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Disclaimer: These notes aggregate content from several texts and have not been subjected to the usual
scrutiny deserved by formal publications. If you find errors, please bring to the notice of the Instructor.

23.1 Voting rules and Desirable properties

In the last lecture, we had seen the following voting rules:

1) Plurality
2) Borda’s rule
3) Single Transferable Vote (STV)
4) Copeland Voting

We had also seen a desirable property for voting rules - Condorcet Consistency.

Condorcet Consistency – If a candidate beats all other candidates in pairwise election, then that candi-
date should win. A voting rule, which obeys this, is said to be condorcet consistent.

Now, we shall see two other desirable properties for voting rules - unanimity and non-manipulability.

23.1.1 Unanimity

A voting rule f is unanimous if for every profile P s.t P1(1) = P2(1) = P3(1) = · · · = Pn(1) = a (say), it
holds that f(P ) = a.

[ Recall the definition of a voting rule f , from the set of profiles to the set of alternatives (candidates)
A = {a1, a2, · · · , am}. A profile is of the form P = (P1, P2, · · · , Pn) where n = number of agents (voters)
and each voter’s Pi is a strict preference order among the elements of A, which is represented as,

Pi =


a
b
c
.
.
.


Pi(1)
Pi(2)
Pi(3)
.
.

Pi(m)

f(P ) = f(P1, P2, P3, . . . , Pn) ∈ A

]
All the voting rules discussed before - Plurality, Borda’s rule, STV, Copeland Voting - are unanimous, since
if the top candidates of all the voters are the same, these voting rules make that candidate the winner. Below
is the definition, just in case.
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1. Plurality: In plurality, a candidate wins when they have more votes than any other candidate. If all
the agents choose a specific candidate as their most favorable candidate, that candidate has ensured a
victory with 100% of the votes according to the plurality voting rule. Therefore, plurality is unanimous.

2. Borda’s rule: In Borda’s rule, each vote contributes to the candidate’s score by an amount weighted
by how highly they were preferred. Suppose all the agents choose a specific candidate as their most
favorable candidate. In that case, that candidate achieves the maximum attainable score according to
Borda’s voting rule and is ensured a victory as more than one candidate can’t attain the maximum
attainable score.

3. STV: In the STV voting rule, the candidate with the minimum plurality score is eliminated in each
round. If all the agents choose a specific candidate as their most favorable candidate, then that
candidate wins all the rounds as the plurality voting rule is unanimous. Therefore, it is pretty evident
that the STV rule is also unanimous.

4. Copeland: Copeland works by performing pairwise face-offs among candidates where a candidate
gains a point on winning more votes and 0.5 points in case of a draw. If all the agents choose a specific
candidate as their most favorable candidate, then that candidate achieves a score of m-1(where m is
the number of candidates contesting the election). This score is strictly greater than the score of all
the other candidates, as they can have a maximum score of m-2. So, we can conclude that Copeland’s
voting rule is Condorcet consistent.

23.1.2 Non-Manipulability

Q:- When is a voting rule manipulable?
A voting rule is manipulable when f(Pi, P−i) = b , but upon manipulating the preference order from Pi to
P ′
i , it becomes f(P ′

i , P−i) = a, where the i-th voter prefers a more than b, in his actual preference order Pi.

Pi =


.
a
.
b
.
.

 P ′
i =


a
.
.
.
b
.


A voting rule f is manipulable if ∃ i ∈ N , profile P = (Pi, P−i) such that f(P ′

i , P−i) is more preferred by
i under Pi than f(Pi, P−i) for some P ′

i . A voting rule f is non-manipulable if f doesn’t satisfy the above
condition.

Now, we shall see examples of profiles P that show that the voting rules seen until now - Plurality, Borda’s
rule, STV, Copeland Voting - are manipulable.

1) Plurality rule: Consider the following example.

P =


P1 P2 P3 P4 P5 P6

a a b b c d
b b a a b a
c d c c a b
d c d d d c
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By the plurality rule, there’s a tie between a and b as top-order choices, each with 2 votes. Now, if the tie
is broken in favour of a so that a becomes the winner, then voter 5 can manipulate his voting preference by
changing P5 to P ′

5 as shown below. Then b becomes the clear winner (3 votes).

