Equilibrium notions in NIEFGs

- Can extend the subgame perfection of PIEFG, but since the nodes/histories are uncertain, we need to extend to mixed strategies.

- Because of the information sets, best response cannot be defined without the belief of each player.

Belief is a conditional probability distribution over the histories in an information set - conditioned on reaching the information set.

Example: an NIEFG with perfect recall, i.e., mixed and behavioral strategies are equiv.

\[
\begin{align*}
\text{Ex 7.38 (MSZ)} & \quad \frac{5}{12} \quad \frac{4}{12} \quad \frac{3}{12} \\
\ell & \quad x_2 & \quad L & \quad x_1 & \quad I_1^1 & \quad L & \quad x_3 & \quad I_2^1 & \quad R & \quad 2, 0 \\
2, 1 & \quad L_1 & \quad I_2^2 & \quad x_4 & \quad x_5 & \quad I_1^2 & \quad R_1 & \quad L_1 & \quad 0, 0 & \quad 0, -1 & \quad 5, 3 \\
0, 2 & \quad 3, 0 & \quad 2, 2 & \quad 0, 3 & \quad & \quad & \quad & \quad & \\
& \quad R_1 & \quad L_2 & \quad R_1 & \quad L_2 & \quad R_2 & \quad L_2 & \quad & \quad & \quad & \\
& \quad & \\
& \quad & \\
\end{align*}
\]

Consider the behavioral strategy profile: \(\sigma_1 \) at \(I_1^1 \) \(\left(\frac{5}{12} L, \frac{4}{12} M, \frac{3}{12} R \right) \)

at \(I_1^2 \), choose \(R_1 \), at \(I_1^3 \), choose \(L_2 \)

\(\sigma_2 \) : choose \(L \)

Q: Is this an equilibrium? Which implies

- are the Bayesian beliefs consistent with \(P_\theta \) - that visits vertex \(x \) w.p. \(P_\theta(x) \)

- The actions and beliefs are consistent for every player, i.e., maximizes their expected utility.
- Player 1, at I_1^3, believes that τ_6 is reached w.p. 1

 if the belief was $> \frac{2}{7}$ in favor of τ_7, should have chosen R_2

 choose an action maximizing expected utility at each information set

 - sequential rationality

 The strategy vector σ induces the following probabilities to the vertices

 $P_\sigma(\tau_2) = \frac{5}{12}$, $P_\sigma(\tau_3) = \frac{4}{12}$, $P_\sigma(\tau_4) = P(\tau_5) = P_\sigma(\tau_7) = 0$, $P_\sigma(\tau_8) = \frac{4}{12}$

 - Player 2, at I_2^1, believes that τ_3 is reached w.p.

 $P_\sigma(\tau_3 | I_2^1) = \frac{P_\sigma(\tau_3)}{P_\sigma(\tau_2) + P_\sigma(\tau_3)} = \frac{4/12}{4/12 + 5/12} = \frac{4}{9}$

 Similarly, $P_\sigma(\tau_2 | I_2^1) = \frac{5}{9}$

 Is the action of player 2 sequentially rational w.r.t her belief?

 by picking L, her expected utility $= \frac{5}{9} \times 1 + \frac{4}{9} \times 2 = \frac{13}{9}$, this is larger
 than any other choice of actions.

 - Given this, what will be the sequentially rational strategy of player 1 at I_1^1?

 - L, M, R all gives the same expected utility for 1 (utility = 2)

 mixed/behavioral strategy profile σ is sequentially rational for all players
Formal definitions

1. **Belief**: Let the information sets of player i be \(I_i = \{ I_i^1, \ldots, I_i^{k(i)} \} \). The belief of player i is a mapping $\mu^j_i : I_i^j \to [0,1]$, s.t.

\[
\sum_{x \in I_i^j} \mu^j_i(x) = 1
\]

2. **Bayesian belief**: A belief $\mu_i = (\mu^j_i, j = 1, \ldots, k(i))$ of player i is Bayesian with the behavioral strategy σ, if it is derived from σ using Bayes' rule, i.e.,

\[
\mu^j_i(x) = \frac{P_\sigma(x)}{\sum_{y \in I_i^j} P_\sigma(y)}, \quad \forall x \in I_i^j, \forall j = 1, 2, \ldots, k(i)
\]

3. **Sequential rationality**: A strategy σ_i of player i at an information set I_i^j is sequentially rational given σ_i and partial belief μ^j_i if

\[
\sum_{x \in I_i^j} \mu^j_i(x) u_i(\sigma_i, \sigma_{-i} | x) \geq \sum_{x \in I_i^j} \mu^j_i(x) u_i(\sigma_i, \sigma_{-i} | x)
\]

The tuple (σ, μ) is sequentially rational if it is sequentially rational for every player at every information set.

The tuple (σ, μ) is also called an assessment.

Sequential rationality is a refinement of Nash equilibrium.
The notion coincides with SPNE when applied to PIEFGs.

Theorem: In a PIEFG, a behavioral strategy profile \(\sigma \) is an SPNE iff the tuple \((\sigma, \mu) \) is sequentially rational.

[In PIEFG, every information set is a singleton; \(\mu \) is the degenerate distribution at that singleton.]

Equilibrium with sequential rationality

Perfect Bayesian equilibrium

An assessment \((\sigma, \mu) \) is a perfect Bayesian equilibrium (PBE) if for every player \(i \in N \)

1. \(\mu_i \) is Bayesian w.r.t. \(\sigma \), and
2. \(\sigma_i \) is sequentially rational given \(\sigma_i \) and \(\mu_i \).

Often represented only with \(\sigma \), since \(\mu \) is obtained from \(\sigma \).

Self-enforcing (like the SPNE) in a Bayesian way.