What happens to equilibrium after iterative elimination?

Theorem: Consider G and \hat{G} are games before and after elimination of a strategy [not necessarily dominated]. If s^* is a PSNE in G and survives in \hat{G}, then s^* is a PSNE in \hat{G} too.

Intuition: PSNE strategy was the maxima, removing others will continue keeping this as maxima. **Proof:** exercise.

Can new equilibrium be generated?

Theorem: Consider NFG G. Let \hat{s}_j be a weakly dominated strategy of j. If \hat{G} is obtained from G eliminating \hat{s}_j, every PSNE of \hat{G} is a PSNE of G.

No new PSNE if the eliminated strategy is dominated.

Proof:

$\hat{G} : \hat{s}_j = s_j \setminus \{\hat{s}_j\}$, $\hat{s}_i = s_i$, $\forall i \neq j$.

TST: If $s^* = (s^*_j, s^*_i)$ is a PSNE in \hat{G}, it is a PSNE in G.

$u_i(s^*) > u_i(s_i, s^*_i)$, $\forall i \neq j$, $\forall s_i \in \hat{s}_i = s_i$.

$u_j(s^*) > u_j(s^*_j, s^*_i)$, $\forall s_j \in \hat{s}_j$ - this has one less need to show that there is no profitable deviation for any player in G, for $i \neq j$, this is immediate — no strategies are removed for j, this is true for all strategies except \hat{s}_j.
Since $\hat{\Delta}_j$ is dominated, $\exists t_j \in \hat{\Delta}_j \setminus \{\hat{\Delta}_j\}$

s.t. $u_j(t_j, \Delta_j) > u_j(\hat{\Delta}_j, \Delta_j), \forall \Delta_j \in S_j$

so, in particular, $u_j(t_j, \Delta_j^*) > u_j(\hat{\Delta}_j, \Delta_j^*)$

Since Δ_j^* is a PSNE in \hat{G} and $t_j \in \hat{\Delta}_j$,

$u_j(\Delta_j^*, \Delta_j^*) > u_j(t_j, \Delta_j^*) > u_j(\hat{\Delta}_j, \Delta_j^*)$

Summary:

- Elimination of strictly dominated strategies have no effect on PSNE.
- Elimination of weakly dominated strategies may reduce the set of PSNEs, but never adds new.
- The maxmin value is unaffected by the elimination of strictly or weakly dominated strategies.