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Lecture 19: Two Player Competitive Games
Lecturer: Swaprava Nath Scribe(s): SG37 & SG38

Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

19.1 Two Player Competitive Game

Consider a two-player game in which there are 3 buckets (A,B,C) and each bucket contains two numbers
as shown below.

A

−50 50

B

1 3

C

−10 20

Rules of the game are:

• Player 1(agent) picks the bucket

• Player 2 (opponent) picks a number from the “Selected” Bucket

• Player 1 (agent) utility will be the number picked by player 2

Now, let’s construct the game tree

−50 50

A

1 3

B

−10 20

C

Agent’s Move

Opponent’s Move

Consider two strategies of the opponent:

1. If the opponent is stochastic, i.e., the probability of choosing both left and right numbers in a
bucket are the same (i.e., 1

2 ).

• If A is chosen, expected utility =−50+50
2 = 0.

• If B is chosen, expected utility = 1+3
2 = 2.

• If C is chosen, expected utility = −10+20
2 = 5.
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So in this case agent picks bucket C, to maximize it’s utility.

0

−50 50

A

2

1 3

B

5

−10 20

C

2. If the opponent is a min player, i.e., the opponent always chooses the minimum number from
the bucket.
In this case,the agent picks Bucket B, as argmax(−50, 1,−10) = 1.

-50

A

1

B

-10

C

Note: Here, utility is given only to the agent. However, in some games, utility can be assigned to both the
agent and the opponent. In such scenarios, the opponent not only tries to minimize the agent’s score but
also to maximize its own utility.

19.2 Two Player Zero Sum Games

Two-player zero-sum games are a type of mathematical game in which one player’s gain is exactly balanced
by the other player’s loss. The total utility available in the game is constant; hence, the sum of the gains
and losses of all players is zero. In these games, the interests of the players are completely opposed, meaning
that one player’s win is the other’s loss.
Examples: Chess, tic-tac-toe, checkers

Lets start with some of the basic terminologies for 2-player zero sum games:

• Players: {Agent,Opponent}
• Starting State: S0

• Actions(s): Possible actions at state 's'
• Player(s): Player who makes the move at state 's'
• Successor(s, a): Resulting state if action a is taken at state 's'
• isEnd(s): Is state an end state/ Flag to identify terminal state

• Utility(s): Agent’s utility at the “end state”

Note:
i) In Actions(s), Player(s), Successor(s, a), 's' is an intermediate state
ii) Utility(s) is not defined in other (intermediate) states
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Example: Chess

• Players: {White,Black}
• State: A board position (position of the chess pieces at a given time)

• Actions(s): All legal moves possible by Player(s)

• Player(s): Player who makes the move at state 's'
• Successor(s, a): Resulting state if action a is taken at state 's'
• isEnd(s): Whether 's' is a checkmate or a draw

• Utility function is defined as

Utility(s) =


+M if white wins

−M if black wins/white loses

0 if it is a draw

19.3 Constant Sum Game

Constant sum games are a type of game in game theory where the total payoff to all players
remains the same regardless of the outcome of the game. In other words, the sum of gains
and losses of all players is a constant value for every possible end-state of the game. These
games are characterized by the fact that one player’s gain (or loss) is exactly balanced by
the losses (or gains) of the other player(s). Zero sum games are constant sum games with
the constant as 0.

Example: 2 siblings (brother B and sister S ) are given 2 chocolates from their mother and
they have to divide the chocolates. The brother proposes to have some number of chocolates
and the sister can either accept or reject the proposal.

Players = {Brother, Sister}

n1

n2

1

A1

0

R1

n3

1
2

A2

0

R2

n4

0

A3

0

R3

1 1
2 0

Brother’s Move

Sister’s Move

Brother plays first and goes to one of the states n2, n3, n4.
The state n2 means he decides to keep both chocolates.
The state n3 means he decides to keep one and give his sister the other one.
The state n4 means he decides to give his sister both chocolates.

