Quick recap: Game Theory
 * Analytical approach for predicting reasonable outcome
 * Building blocks: players, strategies, utilities
 * Difference between action and strategy
 * Key assumptions: rationality and intelligence

Example to illustrate: Game of Chess (von Neumann and Morgenstern, 1944)

Formal description
 * Two player game: White and Black - 16 pieces each.
 * Every piece has some legal moves - ACTIONS
 * Starts with W, players take turns
 * Ends: W win, if W captures B king
 B win, if B captures W king
 Draw, if nobody has legal moves but kings are not in check, both players agree to a draw, board position is such that nobody can win, many more ...

Natural questions from a theorist’s perspective
 * Does W have a winning strategy, i.e., a plan of moves s.t. it wins IRRESPECTIVE of the moves of B?
 * Does B have a winning strategy?
 * Or at least guarantee a draw?
 * Neither may be possible — not synonymous with end of game.
What is a strategy?

In the context of chess, board position if different from Game Situation more than one sequence of moves can bring to the same board position.

denote a board position by x_k

Game Situation is a finite sequence $(x_0, x_1, x_2, \ldots, x_k)$ of board positions s.t.
- x_0 is the opening board position
- $x_k \rightarrow x_{k+1}$, k even - created by a single action of W
- k odd - created by a single action of B

Board positions

- x_0
- x_1
- x_2

W moves (actions)

B moves

Board positions may repeat in this tree, but a vertex is unique — Game Situation

strategy: mapping from game situation to action, i.e. what action to take at every vertex of this game tree. A complete contingency plan.
A strategy for \(W \) is a function \(S_W \) that associates every game situation \((x_0, x_1, \ldots, x_k) \in \mathcal{H} \) (set of all game situations), \(k \) even, with a board position \(x_{k+1} \) such that the move \(x_k \rightarrow x_{k+1} \) is a single valid move of \(W \).

Similar definition of \(S_B \) for \(B \).

Note:
- strategy pair \((S_W, S_B)\) determines an outcome also called one play of the game – a path through the game tree

Questions:
1. this is a finite game – where does it end?
2. can a player guarantee an outcome?

The game ends: \(\circ \) \(W \) wins or \(\bullet \) \(B \) wins or \(\odot \) Draw.

A winning strategy for \(W \) is a strategy \(S_W^* \) s.t. for every \(S_B \) \((S_W^*, S_B)\) ends in a win for \(W \).

A strategy guaranteeing at least a draw for \(W \) is \(S_W' \) s.t. for every \(S_B \), \((S_W', S_B)\) either ends in a draw or win for \(W \).

Analogous definitions of \(S_B^* \) and \(S_B' \)

Not obvious if such strategies exist
An early result of Game Theory (von Neumann, 1928)

In chess, one and only one of the following statements is true:

1. W has a winning strategy
2. B has a winning strategy
3. Each player has a strategy guaranteeing a draw

- there were other possibilities, e.g., nothing can be guaranteed
- it does not say what is that strategy
 actually it is not known: which one is true and what is that strategy

Chess would have been a boring game if any of these answers were known.