= j

For any type of clustering, there exists a Clustering Function, C : [n] → [k], such that for each data point
xi that is mapped to the partition Dk′ , C(i) = k′.

16.3.2 k-Means Clustering

We shall now look at a method for clustering called k-means clustering, wherein we characterize clusters by
the cluster centres calculated by the algebraic mean of all data points within that cluster.

Figure 16.3: Example of k-means clustering

Lecture 16: Unsupervised Learning through Clustering 16-5

16.3.2.1 Clustering as on Optimization Problem

We can look at the clustering problem as an optimization problem as we want to decrease the total sum
of ”error” over all data points. Let us define the error for a data point xi as the square of the L2-distance
between xi and the centre of the cluster assigned to xi, thus, Exi = ||xi −mC(i)||22. To minimize the total
error, we want to solve the following problem-

argmin
c

n∑
i=1

||xi −mC(i)||22 c ∈ C

C represents the set of all possible partitions of D into k sets and thus |C| = kn. As there are exponentially
many possible partitions to this problem, solving this problem for a global optimum is NP -hard. However,
we notice that our objective function, which we write as

SE(c,m) =

n∑
i=1

||xi −mC(i)||22

is a non-convex function and thus may have local minima in addition to the global minimum. We shall now
give an algorithm for k-means clustering which converges in polynomial time onto one of these local minima,
giving us a ”reasonable” partition of our clustering.

16.3.2.2 k-Means Clustering Algorithm

Let us take the input D = {x1, x2, . . . , xn}
Initialise the cluster means {m1,m2, . . . ,mk} and c(i). We shall denote these by m0

i and c0(i) respectively
to denote time t = 0. Also, initialize L to store the size of each cluster.
Now we shall repeat the following steps until convergence of the assignments (that is, Ct+1(i) = Ct(i) ∀ i):

1. ∀ i ∈ [n], check if ∃k′ ̸= Ct(i) such that ||mt
k′ − xi||2 < ||mt

Ct(i) − xi||

2. If such a k′ is found, assign ct+1(i) = k′ and update

mt+1
k′ =

mt
k′ × L(k′) + ||mt

k′ − xi||2
L(k′) + 1)

mt+1
Ct(i) =

mt
Ct(i) × L(Ct(i))− ||mt

Ct(i) − xi||2
L(Ct(i))− 1

3. Update cluster sizes as well and repeat from step 1

4. If k′ is not found, we are done as assignment does not change.

What remains is to prove that this algorithm will always converge in polynomial time, which we shall do in
the next part.

16.3.2.3 Proof of Convergence

Let us assume that the algorithm goes from iteration t to iteration t+1: This assumes that we have a sequence
of iterations where the algorithm updates the cluster centers and assigns points to clusters iteratively. Now
we need to prove that SSE(Ct+1, µt+1) < SSE(Ct, µt): Here, SSE stands for ”Sum of Squared Errors,”

16-6 Lecture 16: Unsupervised Learning through Clustering

which is a measure of how well the clusters fit the data points. The goal is to show that in each iteration,
the SSE decreases, indicating improvement in clustering quality.

If the SSE decreases in each iteration, eventually the algorithm will reach a point where no further improve-
ment can be made, leading to termination.

The algorithm stops when each point is assigned to the cluster with the closest center, indi-
cating that the clustering is locally optimal at that stage.

The proof is divided into two steps to demonstrate that the SSE decreases from iteration t to iteration t+1.

First step involves showing that updating the cluster centers (from µt to µt+1) while keeping the cluster
assignments (Ct+1) the same leads to a decrease in SSE.

Second step

SSE(Ct+1, µt+1) =

n∑
i=1

∥xi − µt+1Ct+1(i)∥2

This is the formula for calculating the SSE between the data points and the cluster centers in iteration t+1
with the updated cluster assignments.

=
∑
k

k∑
k0=1

∑
i∈[n],Ct+1(i)=k0

∥xi − µt+1Ct+1(i)∥2

Splits the summation over clusters (k) and data points (i) based on the cluster assignments in iteration t+1.

≤
∑
k

k∑
k0=1

∑
i∈[n],Ct+1(i)=k0

∥xi − µtCt+1(i)∥2

This step uses the lemma to show that the SSE with updated cluster centers (µt+1) is less than or equal to
the SSE with the previous cluster centers (µt).

=

n∑
i=1

∥xi − µtCt+1(i)∥2 = SSE(Ct+1, µt)

Combines the terms back together to show that the SSE with updated cluster centers and cluster assignments
is equal to SSE(Ct+1, µt), completing the proof.

References

[Medium] Vivek Yadav, How Neural Networks Learn Nonlinear Functions and Classify Linearly Non-
Separable Data, Medium, Available at: https://vivek-yadav.medium.com/how-neural-networks-
learn-nonlinear-functions-and-classify-linearly-non-separable-data-22328e7e5be1

[K-Means] https://www.datacamp.com/tutorial/k-means-clustering-r