P5 =


c
b
a
d

 → P ′
5 =


b
c
a
d


Similarly if the tie is broken in favour of b so that b is the winner, then the voter 6 can manipulate by putting
a as his first preference so that a becomes the winner.
Therefore, Plurality is manipulable.

2) Bordas’s rule: Consider the previous example.

This rule is basically assigning some weights to the preference order,i.e 3,2,1,0 to the corresponding rows of
the matrix. By calculating the Borda scores we get a = 13, b = 13, c = 6, d = 4 (a tie). If the tie is broken
in the favour of a so that a is the winner [fBorda(P ) = a], then P5 manipulates to P ′

5 in order to make b
as the winner. Similarly, if the tie is broken in favour of b, then voter 6 can manipulate to make the a the
winner.
Therefore, Borda’s rule is manipulable.

3) Single Transferable Voting: Consider the following example.

P =


P1 P2 P3

a b c
b c a
c a b


Here, the plurality scores (number of voters for which the candidate is the top-order choice) are equal to 1
for all the candidates a, b, c. Without loss of generality, if tie is broken against c, then c will get eliminated
as one with the minimum plurality score. Out of the remaining candidates, a will have a plurality score of
2 and b will have 1, and hence b will get eliminated next, making a the winner.

P2 =

bc
a

 → P ′
2 =

cb
a


Then, voter 2 can manipulate his preference order as shown, so that f(P ′

2, P−2) = c since c has a higher
preference than a for him and c becomes the winner with a plurality score of 2 (highest), a, b with plurality
scores 1,0 respectively, since b gets eliminated first and then a gets eliminated next for having minimum
plurality score.
Therefore, STV rule is manipulable.

4) Copeland rule: Consider the same example used above.

Here the Copeland scores (number of pairwise wins) for each of the three candidates a,b,c are equal to 1 (a
tie). Without loss of generality, if the tie is broken in favour of a so that a is the Copeland winner, i.e.,
f(P ) = a.
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P2 =

bc
a

 → P ′
2 =

cb
a


Then voter 2 can manipulate his preference order so that f(P ′

2, P−2) = c since c has a higher preference
than a for him and c becomes the winner with Copeland score of 2 (highest), a, b with Copeland scores 1,0
respectively.
Therefore, Copeland rule is manipulable.

23.1.3 Dictatorial Voting Rule

In a dictatorial voting rule f , ∃ d ∈ N s.t f(Pd, P−d) = Pd(1)
A dictatorial voting rule is unanimous and non-manipulable.

Gibbard-Satterthwaite theorem:
If voters can have all the possible strict preferences over the candidate and the number of elements in set of
alternatives (A), |A| ≥ 3, then every unanimous and non-manipulable voting rule is a dictatorship.

23.2 Stable matchings

The stable matching problem is the problem of finding a stable matching between two equally sized sets
of elements given an preference order for each element. (We will be considering only equally sized sets). A
matching is a bijection from the elements of one set to the elements of the other set. A matching is not
stable if there exists a pair of elements, one from each set, which prefer each other to their assigned match.

That is, the matching µP : M → W is pairwise unstable for a given preference profile P iff

∃ m, w, m′, w′ such that µP (m) = w, µP (m
′) = w′, w′Pmw, mPw′m′

The notation w′Pmw stands for, w′ is more preferred than w in the preference order of m. We call (m,w′)
as a blocking pair.

23.2.1 Gale-Shapley, Deferred Acceptance (DA) algorithm

23.2.2 Example demonstrating DA algorithm

Let us understand the men-proposing version of the algorithm with this example.

