Claim: Suppose f satisfies SP, ONTO, ANON, then
\[f(P) = \text{median}(p_1, \ldots, p_n, y_1, \ldots, y_{n-1}). \]

Case 1: a is a phantom peak - proved

Case 2: a is an agent peak

We will prove this for 2 players. The general case repeats this argument.

Claim: $N = \{1, 2\}$, let P and P' be such that
\[p_i(1) = p_i'(1), \forall i \in N. \] Then $f(P) = f(P')$.

Proof: Let $a = p_1(1) = p_1'(1)$, and $p_2(1) = p_2'(1) = b$.
\[f(P) = x \quad \text{and} \quad f(P, P_2') = y. \]

Since f is SP, $x \, P_1 \, y$ and $y \, P_1' \, x$

Since peaks of P_1 and P_1' are the same, if x, y are on the same side of the peak, they must be the same, as the domain is single peaked.

The only other possibility is that x and y fall on different sides of the peak. We show that this is impossible.

WLOG $x < a < y$ and $a < b$.
\(f \circ SP \leftrightarrow f \circ SP \oplus PE \)

PE requires \(f(P) \in [a, b] \), but \(f(P) = \alpha < a \) \(\Rightarrow \)

now repeat this argument for \((P_1', P_2) \rightarrow (P_1', P_2') \) \(\square \)

Profile: \((P_1, P_2) = P \), \(P_1(1) = a \), \(P_2(1) = b \)

\(y_1 \) is the phantom peak.

by assumption, median \((a, b, y_1)\) is an agent peak

WLOG assume the median is \(a \).

Assume for contradiction \(f(P) = c \neq a \).

By PE, \(c \) must be within \(a \) and \(b \). We have two cases to consider: \(b < a < y_1 \) and \(y_1 < a < b \).

Case 2.1: \(b < a < y_1 \), by PE \(c < a \)

construct \(P_1' \), s.t.: \(P_1'(1) = a = P_1(1) \)

and \(y_1, P_1'c \) (possible since they are on different sides of \(a \)).

by the earlier claim, \(f(P) = c \Rightarrow f(P_1', P_2) = c \).

now consider the profile \((P_1', P_2)\)

\(\uparrow \) peak at the rightmost
\(p_2(1) = b < y_1 \leq p_1'(1) \), hence the median of \(\{ b, y_1, p_1'(1) \} \)

is \(y_1 \) (which is a phantom peak, hence case 1 applies).

\[f(p_1', p_2) = y_1. \]

But \(y_1, p_1' \) (by construction) and \(f(p_1', p_2) = c \)

agent 1 manipulates \(p_1' \rightarrow p_1' \), contradiction to \(f \) being SP.

Case 2.2: \(y_1 < a < b, \ PE \Rightarrow a < c \)

construct \(p_1' \) s.t. \(p_1'(1) = a = p_1(1) \) and \(y_1, p_1' \)

\[f(p_1', p_2) = c \quad (\text{by claim}) \]

consider \((p_1^0, p_2) \), \(p_1^0(1) \leq y_1 < b \Rightarrow f(p_1^0, p_2) = y_1 \),

but \(y_1, p_1' \), hence manipulable by agent 1.

This completes the proof for two agents (Case 2). For the generalization to \(n \) players, see Moulin (1980)

"On strategyproofness and single peakedness".