Then his sister chooses A1 or R1 if he chose n2; A2 or R2 if he chose n3; and A3 or R3
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if he chose n4.
A1, A2, A3 are accepting states - Whatever her brother decided happens.
R1, R2, R3 are rejecting states - If she chooses one of these none of them get any chocolate
irrespective of the decision made by her brother earlier.

The nodes in the last level signify the utility according to the brother.
The state 1 means he gets both chocolates.
The state 1

2
means he gets both the chocolates.

The state 0 means his sister gets both chocolates.

Utility(s) =


Gets both the chocolates if end state is 1

Gets one chocolate if end state is 1/2

Gets no chocolates if end state is 0

Actions(s) =


{1, 1

2
, 0} when s = n1

{A1, R1} when s = n2

{A2, R2} when s = n3

{A3, R3} when s = n4

Note: The utility function is defined for the brother.

19.4 Strategy of a player

The strategy of a player is the action we must take,if we end up in any of the state. It
can be deterministic, probabilistic and also random. Now, we study about different types of
strategies.

19.4.1 Deterministic Strategies:

In deterministic strategies, the action of a player at a specific state is fixed and
predetermined. For any given state S, the action chosen by player i is strategically fixed,
denoted by πi(s), and it belongs to the set of all possible actions available at that state,
provided player(s) = i i.e.,

πi(s) ∈ actions(s) if player(s) = i

19.4.2 Randomized Strategies:

In contrast, randomized strategies incorporate probabilities into the decision-
making process. For a state S, the strategy of the player for choosing an action is proba-



Lecture 19: Two Player Competitive Games 19-5

bilistic. The strategy πi(s) assigns a probability to each possible action, meaning that πi(s)
belongs to the set of all probability distributions over the set of actions available at state S,
provided player(s) = i i.e.,

πi(s) ∈ ∆(actions(s)) if player(s) = i

where ∆(A) denotes the set of all probability distributions over the set A, which in this
context, is the set of actions available at state S.

Consider the above game of brother and sister sharing two chocolates, and at state n1, if the
brother’s strategy is stochastic,

πB(n1) =

(
1

3
,
1

3
,
1

3

)
This implies that for the state n1, the brother’s strategy assigns equal probabilities to each
possible action (A, B, C). Specifically, each action (A, B, C) has a 1/3 chance of being
chosen.

19.5 Games with partial information

Consider the game tree below:

s

succ(s,a)

−50 50

A

1 3

B

−10 20

C

a = A

uagent(s) =


utility(s) if isEnd(s)∑

a∈actions(s) Πagent(s)[a] uagent(successor(s, a)) if player(s) = agent∑
a∈actions(s) Πopponent(s)[a] uagent(successor(s, a)) if player(s) = opponent

Note: Πagent(s)[a] and Πopponent(s)[a] are probabilities that the agent and the opponent pick action ‘a’
respectively.
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→ If the opponent is stochastic but the player is a utility maximizer:

Then the player is called a ‘Max player’. Now the utility of the agent changes to

uagent(s) =


utility(s) if isEnd(s)

maxa∈actions(s) uagent(successor(s, a)) if player(s) = agent∑
a∈actions(s) Πopponent(s)[a] uagent(successor(s, a)) if player(s) = opponent

→ If the opponent is a utility minimizer:

Then the opponent is called a ‘Min player’. Now the utility of the agent changes to

uagent(s) =


utility(s) if isEnd(s)

maxa∈actions(s) uagent(successor(s, a)) if player(s) = agent

mina∈actions(s) uagent(successor(s, a)) if player(s) = opponent

Q : Is Πmax min
agent the optimal strategy when Πstochastic

opponent ?

A : No, we don’t have an optimal policy, rather we have an equilibrium (Πmax min
agent , Πmin

opponent).