Round 1:

1. Each unmatched man proposes to the most preferred woman who has not rejected him.

2. Each woman tentatively accepts the most preferred man from existing proposals.

This is repeated in the next rounds until all the men are matched.
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Algorithm 1 Gale-Shapley Deferred Acceptance Algorithm

1: function MpStableMatching
2: Input: List of men M and women W such that |M | = |W | = n, preference lists Pm and Pw for each

man and woman
3: Output: Stable matching S
4: Initialize all m ∈ M and w ∈ W to be free
5: while ∃ some m who is free do
6: Choose such a man m
7: Let w be the most preferred woman in m’s preference list who has not rejected him yet
8: if w is free then
9: (m,w) is a tentative match

10: else
11: Let m′ be the current partner of w
12: if w prefers m over m′ then
13: (m,w) becomes a tentative match, m′ becomes free
14: else
15: m remains free
16: end if
17: end if
18: end while
19: return S making all tentative matchings final
20: end function

m1Pm1 : w1 > w4 > w2 > w3

m2Pm2
: w3 > w2 > w4 > w1

m3Pm3 : w1 > w2 > w3 > w4

m4Pm4
: w2 > w1 > w4 > w3

w1 Pw1 : m2 > m1 > m4 > m3

w2 Pw2
: m1 > m2 > m3 > m4

w3 Pw3 : m3 > m1 > m2 > m4

w4 Pw4
: m4 > m2 > m1 > m3

Figure 23.1: Example for DA algorithm
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(a) Each unmatched man proposing to his most
preferred woman [m1 −w1, m2 −w3, m3 −w1,
m4 − w2]
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(b) Each woman tentatively accepting her most
preferred man among the proposals [m3 re-
jected by w1]

Figure 23.2: Round 1
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(a) Each unmatched man proposing to his most
preferred woman [m3 − w2]
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(b) Each woman tentatively accepting her most
preferred man among the proposals [m4 re-
jected by w2]

Figure 23.3: Round 2
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(a) Each unmatched man proposing to his most
preferred woman [m4 − w1]
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(b) Each woman tentatively accepting her most
preferred man among the proposals [m4 re-
jected by w1]

Figure 23.4: Round 3
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(a) Each unmatched man proposing to his most
preferred woman [m4 − w4]
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(b) Each woman tentatively accepting her most
preferred man among the proposals [No rejec-
tions]

Figure 23.5: Round 4
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23.2.3 Complexity, termination and correctness of the DA algorithm

Claim: DA algorithm terminates in polynomial time.
Proof:

• Every man makes atmost n proposals (since there are only n women and a man never proposes to a
woman who has rejected him once).

• There are n men, and hence there can be atmost n2 proposals before which the algorithm terminates.
For each proposal, the algorithm does O(1) operations and comparisons (checking whether a man or
a woman are free, comparing the preferences, and updating the tentative matches can all be done in
constant number of operations, provided sufficient information is stored in appropriate data structures.)

Hence, the complexity of the algorithm is O(n2).

Claim: DA algorithm always returns a perfect matching (that is, all the vertices are matched).
Proof:

• No woman is matched to more than one man. So since there are an equal number of men and women,
if a woman is unmatched, there will also be a man who is unmatched.

• Every woman is either not tentatively matched or gets multiple proposals and keeps one.

• Once a woman is tentatively matched, she is never unmatched again. (She will only shift her tentative
match to one man to another man if she prefers the other man more than her current match.)

• The DA algorithm runs until all the men are matched. And when all men are matched, all the women
will be matched to exactly one man, since no woman is matched to more than one man.

Hence, the DA algorithm will return a perfect matching.

Claim: DA algorithm gives a pairwise stable matching.
Proof:

Suppose DA gives a pairwise unstable matching, that is, ∃ P , blocking pair (m,w).

m

...

m′

w

...

w′

Pw Pm

m is mapped to w′ in the matching.
=⇒ m had already been rejected by w. [∵ Each man proposes to women as per his preference order. ]
=⇒ w was tentatively matched to some man with higher preference than m in her preference order.

But, w is finally matched to m′ which is below m in her preference order. This contradicts the working
principle of the DA algorithm that change in the tentative matchings of women during the algorithm always
increase their preference, whereas change in the tentative matchings of men during the algorithm always
decrease their preference. Hence, our assumption was wrong and therefore, the algorithm always returns a
pairwise stable matching.