Q : Is (Πstochastic
agent , Πstochastic

opponent ) an equilibrium ?
A : No.

19.6 Subgame and Subgame Perfection

n1

n2

3

C

8

D

n3

5

E

n4

2

G

1

H

F

Player 1

Player 2

Player 1

A B

A subgame at ‘S’ is a restriction of the game at the subtree rooted at ’S’ where isEnd(s) is false.

Here, Player 1 is a utility maximizer (Max Player) i.e. plays to maximize his utility.
Hence if player(s) = player 1, the utility of Player 1 changes to,
u1(s) = maxa∈actions(s)u1(successor(s, a))

Player 2 is the utility minimiser(Min Player) i.e. plays to minimize his utility.
Hence if player(s) = player 2, the utility of Player 1 changes to,
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u1(s) = mina∈actions(s)u1(successor(s, a))

Let us look at the subgame at node n4 :

n4

2

G

1

H

In this subgame, it’s Player 1’s turn and he is a max player.
Player 1 (max player) should pick ‘G’ here so as to get ‘2’ ( > 1, that he would have got by choosing ‘H’).
We are done solving this subgame.

Similarly using the result of the subgame at n4, we can solve the subgame at n3, and this way we
move to the upper levels.

Let us take a look at the subgame at n3 :

n3

5

E

2

F

In this subgame, it’s Player 2’s turn and he is a min player.
Therefore, he should pick ‘F’ so that player 1 gets ‘2’ (from n4, instead of getting ‘5’ by picking ‘E’).

Let us look at the subgame at n2 :

n2

3

C

8

D

In this subgame, it’s Player 2’s turn and he is a min player.
Therefore, he should pick ‘C’ so that player 1 gets ‘3’ (instead of getting ‘8’ by picking ‘D’).

Now, let us take a look at the subgame at n1 :

n1

3

A

2

B

In this subgame, it’s Player 1’s turn.
Player 1 (max player) should pick ‘A’ here to get ‘3’ ( > 2, that he would have got by choosing ‘B’).
Therefore, the final utility of the Player 1 = 3
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Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.
The summary of solving the above game is:

• Player 1 will choose ‘H’ in the subgame at n4

• Player 2 will choose ‘F’ in the subgame at n3

• player 2 will choose ‘C’ in the subgame at n2

• player 1 will choose ‘A’ in the subgame at n1

19.7 Backward Induction

f unc t i on BackInd ( s ) :
i f isEnd ( s ) :

r e turn uagent, ϕ // empty s e t as we don ’ t have any ac t i on here

i f p laye r ( s ) = agent : // t ry to maximize u t i l i t y
b e s tU t i l i t y = −∞
f o r a l l a ∈ a c t i on s ( s ) do :

u t i l i t yAtCh i ld , bestAvector ← BackInd ( succ ( s , a ) )
i f u t i l i t yAtCh i l d > b e s tU t i l i t y :

b e s tU t i l i t y = ut i l i t yAtCh i l d
bestAvector = append (a , bestAvector )

i f p l aye r ( s ) = opponent : // t ry to minimize u t i l i t y
b e s tU t i l i t y = ∞
f o r a l l a ∈ a c t i on s ( s ) do :

u t i l i t yAtCh i ld , bestAvector ← BackInd ( succ ( s , a ) )
i f u t i l i t yAtCh i l d < b e s tU t i l i t y :

b e s tU t i l i t y = ut i l i t yAtCh i l d
bestAvector = append (a , bestAvector )

re turn b e s tU t i l i t y , a c t i o n v e c t o r ( bestAvector )

We can apply Backward induction on small games like Tic-tac-toe.
But can apply it to Chess, Go, Checkers, etc.?
We can, but the game tree is huge.

Checkers game tree ∼ 1020 nodes
Chess game tree ∼ 1040 nodes
Go game tree ∼ 10170 nodes
Checkers was solved in 2007 after 18 years of computation and the optimal solution was a Draw.


